Citation: Akbar Moradi, Alireza Amirteimoori, Sohrab Kordrostami, Mohsen Vaez-Ghasemi. Closest reference point on the strong efficient frontier in data envelopment analysis[J]. AIMS Mathematics, 2020, 5(2): 811-827. doi: 10.3934/math.2020055
[1] | Samantha L Elliott, Emek Kose, Allison L Lewis, Anna E Steinfeld, Elizabeth A Zollinger . Modeling the stem cell hypothesis: Investigating the effects of cancer stem cells and TGF−β on tumor growth. Mathematical Biosciences and Engineering, 2019, 16(6): 7177-7194. doi: 10.3934/mbe.2019360 |
[2] | Urszula Ledzewicz, Behrooz Amini, Heinz Schättler . Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences and Engineering, 2015, 12(6): 1257-1275. doi: 10.3934/mbe.2015.12.1257 |
[3] | H. J. Alsakaji, F. A. Rihan, K. Udhayakumar, F. El Ktaibi . Stochastic tumor-immune interaction model with external treatments and time delays: An optimal control problem. Mathematical Biosciences and Engineering, 2023, 20(11): 19270-19299. doi: 10.3934/mbe.2023852 |
[4] | Craig Collins, K. Renee Fister, Bethany Key, Mary Williams . Blasting neuroblastoma using optimal control of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 451-467. doi: 10.3934/mbe.2009.6.451 |
[5] | Peter Hinow, Philip Gerlee, Lisa J. McCawley, Vito Quaranta, Madalina Ciobanu, Shizhen Wang, Jason M. Graham, Bruce P. Ayati, Jonathan Claridge, Kristin R. Swanson, Mary Loveless, Alexander R. A. Anderson . A spatial model of tumor-host interaction: Application of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 521-546. doi: 10.3934/mbe.2009.6.521 |
[6] | Xin Chen, Tengda Li, Will Cao . Optimizing cancer therapy for individuals based on tumor-immune-drug system interaction. Mathematical Biosciences and Engineering, 2023, 20(10): 17589-17607. doi: 10.3934/mbe.2023781 |
[7] | Qingfeng Tang, Guohong Zhang . Stability and Hopf bifurcations in a competitive tumour-immune system with intrinsic recruitment delay and chemotherapy. Mathematical Biosciences and Engineering, 2021, 18(3): 1941-1965. doi: 10.3934/mbe.2021101 |
[8] | Hsiu-Chuan Wei . Mathematical modeling of tumor growth: the MCF-7 breast cancer cell line. Mathematical Biosciences and Engineering, 2019, 16(6): 6512-6535. doi: 10.3934/mbe.2019325 |
[9] | Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028 |
[10] | G. V. R. K. Vithanage, Hsiu-Chuan Wei, Sophia R-J Jang . Bistability in a model of tumor-immune system interactions with an oncolytic viral therapy. Mathematical Biosciences and Engineering, 2022, 19(2): 1559-1587. doi: 10.3934/mbe.2022072 |
[1] |
R. D. Banker, A. Charnes, W. W. Cooper, Some models for estimating technical and scale inefficiency in data envelopment analysis, Manage. Sci., 30 (1984), 1078-1092. doi: 10.1287/mnsc.30.9.1078
![]() |
[2] |
A. Emrouznejad, R. Banker, L. Neralić, Advances in data envelopment analysis: Celebrating the 40th anniversary of DEA and the 100th anniversary of Professor Abraham Charnes' birthday, Eur. J. Oper. Res., 278 (2019), 365-367. doi: 10.1016/j.ejor.2019.02.020
![]() |
[3] |
A. Emrouznejad, B. R. Parker, G. Tavares, Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA, Socio-Econ. Plan. Sci., 42 (2008), 151-157. doi: 10.1016/j.seps.2007.07.002
![]() |
[4] |
W. Briec, B. Lemaire, Technical efficiency and distance to a reverse convex set, Eur. J. Oper. Res., 114 (1999), 178-187. doi: 10.1016/S0377-2217(98)00089-7
![]() |
[5] |
F. X. Frei, P. T. Harker, Projections onto efficient frontiers: Theoretical and computational extensions to DEA, J. Prod. Anal., 11 (1999), 275-300. doi: 10.1023/A:1007746205433
![]() |
[6] |
E. Gonzaxlez, A. Axlvarez, From efficiency measurement to efficiency improvement: The choice of a relevant benchmark, Eur. J. Oper. Res., 133 (2001), 512-520. doi: 10.1016/S0377-2217(00)00195-8
![]() |
[7] |
S. Lozano, G. Villa, Determining a sequence of targets in DEA, J. Oper. Res. Soc., 56 (2005), 1439-1447. doi: 10.1057/palgrave.jors.2601964
![]() |
[8] |
A. Amirteimoori, S. Kordrostami, A Euclidean distance-based measure of efficiency in data envelopment analysis, Optimization, 59 (2010), 985-996. doi: 10.1080/02331930902878333
![]() |
[9] | J. Aparicio, J. T. Pastor, A well-defined efficiency measure for dealing with closest targets in DEA, Appl. Math. Comput., 219 (2013), 9142-9154. |
[10] |
J. Aparicio, J. T. Pastor, On how to properly calculate the Euclidean distance-based measure in DEA, Optimization, 63 (2014), 421-432. doi: 10.1080/02331934.2012.655692
![]() |
[11] |
J. Aparicio, J. L. Ruiz, I. Sirvent, Closest targets and minimum distance to the Pareto-efficient frontier in DEA, J. Prod. Anal., 28 (2007), 209-218. doi: 10.1007/s11123-007-0039-5
![]() |
[12] |
J. Aparicio, J. T. Pastor, Closest targets and strong monotonicity on the strongly efficient frontier in DEA, Omega, 44 (2014), 51-57. doi: 10.1016/j.omega.2013.10.001
![]() |
[13] |
Q. An, Z. Pang, H. Cen, et al. Closest targets in environmental efficiency evaluation based on enhanced Russell measure, Ecol. Indic., 51 (2015), 59-66. doi: 10.1016/j.ecolind.2014.09.008
![]() |
[14] |
R. R. Russell, Measures of technical efficiencies, J. Econ. Theor., 35 (1985), 109-126. doi: 10.1016/0022-0531(85)90064-X
![]() |
[15] |
J. Aparicio, J. M. Cordero, J. T. Pastor, The determination of the least distance to the strongly efficient frontier in data envelopment analysis oriented models: modelling and computational aspects, Omega, 71 (2017), 1-10. doi: 10.1016/j.omega.2016.09.008
![]() |
[16] | S. Razipour-GhalehJough, F. H. Lotfi, G. Jahanshahloo, et al. Finding closest target for bank branches in the presence of weight restrictions using data envelopment analysis, Ann. Oper. Res., 27 (2019), 1-33. |
[17] |
A. Charnes, W. W. Cooper, E. Rhodes, Measuring the efficiency of decision making units, Eur. J. Oper. Res., 2 (1978), 429-444. doi: 10.1016/0377-2217(78)90138-8
![]() |
[18] |
K. Tone, A slack-based measure of efficiency in DEA, Eur. J. Oper. Res., 130 (2001), 498-509. doi: 10.1016/S0377-2217(99)00407-5
![]() |
[19] | S. C. Ray, Data Envelopment Analysis: Theory and Techniques for Economics and Operations Research, Cambridge University Press, 2004. |
1. | Heinz Schättler, Urszula Ledzewicz, 2015, Chapter 8, 978-1-4939-2971-9, 317, 10.1007/978-1-4939-2972-6_8 | |
2. | U. Ledzewicz, H. Schättler, S. Anita, N. Hritonenko, G. Marinoschi, A. Swierniak, A Review of Optimal Chemotherapy Protocols: From MTD towards Metronomic Therapy, 2014, 9, 0973-5348, 131, 10.1051/mmnp/20149409 | |
3. | Heinz Schättler, Urszula Ledzewicz, Behrooz Amini, Dynamical properties of a minimally parameterized mathematical model for metronomic chemotherapy, 2016, 72, 0303-6812, 1255, 10.1007/s00285-015-0907-y | |
4. | Heinz Schättler, Urszula Ledzewicz, 2015, Chapter 1, 978-1-4939-2971-9, 1, 10.1007/978-1-4939-2972-6_1 | |
5. | Gary An, Swati Kulkarni, An agent-based modeling framework linking inflammation and cancer using evolutionary principles: Description of a generative hierarchy for the hallmarks of cancer and developing a bridge between mechanism and epidemiological data, 2015, 260, 00255564, 16, 10.1016/j.mbs.2014.07.009 | |
6. | Urszula Ledzewicz, Behrooz Amini, Heinz Schättler, Dynamics and control of a mathematical model for metronomic chemotherapy, 2015, 12, 1551-0018, 1257, 10.3934/mbe.2015.12.1257 | |
7. | Nicolas Houy, François Le Grand, Francesco Pappalardo, Optimal dynamic regimens with artificial intelligence: The case of temozolomide, 2018, 13, 1932-6203, e0199076, 10.1371/journal.pone.0199076 | |
8. | Dominique Barbolosi, Joseph Ciccolini, Bruno Lacarelle, Fabrice Barlési, Nicolas André, Computational oncology — mathematical modelling of drug regimens for precision medicine, 2016, 13, 1759-4774, 242, 10.1038/nrclinonc.2015.204 | |
9. | Urszula Ledzewicz, Heinz Schättler, 2014, Chapter 7, 978-1-4939-1792-1, 157, 10.1007/978-1-4939-1793-8_7 | |
10. | Urszula Ledzewicz, Heinz Schättler, On the Role of the Objective in the Optimization of Compartmental Models for Biomedical Therapies, 2020, 187, 0022-3239, 305, 10.1007/s10957-020-01754-2 | |
11. | Raimund Bürger, Gerardo Chowell, Leidy Yissedt Lara-Díaz, Measuring differences between phenomenological growth models applied to epidemiology, 2021, 334, 00255564, 108558, 10.1016/j.mbs.2021.108558 | |
12. | Malgorzata Kardynska, Daria Kogut, Marcin Pacholczyk, Jaroslaw Smieja, Mathematical modeling of regulatory networks of intracellular processes – Aims and selected methods, 2023, 21, 20010370, 1523, 10.1016/j.csbj.2023.02.006 | |
13. | Fuat Gurcan, Senol Kartal, Chaos and its control in a discretized fractional order tumor-immune system Model with benign and malignant case, 2025, 1598-5865, 10.1007/s12190-025-02491-3 |