Loading [Contrib]/a11y/accessibility-menu.js

Dynamics and control of a mathematical model for metronomic chemotherapy

  • Received: 01 November 2014 Accepted: 29 June 2018 Published: 01 August 2015
  • MSC : Primary: 92C50; Secondary: 37N25.

  • A $3$-compartment model for metronomic chemotherapy that takes intoaccount cancerous cells, the tumor vasculature and tumorimmune-system interactions is considered as an optimal controlproblem. Metronomic chemo-therapy is the regular, almost continuousadministration of chemotherapeutic agents at low dose, possibly withsmall interruptions to increase the efficacy of the drugs. Thereexists medical evidence that such administrations of specificcytotoxic agents (e.g., cyclophosphamide) have both antiangiogenicand immune stimulatory effects. A mathematical model for angiogenicsignaling formulated by Hahnfeldt et al. is combined with theclassical equations for tumor immune system interactions byStepanova to form a minimally parameterized model to capture theseeffects of low dose chemotherapy. The model exhibits bistablebehavior with the existence of both benign and malignant locallyasymptotically stable equilibrium points. In this paper, thetransfer of states from the malignant into the benign regions isused as a motivation for the construction of an objective functionalthat induces this process and the analysis of the correspondingoptimal control problem is initiated.

    Citation: Urszula Ledzewicz, Behrooz Amini, Heinz Schättler. Dynamics and control of a mathematical model for metronomic chemotherapy[J]. Mathematical Biosciences and Engineering, 2015, 12(6): 1257-1275. doi: 10.3934/mbe.2015.12.1257

    Related Papers:

    [1] Ami B. Shah, Katarzyna A. Rejniak, Jana L. Gevertz . Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases. Mathematical Biosciences and Engineering, 2016, 13(6): 1185-1206. doi: 10.3934/mbe.2016038
    [2] Samantha L Elliott, Emek Kose, Allison L Lewis, Anna E Steinfeld, Elizabeth A Zollinger . Modeling the stem cell hypothesis: Investigating the effects of cancer stem cells and TGF−β on tumor growth. Mathematical Biosciences and Engineering, 2019, 16(6): 7177-7194. doi: 10.3934/mbe.2019360
    [3] Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier . On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences and Engineering, 2017, 14(1): 217-235. doi: 10.3934/mbe.2017014
    [4] Craig Collins, K. Renee Fister, Bethany Key, Mary Williams . Blasting neuroblastoma using optimal control of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 451-467. doi: 10.3934/mbe.2009.6.451
    [5] Xin Chen, Tengda Li, Will Cao . Optimizing cancer therapy for individuals based on tumor-immune-drug system interaction. Mathematical Biosciences and Engineering, 2023, 20(10): 17589-17607. doi: 10.3934/mbe.2023781
    [6] Hongli Yang, Jinzhi Lei . A mathematical model of chromosome recombination-induced drug resistance in cancer therapy. Mathematical Biosciences and Engineering, 2019, 16(6): 7098-7111. doi: 10.3934/mbe.2019356
    [7] Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028
    [8] Joseph Malinzi, Rachid Ouifki, Amina Eladdadi, Delfim F. M. Torres, K. A. Jane White . Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Mathematical Biosciences and Engineering, 2018, 15(6): 1435-1463. doi: 10.3934/mbe.2018066
    [9] Shuo Wang, Heinz Schättler . Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences and Engineering, 2016, 13(6): 1223-1240. doi: 10.3934/mbe.2016040
    [10] Urszula Ledzewicz, Omeiza Olumoye, Heinz Schättler . On optimal chemotherapy with a strongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth. Mathematical Biosciences and Engineering, 2013, 10(3): 787-802. doi: 10.3934/mbe.2013.10.787
  • A $3$-compartment model for metronomic chemotherapy that takes intoaccount cancerous cells, the tumor vasculature and tumorimmune-system interactions is considered as an optimal controlproblem. Metronomic chemo-therapy is the regular, almost continuousadministration of chemotherapeutic agents at low dose, possibly withsmall interruptions to increase the efficacy of the drugs. Thereexists medical evidence that such administrations of specificcytotoxic agents (e.g., cyclophosphamide) have both antiangiogenicand immune stimulatory effects. A mathematical model for angiogenicsignaling formulated by Hahnfeldt et al. is combined with theclassical equations for tumor immune system interactions byStepanova to form a minimally parameterized model to capture theseeffects of low dose chemotherapy. The model exhibits bistablebehavior with the existence of both benign and malignant locallyasymptotically stable equilibrium points. In this paper, thetransfer of states from the malignant into the benign regions isused as a motivation for the construction of an objective functionalthat induces this process and the analysis of the correspondingoptimal control problem is initiated.


    [1] Nature Reviews Clinical Oncology, 11 (2014), 413-431.
    [2] Future Oncology, 7 (2011), 385-394.
    [3] Mathematical Modeling of Natural Phenomena, 7 (2012), 306-336.
    [4] J. Theoretical Biology, 335 (2013), 235-244.
    [5] Cancer Research, 62 (2002), 6938-6943.
    [6] Springer Verlag, Series: Mathematics and Applications, 2003.
    [7] American Institute of Mathematical Sciences, Springfield, Mo, 2007.
    [8] Cancer Research, 60 (2000), 1878-1886.
    [9] Mathematical Biosciences and Engineering-MBE, 10 (2013), 565-578.
    [10] Springer, New York, 1983.
    [11] Mathematical Biosciences and Engineering, 2 (2005), 511-525.
    [12] J. of Biological Systems, 14 (2006), 13-30.
    [13] Cancer Research, 69 (2009), 4894-4903.
    [14] J. of Biological Systems, 22 (2014), 199-217.
    [15] Springer Verlag, New York, 1983.
    [16] J. of Theoretical Biology, 220 (2003), 545-554.
    [17] Cancer Research, 59 (1999), 4770-4775.
    [18] J. Clinical Investigations, 105 (2000), 1045-1047.
    [19] Cancer Letters, 354 (2014), 220-226.
    [20] J. Clinical Oncology, 18 (2000), 2935-2937.
    [21] Bulletin of Mathematical Biology, 72 (2010), 1029-1068.
    [22] J. Clinical Investigations, 105 (2000), R15-R24.
    [23] Bulletin of Mathematical Biology, 56 (1994), 295-321.
    [24] J. of Mathematical Biology, 64 (2012), 557-577.
    [25] Mathematical Biosciences and Engineering - MBE, 10 (2013), 787-802.
    [26] J. of Optimization Theory and Applications - JOTA, 114 (2002), 609-637.
    [27] J. of Biological Systems, 10 (2002), 183-206.
    [28] Discrete and Continuous Dynamical Systems, Series B, 6 (2006), 129-150.
    [29] SIAM J. on Control and Optimization, 46 (2007), 1052-1079.
    [30] Mathematical Modeling of Natural Phenomena, 9 (2014), 131-152.
    [31] J. of Biological Systems, 22 (2014), 177-197.
    [32] in Mathematical Oncology 2013 (eds. A. d'Onofrio and A. Gandolfi), Springer, (2014), 295-334.
    [33] Nature Reviews|Clinical Oncology, 7 (2010), 455-465.
    [34] Newsletter of the Society for Mathematical Biology, 26 (2013), 9-10.
    [35] J. of Clinical Oncology, 23 (2005), 939-952.
    [36] MacMillan, New York, 1964.
    [37] Bioequivalence and Bioavailability, 3 (2011), p4.
    [38] Springer Verlag, 2012.
    [39] J. of Mathematical Biology, published online June 19, 2015.
    [40] Bulletin of Mathematical Biology, 48 (1986), 253-278.
    [41] Biophysics, 24 (1980), 917-923.
    [42] J. Clinical Investigations, 117 (2007), 1137-1146.
    [43] Mathematical Biosciences, 101 (1990), 237-284.
    [44] IMACS Ann. Comput. Appl. Math., 5 (1989), 51-53.
    [45] J. of Biological Systems, 3 (1995), 41-54.
    [46] Nonlinear Analysis, 47 (2001), 375-386.
    [47] Int. J. Applied Mathematics and Computer Science, 13 (2003), 357-368.
    [48] J. of Theoretical Biology, 227 (2004), 335-348.
    [49] J. of Clinical Oncology, 11 (1993), 820-821.
    [50] Boston-Philadelphia: Hilger Publishing, 1988.
  • This article has been cited by:

    1. Anh Phong Tran, M. Ali Al-Radhawi, Irina Kareva, Junjie Wu, David J. Waxman, Eduardo D. Sontag, Delicate Balances in Cancer Chemotherapy: Modeling Immune Recruitment and Emergence of Systemic Drug Resistance, 2020, 11, 1664-3224, 10.3389/fimmu.2020.01376
    2. Ami B. Shah, Katarzyna A. Rejniak, Jana L. Gevertz, Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases, 2016, 13, 1551-0018, 1185, 10.3934/mbe.2016038
    3. Urszula Ledzewicz, Heinz Schättler, Application of mathematical models to metronomic chemotherapy: What can be inferred from minimal parameterized models?, 2017, 401, 03043835, 74, 10.1016/j.canlet.2017.03.021
    4. Paul A. Valle, Luis N. Coria, Karla D. Carballo, Chemoimmunotherapy for the treatment of prostate cancer: Insights from mathematical modelling, 2021, 90, 0307904X, 682, 10.1016/j.apm.2020.09.021
    5. Clara Rojas Rodríguez, Juan Belmonte-Beitia, Optimizing the delivery of combination therapy for tumors: A mathematical model, 2017, 10, 1793-5245, 1750039, 10.1142/S1793524517500395
    6. Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier, On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach, 2017, 14, 1551-0018, 217, 10.3934/mbe.2017014
    7. Artur César Fassoni, Denis Carvalho Braga, Resilience Analysis for Competing Populations, 2019, 81, 0092-8240, 3864, 10.1007/s11538-019-00660-7
    8. Urszula Ledzewicz, Heinz Schaettler, 2016, Chapter 11, 978-3-319-42021-9, 209, 10.1007/978-3-319-42023-3_11
    9. Paul A. Valle, Luis N. Coria, Corina Plata, Personalized Immunotherapy Treatment Strategies for a Dynamical System of Chronic Myelogenous Leukemia, 2021, 13, 2072-6694, 2030, 10.3390/cancers13092030
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2471) PDF downloads(566) Cited by(9)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog