Citation: Urszula Ledzewicz, Behrooz Amini, Heinz Schättler. Dynamics and control of a mathematical model for metronomic chemotherapy[J]. Mathematical Biosciences and Engineering, 2015, 12(6): 1257-1275. doi: 10.3934/mbe.2015.12.1257
[1] | Ami B. Shah, Katarzyna A. Rejniak, Jana L. Gevertz . Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases. Mathematical Biosciences and Engineering, 2016, 13(6): 1185-1206. doi: 10.3934/mbe.2016038 |
[2] | Samantha L Elliott, Emek Kose, Allison L Lewis, Anna E Steinfeld, Elizabeth A Zollinger . Modeling the stem cell hypothesis: Investigating the effects of cancer stem cells and TGF−β on tumor growth. Mathematical Biosciences and Engineering, 2019, 16(6): 7177-7194. doi: 10.3934/mbe.2019360 |
[3] | Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier . On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences and Engineering, 2017, 14(1): 217-235. doi: 10.3934/mbe.2017014 |
[4] | Craig Collins, K. Renee Fister, Bethany Key, Mary Williams . Blasting neuroblastoma using optimal control of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 451-467. doi: 10.3934/mbe.2009.6.451 |
[5] | Xin Chen, Tengda Li, Will Cao . Optimizing cancer therapy for individuals based on tumor-immune-drug system interaction. Mathematical Biosciences and Engineering, 2023, 20(10): 17589-17607. doi: 10.3934/mbe.2023781 |
[6] | Hongli Yang, Jinzhi Lei . A mathematical model of chromosome recombination-induced drug resistance in cancer therapy. Mathematical Biosciences and Engineering, 2019, 16(6): 7098-7111. doi: 10.3934/mbe.2019356 |
[7] | Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028 |
[8] | Joseph Malinzi, Rachid Ouifki, Amina Eladdadi, Delfim F. M. Torres, K. A. Jane White . Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Mathematical Biosciences and Engineering, 2018, 15(6): 1435-1463. doi: 10.3934/mbe.2018066 |
[9] | Shuo Wang, Heinz Schättler . Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences and Engineering, 2016, 13(6): 1223-1240. doi: 10.3934/mbe.2016040 |
[10] | Urszula Ledzewicz, Omeiza Olumoye, Heinz Schättler . On optimal chemotherapy with a strongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth. Mathematical Biosciences and Engineering, 2013, 10(3): 787-802. doi: 10.3934/mbe.2013.10.787 |
[1] | Nature Reviews Clinical Oncology, 11 (2014), 413-431. |
[2] | Future Oncology, 7 (2011), 385-394. |
[3] | Mathematical Modeling of Natural Phenomena, 7 (2012), 306-336. |
[4] | J. Theoretical Biology, 335 (2013), 235-244. |
[5] | Cancer Research, 62 (2002), 6938-6943. |
[6] | Springer Verlag, Series: Mathematics and Applications, 2003. |
[7] | American Institute of Mathematical Sciences, Springfield, Mo, 2007. |
[8] | Cancer Research, 60 (2000), 1878-1886. |
[9] | Mathematical Biosciences and Engineering-MBE, 10 (2013), 565-578. |
[10] | Springer, New York, 1983. |
[11] | Mathematical Biosciences and Engineering, 2 (2005), 511-525. |
[12] | J. of Biological Systems, 14 (2006), 13-30. |
[13] | Cancer Research, 69 (2009), 4894-4903. |
[14] | J. of Biological Systems, 22 (2014), 199-217. |
[15] | Springer Verlag, New York, 1983. |
[16] | J. of Theoretical Biology, 220 (2003), 545-554. |
[17] | Cancer Research, 59 (1999), 4770-4775. |
[18] | J. Clinical Investigations, 105 (2000), 1045-1047. |
[19] | Cancer Letters, 354 (2014), 220-226. |
[20] | J. Clinical Oncology, 18 (2000), 2935-2937. |
[21] | Bulletin of Mathematical Biology, 72 (2010), 1029-1068. |
[22] | J. Clinical Investigations, 105 (2000), R15-R24. |
[23] | Bulletin of Mathematical Biology, 56 (1994), 295-321. |
[24] | J. of Mathematical Biology, 64 (2012), 557-577. |
[25] | Mathematical Biosciences and Engineering - MBE, 10 (2013), 787-802. |
[26] | J. of Optimization Theory and Applications - JOTA, 114 (2002), 609-637. |
[27] | J. of Biological Systems, 10 (2002), 183-206. |
[28] | Discrete and Continuous Dynamical Systems, Series B, 6 (2006), 129-150. |
[29] | SIAM J. on Control and Optimization, 46 (2007), 1052-1079. |
[30] | Mathematical Modeling of Natural Phenomena, 9 (2014), 131-152. |
[31] | J. of Biological Systems, 22 (2014), 177-197. |
[32] | in Mathematical Oncology 2013 (eds. A. d'Onofrio and A. Gandolfi), Springer, (2014), 295-334. |
[33] | Nature Reviews|Clinical Oncology, 7 (2010), 455-465. |
[34] | Newsletter of the Society for Mathematical Biology, 26 (2013), 9-10. |
[35] | J. of Clinical Oncology, 23 (2005), 939-952. |
[36] | MacMillan, New York, 1964. |
[37] | Bioequivalence and Bioavailability, 3 (2011), p4. |
[38] | Springer Verlag, 2012. |
[39] | J. of Mathematical Biology, published online June 19, 2015. |
[40] | Bulletin of Mathematical Biology, 48 (1986), 253-278. |
[41] | Biophysics, 24 (1980), 917-923. |
[42] | J. Clinical Investigations, 117 (2007), 1137-1146. |
[43] | Mathematical Biosciences, 101 (1990), 237-284. |
[44] | IMACS Ann. Comput. Appl. Math., 5 (1989), 51-53. |
[45] | J. of Biological Systems, 3 (1995), 41-54. |
[46] | Nonlinear Analysis, 47 (2001), 375-386. |
[47] | Int. J. Applied Mathematics and Computer Science, 13 (2003), 357-368. |
[48] | J. of Theoretical Biology, 227 (2004), 335-348. |
[49] | J. of Clinical Oncology, 11 (1993), 820-821. |
[50] | Boston-Philadelphia: Hilger Publishing, 1988. |
1. | Anh Phong Tran, M. Ali Al-Radhawi, Irina Kareva, Junjie Wu, David J. Waxman, Eduardo D. Sontag, Delicate Balances in Cancer Chemotherapy: Modeling Immune Recruitment and Emergence of Systemic Drug Resistance, 2020, 11, 1664-3224, 10.3389/fimmu.2020.01376 | |
2. | Ami B. Shah, Katarzyna A. Rejniak, Jana L. Gevertz, Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases, 2016, 13, 1551-0018, 1185, 10.3934/mbe.2016038 | |
3. | Urszula Ledzewicz, Heinz Schättler, Application of mathematical models to metronomic chemotherapy: What can be inferred from minimal parameterized models?, 2017, 401, 03043835, 74, 10.1016/j.canlet.2017.03.021 | |
4. | Paul A. Valle, Luis N. Coria, Karla D. Carballo, Chemoimmunotherapy for the treatment of prostate cancer: Insights from mathematical modelling, 2021, 90, 0307904X, 682, 10.1016/j.apm.2020.09.021 | |
5. | Clara Rojas Rodríguez, Juan Belmonte-Beitia, Optimizing the delivery of combination therapy for tumors: A mathematical model, 2017, 10, 1793-5245, 1750039, 10.1142/S1793524517500395 | |
6. | Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier, On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach, 2017, 14, 1551-0018, 217, 10.3934/mbe.2017014 | |
7. | Artur César Fassoni, Denis Carvalho Braga, Resilience Analysis for Competing Populations, 2019, 81, 0092-8240, 3864, 10.1007/s11538-019-00660-7 | |
8. | Urszula Ledzewicz, Heinz Schaettler, 2016, Chapter 11, 978-3-319-42021-9, 209, 10.1007/978-3-319-42023-3_11 | |
9. | Paul A. Valle, Luis N. Coria, Corina Plata, Personalized Immunotherapy Treatment Strategies for a Dynamical System of Chronic Myelogenous Leukemia, 2021, 13, 2072-6694, 2030, 10.3390/cancers13092030 |