Citation: Svetlana N. Kovalchuk, Anna L. Arkhipova, Eugene A. Klimov. Development of real-time PCR assay for genotyping SNP rs41255693 in cattle SCD gene[J]. AIMS Agriculture and Food, 2020, 5(1): 14-19. doi: 10.3934/agrfood.2020.1.14
[1] | Kento Okuwa, Hisashi Inaba, Toshikazu Kuniya . Mathematical analysis for an age-structured SIRS epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 6071-6102. doi: 10.3934/mbe.2019304 |
[2] | Cristeta U. Jamilla, Renier G. Mendoza, Victoria May P. Mendoza . Explicit solution of a Lotka-Sharpe-McKendrick system involving neutral delay differential equations using the r-Lambert W function. Mathematical Biosciences and Engineering, 2020, 17(5): 5686-5708. doi: 10.3934/mbe.2020306 |
[3] | Shuyang Xue, Meili Li, Junling Ma, Jia Li . Sex-structured wild and sterile mosquito population models with different release strategies. Mathematical Biosciences and Engineering, 2019, 16(3): 1313-1333. doi: 10.3934/mbe.2019064 |
[4] | Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679 |
[5] | Rinaldo M. Colombo, Mauro Garavello . Optimizing vaccination strategies in an age structured SIR model. Mathematical Biosciences and Engineering, 2020, 17(2): 1074-1089. doi: 10.3934/mbe.2020057 |
[6] | Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369 |
[7] | Jordi Ripoll, Jordi Font . Numerical approach to an age-structured Lotka-Volterra model. Mathematical Biosciences and Engineering, 2023, 20(9): 15603-15622. doi: 10.3934/mbe.2023696 |
[8] | Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073 |
[9] | Hui Cao, Dongxue Yan, Ao Li . Dynamic analysis of the recurrent epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 5972-5990. doi: 10.3934/mbe.2019299 |
[10] | Andrea Franceschetti, Andrea Pugliese, Dimitri Breda . Multiple endemic states in age-structured SIR epidemic models. Mathematical Biosciences and Engineering, 2012, 9(3): 577-599. doi: 10.3934/mbe.2012.9.577 |
[1] | Ladeira MM, Schoonmaker JP, Gionbelli MP, et al. (2016) Nutrigenomics and beef quality: A review about lipogenesis. Int J Mol Sci 17. |
[2] |
Gebreyesus G, Buitenhuis AJ, Poulsen NA, et al. (2019) Multi-population GWAS and enrichment analyses reveal novel genomic regions and promising candidate genes underlying bovine milk fatty acid composition. BMC Genomics 20: 178. doi: 10.1186/s12864-019-5573-9
![]() |
[3] |
Gamarra D, Aldai N, Arakawa A, et al. (2018) Distinct correlations between lipogenic gene expression and fatty acid composition of subcutaneous fat among cattle breeds. BMC Vet Res 14: 167. doi: 10.1186/s12917-018-1481-5
![]() |
[4] |
Mansilla MC, Banchio CE, de Mendoza D (2008) Signalling pathways controlling fatty acid desaturation. Subcell Biochem 49: 71-99. doi: 10.1007/978-1-4020-8831-5_3
![]() |
[5] |
Ntambi JM (1995) The regulation of stearoyl-CoA desaturase (SCD). Prog Lipid Res 34: 139-150. doi: 10.1016/0163-7827(94)00010-J
![]() |
[6] | Ntambi JM (1999) Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res 40: 1549-1558. |
[7] |
Weiss K, Mihaly J, Liebisch G, et al. (2011) Effect of synthetic ligands of PPAR alpha, beta/delta, gamma, RAR, RXR and LXR on the fatty acid composition of phospholipids in mice. Lipids 46: 1013-1020. doi: 10.1007/s11745-011-3593-6
![]() |
[8] |
Bernard L, Leroux C, Hayes H, et al. (2001) Characterization of the caprine stearoyl-CoA desaturase gene and its mRNA showing an unusually long 3'-UTR sequence arising from a single exon. Gene 281: 53-61. doi: 10.1016/S0378-1119(01)00822-8
![]() |
[9] |
Barton L, Kott T, Bures D, et al. (2010) The polymorphisms of stearoyl-CoA desaturase (SCD1) and sterol regulatory element binding protein-1 (SREBP-1) genes and their association with the fatty acid profile of muscle and subcutaneous fat in Fleckvieh bulls. Meat Sci 85: 15-20. doi: 10.1016/j.meatsci.2009.11.016
![]() |
[10] |
Chung M, Ha S, Jeong S, et al. (2000) Cloning and characterization of bovine stearoyl CoA desaturasel cDNA from adipose tissues. Biosci Biotechnol Biochem 64: 1526-1530. doi: 10.1271/bbb.64.1526
![]() |
[11] |
Kelsey JA, Corl BA, Collier RJ, et al. (2003) The effect of breed, parity, and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. J Dairy Sci 86: 2588-2597. doi: 10.3168/jds.S0022-0302(03)73854-5
![]() |
[12] |
Lawless F, Murphy JJ, Harrington D, et al. (1998) Elevation of conjugated cis-9, trans-11-octadecadienoic acid in bovine milk because of dietary supplementation. J Dairy Sci 81: 3259-3267. doi: 10.3168/jds.S0022-0302(98)75890-4
![]() |
[13] |
Peterson DG, Kelsey JA, Bauman DE (2002) Analysis of variation in cis-9, trans-11 conjugated linoleic acid (CLA) in milk fat of dairy cows. J Dairy Sci 85: 2164-2172. doi: 10.3168/jds.S0022-0302(02)74295-1
![]() |
[14] |
Milanesi E, Nicoloso L, Crepaldi P (2008) Stearoyl CoA desaturase (SCD) gene polymorphisms in Italian cattle breeds. J Anim Breed Genet 125: 63-67. doi: 10.1111/j.1439-0388.2007.00697.x
![]() |
[15] |
Kgwatalala PM, Ibeagha-Awemu EM, Hayes JF, et al. (2009) Stearoyl-CoA desaturase 1 3'UTR SNPs and their influence on milk fatty acid composition of Canadian Holstein cows. J Anim Breed Genet 126: 394-403. doi: 10.1111/j.1439-0388.2008.00796.x
![]() |
[16] | Carvajal AM, Huircan P, Dezamour JM, et al. (2016) Milk fatty acid profile is modulated by DGAT1 and SCD1 genotypes in dairy cattle on pasture and strategic supplementation. Genet Mol Res 15. |
[17] |
Houaga I, Muigai AWT, Ng'ang'a FM, et al. (2018) Milk fatty acid variability and association with polymorphisms in SCD1 and DGAT1 genes in White Fulani and Borgou cattle breeds. Mol Biol Rep 45: 1849-1862. doi: 10.1007/s11033-018-4331-4
![]() |
[18] | Wathes DC, Clempson AM, Pollott GE (2012) Associations between lipid metabolism and fertility in the dairy cow. Reprod Fertil Dev 25: 48-61. |
[19] |
Kgwatalala PM, Ibeagha-Awemu EM, Mustafa AF, et al. (2009) Stearoyl-CoA desaturase 1 genotype and stage of lactation influences milk fatty acid composition of Canadian Holstein cows. Anim Genet 40: 609-615. doi: 10.1111/j.1365-2052.2009.01887.x
![]() |
[20] |
Pegolo S, Cecchinato A, Mele M, et al. (2016) Effects of candidate gene polymorphisms on the detailed fatty acids profile determined by gas chromatography in bovine milk. J Dairy Sci 99: 4558-4573. doi: 10.3168/jds.2015-10420
![]() |
[21] | Glazko VI, Andreichenko IN, Kovalchuk SN, et al. (2017) Candidate genes for control of cattle milk production traits. Russ Agric Sci 42: 458-464. |
[22] | Rasmussen HB (2012) Restriction fragment length polymorphism analysis of PCR-amplified fragments (PCR-RFLP) and gel electrophoresis-Valuable tool for genotyping and genetic fingerprinting. In: Magdeldin S, Gel Electrophoresis-Principles and Basics, 315-334. |
[23] |
Babii AV, Arkhipova AL, Andreichenko IN, et al. (2018) A TaqMan PCR assay for detection of DGAT1 K232A polymorphism in cattle. AIMS Agric Food 3: 306-312. doi: 10.3934/agrfood.2018.3.306
![]() |
1. | Benjamin Wacker, Jan Schlüter, Time-continuous and time-discrete SIR models revisited: theory and applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02995-1 | |
2. | Yanyan Du, Qimin Zhang, Anke Meyer-Baese, The positive numerical solution for stochastic age-dependent capital system based on explicit-implicit algorithm, 2021, 165, 01689274, 198, 10.1016/j.apnum.2021.02.015 | |
3. | Benjamin Wacker, Jan Christian Schlüter, A cubic nonlinear population growth model for single species: theory, an explicit–implicit solution algorithm and applications, 2021, 2021, 1687-1847, 10.1186/s13662-021-03399-5 | |
4. | Benjamin Wacker, Jan Christian Schlüter, Qualitative analysis of two systems of nonlinear first‐order ordinary differential equations for biological systems, 2022, 45, 0170-4214, 4597, 10.1002/mma.8056 | |
5. | Eleonora Messina, Mario Pezzella, Antonia Vecchio, Nonlocal finite difference discretization of a class of renewal equation models for epidemics, 2023, 20, 1551-0018, 11656, 10.3934/mbe.2023518 | |
6. | Benjamin Wacker, Framework for solving dynamics of Ca2+ ion concentrations in liver cells numerically: Analysis of a non‐negativity‐preserving non‐standard finite‐difference method, 2023, 46, 0170-4214, 16625, 10.1002/mma.9464 | |
7. | Haoyu Wu, David A. Stephens, Erica E. M. Moodie, An SIR‐based Bayesian framework for COVID‐19 infection estimation, 2024, 52, 0319-5724, 10.1002/cjs.11817 | |
8. | Benjamin Wacker, Jan Christian Schlüter, A non-standard finite-difference-method for a non-autonomous epidemiological model: analysis, parameter identification and applications, 2023, 20, 1551-0018, 12923, 10.3934/mbe.2023577 | |
9. | Benjamin Wacker, Revisiting the classical target cell limited dynamical within-host HIV model - Basic mathematical properties and stability analysis, 2024, 21, 1551-0018, 7805, 10.3934/mbe.2024343 | |
10. | Benjamin Wacker, Qualitative Study of a Dynamical System for Computer Virus Propagation—A Nonstandard Finite‐Difference‐Methodological View, 2025, 0170-4214, 10.1002/mma.10798 | |
11. | Benjamin Wacker, Analysis of a Finite‐Difference Method Based on Nonlocal Approximations for a Nonlinear, Extended Three‐Compartmental Model of Ethanol Metabolism in the Human Body, 2025, 0170-4214, 10.1002/mma.10858 | |
12. | Gerbert Romijn, Niek Stadhouders, Johan Polder, Application of an Epi-Econ-Model to Analyze COVID-19 Lockdown Policies in the Netherlands: Lessons and Limitations, 2025, 2194-5888, 1, 10.1017/bca.2025.10 |