Processing math: 100%

SEIR epidemiological model with varying infectivity and infinite delay

  • Received: 01 August 2007 Accepted: 29 June 2018 Published: 01 March 2008
  • MSC : Primary 34K60, 92D30.

  • A new SEIR model with distributed infinite delay is derived when the infectivity depends on the age of infection. The basic reproduction number R0, which is a threshold quantity for the stability of equilibria, is calculated. If R0 < 1, then the disease-free equilibrium is globally asymptotically stable and this is the only equilibrium. On the contrary, if R0 > 1, then an endemic equilibrium appears which is locally asymptotically stable. Applying a perma- nence theorem for infinite dimensional systems, we obtain that the disease is always present when R0 > 1.

    Citation: Gergely Röst, Jianhong Wu. SEIR epidemiological model with varying infectivity and infinite delay[J]. Mathematical Biosciences and Engineering, 2008, 5(2): 389-402. doi: 10.3934/mbe.2008.5.389

    Related Papers:

    [1] C. Connell McCluskey . Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences and Engineering, 2009, 6(3): 603-610. doi: 10.3934/mbe.2009.6.603
    [2] Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297
    [3] Rongjian Lv, Hua Li, Qiubai Sun, Bowen Li . Model of strategy control for delayed panic spread in emergencies. Mathematical Biosciences and Engineering, 2024, 21(1): 75-95. doi: 10.3934/mbe.2024004
    [4] Jinliang Wang, Gang Huang, Yasuhiro Takeuchi, Shengqiang Liu . Sveir epidemiological model with varying infectivity and distributed delays. Mathematical Biosciences and Engineering, 2011, 8(3): 875-888. doi: 10.3934/mbe.2011.8.875
    [5] Cruz Vargas-De-León, Alberto d'Onofrio . Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences and Engineering, 2017, 14(4): 1019-1033. doi: 10.3934/mbe.2017053
    [6] Hamdy M. Youssef, Najat A. Alghamdi, Magdy A. Ezzat, Alaa A. El-Bary, Ahmed M. Shawky . A new dynamical modeling SEIR with global analysis applied to the real data of spreading COVID-19 in Saudi Arabia. Mathematical Biosciences and Engineering, 2020, 17(6): 7018-7044. doi: 10.3934/mbe.2020362
    [7] Holly Gaff, Elsa Schaefer . Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences and Engineering, 2009, 6(3): 469-492. doi: 10.3934/mbe.2009.6.469
    [8] Haoyu Wang, Xihe Qiu, Jinghan Yang, Qiong Li, Xiaoyu Tan, Jingjing Huang . Neural-SEIR: A flexible data-driven framework for precise prediction of epidemic disease. Mathematical Biosciences and Engineering, 2023, 20(9): 16807-16823. doi: 10.3934/mbe.2023749
    [9] Sarita Bugalia, Jai Prakash Tripathi, Hao Wang . Mathematical modeling of intervention and low medical resource availability with delays: Applications to COVID-19 outbreaks in Spain and Italy. Mathematical Biosciences and Engineering, 2021, 18(5): 5865-5920. doi: 10.3934/mbe.2021295
    [10] Edoardo Beretta, Dimitri Breda . An SEIR epidemic model with constant latency time and infectious period. Mathematical Biosciences and Engineering, 2011, 8(4): 931-952. doi: 10.3934/mbe.2011.8.931
  • A new SEIR model with distributed infinite delay is derived when the infectivity depends on the age of infection. The basic reproduction number R0, which is a threshold quantity for the stability of equilibria, is calculated. If R0 < 1, then the disease-free equilibrium is globally asymptotically stable and this is the only equilibrium. On the contrary, if R0 > 1, then an endemic equilibrium appears which is locally asymptotically stable. Applying a perma- nence theorem for infinite dimensional systems, we obtain that the disease is always present when R0 > 1.


  • This article has been cited by:

    1. Jinliang Wang, Xiaoqing Yu, Heidi L. Tessmer, Toshikazu Kuniya, Ryosuke Omori, Modelling infectious diseases with relapse: a case study of HSV-2, 2017, 14, 1742-4682, 10.1186/s12976-017-0059-4
    2. Yongqi Liu, Qigui Yang, GLOBAL STABILITY ANALYSIS AND PERMANENCE FOR AN HIV-1 DYNAMICS MODEL WITH DISTRIBUTED DELAYS, 2020, 10, 2156-907X, 192, 10.11948/20190106
    3. Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki, Lyapunov functionals for virus-immune models with infinite delay, 2015, 20, 1531-3492, 3093, 10.3934/dcdsb.2015.20.3093
    4. Paul Georgescu, Hong Zhang, An impulsively controlled predator–pest model with disease in the pest, 2010, 11, 14681218, 270, 10.1016/j.nonrwa.2008.10.060
    5. GLOBAL ANALYSIS OF A MULTI-GROUP ANIMAL EPIDEMIC MODEL WITH INDIRECT INFECTION AND TIME DELAY, 2016, 6, 2156-907X, 1023, 10.11948/2016066
    6. Peng Wu, Hongyong Zhao, Dynamics of an HIV Infection Model with Two Infection Routes and Evolutionary Competition between Two Viral Strains, 2020, 84, 0307904X, 240, 10.1016/j.apm.2020.03.040
    7. Michael Y. Li, Zhisheng Shuai, Chuncheng Wang, Global stability of multi-group epidemic models with distributed delays, 2010, 361, 0022247X, 38, 10.1016/j.jmaa.2009.09.017
    8. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, 2012, 9, 1551-0018, 819, 10.3934/mbe.2012.9.819
    9. Aekabut Sirijampa, Settapat Chinviriyasit, Wirawan Chinviriyasit, Hopf bifurcation analysis of a delayed SEIR epidemic model with infectious force in latent and infected period, 2018, 2018, 1687-1847, 10.1186/s13662-018-1805-6
    10. Dessalegn Y. Melesse, Abba B. Gumel, Global asymptotic properties of an SEIRS model with multiple infectious stages, 2010, 366, 0022247X, 202, 10.1016/j.jmaa.2009.12.041
    11. Wei Zhong, Tim Lant, Megan Jehn, Yushim Kim, 2012, Chapter 10, 978-1-4614-1664-7, 181, 10.1007/978-1-4614-1665-4_10
    12. Kasia A. Pawelek, Shengqiang Liu, Faranak Pahlevani, Libin Rong, A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data, 2012, 235, 00255564, 98, 10.1016/j.mbs.2011.11.002
    13. Jinhu Xu, Yan Geng, Yicang Zhou, Global stability of a multi-group model with distributed delay and vaccination, 2017, 40, 01704214, 1475, 10.1002/mma.4068
    14. Hongying Shu, Yuming Chen, Lin Wang, Impacts of the Cell-Free and Cell-to-Cell Infection Modes on Viral Dynamics, 2018, 30, 1040-7294, 1817, 10.1007/s10884-017-9622-2
    15. Mingwang Shen, Yanni Xiao, Global Stability of a Multi-group SVEIR Epidemiological Model with the Vaccination Age and Infection Age, 2016, 144, 0167-8019, 137, 10.1007/s10440-016-0044-7
    16. Toshikazu Kuniya, Stability Analysis of an Age-Structured SIR Epidemic Model with a Reduction Method to ODEs, 2018, 6, 2227-7390, 147, 10.3390/math6090147
    17. Marco Paggi, An Analysis of the Italian Lockdown in Retrospective Using Particle Swarm Optimization in Machine Learning Applied to an Epidemiological Model, 2020, 2, 2624-8174, 368, 10.3390/physics2030020
    18. Jinliang Wang, Min Guo, Xianning Liu, Zhitao Zhao, Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay, 2016, 291, 00963003, 149, 10.1016/j.amc.2016.06.032
    19. Yongzhen Pei, Li Changguo, Qianyong Wu, Yunfei Lv, Successive Vaccination and Difference in Immunity of a Delay SIR Model with a General Incidence Rate, 2014, 2014, 1085-3375, 1, 10.1155/2014/678723
    20. Xinzhi Liu, Peter Stechlinski, Hybrid stabilization and synchronization of nonlinear systems with unbounded delays, 2016, 280, 00963003, 140, 10.1016/j.amc.2016.01.023
    21. Yu Yang, Lan Zou, Shigui Ruan, Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions, 2015, 270, 00255564, 183, 10.1016/j.mbs.2015.05.001
    22. Lianwen Wang, Zhijun Liu, Xingan Zhang, Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence, 2016, 284, 00963003, 47, 10.1016/j.amc.2016.02.058
    23. J. Martín-Vaquero, A. Queiruga-Dios, A. Martín del Rey, A.H. Encinas, J.D. Hernández Guillén, G. Rodríguez Sánchez, Variable step length algorithms with high-order extrapolated non-standard finite difference schemes for a SEIR model, 2018, 330, 03770427, 848, 10.1016/j.cam.2017.03.031
    24. David Lehotzky, Tamas Insperger, Gabor Stepan, Extension of the spectral element method for stability analysis of time-periodic delay-differential equations with multiple and distributed delays, 2016, 35, 10075704, 177, 10.1016/j.cnsns.2015.11.007
    25. Xinzhi Liu, Peter Stechlinski, 2017, Chapter 4, 978-3-319-53206-6, 83, 10.1007/978-3-319-53208-0_4
    26. János Marcell Benke, 2018, 10.14232/phd.4208
    27. Hongying Shu, Dejun Fan, Junjie Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, 2012, 13, 14681218, 1581, 10.1016/j.nonrwa.2011.11.016
    28. Pierre Magal, Connell McCluskey, Two-Group Infection Age Model Including an Application to Nosocomial Infection, 2013, 73, 0036-1399, 1058, 10.1137/120882056
    29. Dávid Lehotzky, Tamás Insperger, A least-square spectral element method for stability analysis of time delay systems∗∗This work was supported by the Hungarian National Science Foundation under grant OTKA-K105433., 2015, 48, 24058963, 382, 10.1016/j.ifacol.2015.09.408
    30. P. Magal, C.C. McCluskey, G.F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, 2010, 89, 0003-6811, 1109, 10.1080/00036810903208122
    31. Maoxing Liu, Gergely Röst, Gabriella Vas, SIS model on homogeneous networks with threshold type delayed contact reduction, 2013, 66, 08981221, 1534, 10.1016/j.camwa.2013.02.009
    32. David Lehotzky, Tamas Insperger, Gabor Stepan, Numerical methods for the stability of time-periodic hybrid time-delay systems with applications, 2018, 57, 0307904X, 142, 10.1016/j.apm.2017.12.029
    33. Global asymptotic properties of staged models with multiple progression pathways for infectious diseases, 2011, 8, 1551-0018, 1019, 10.3934/mbe.2011.8.1019
    34. Wei Zhong, Yushim Kim, Megan Jehn, Modeling dynamics of an influenza pandemic with heterogeneous coping behaviors: case study of a 2009 H1N1 outbreak in Arizona, 2013, 19, 1381-298X, 622, 10.1007/s10588-012-9146-6
    35. Xinxin Wang, Shengqiang Liu, An epidemic model with different distributed latencies and nonlinear incidence rate, 2014, 241, 00963003, 259, 10.1016/j.amc.2014.05.032
    36. Sveir epidemiological model with varying infectivity and distributed delays, 2011, 8, 1551-0018, 875, 10.3934/mbe.2011.8.875
    37. Ryosuke Omori, Hiroshi Nishiura, Theoretical basis to measure the impact of short-lasting control of an infectious disease on the epidemic peak, 2011, 8, 1742-4682, 10.1186/1742-4682-8-2
    38. Ran Zhang, Dan Li, Shengqiang Liu, GLOBAL ANALYSIS OF AN AGE-STRUCTURED SEIR MODEL WITH IMMIGRATION OF POPULATION AND NONLINEAR INCIDENCE RATE, 2019, 9, 2156-907X, 1470, 10.11948/2156-907X.20180281
    39. Xiulan Lai, Xingfu Zou, Modeling HIV-1 Virus Dynamics with Both Virus-to-Cell Infection and Cell-to-Cell Transmission, 2014, 74, 0036-1399, 898, 10.1137/130930145
    40. Jinliang Wang, Jiying Lang, Yuming Chen, Global threshold dynamics of an SVIR model with age-dependent infection and relapse, 2017, 11, 1751-3758, 427, 10.1080/17513758.2016.1226436
    41. Gang Huang, Yasuhiro Takeuchi, Wanbiao Ma, Daijun Wei, Global Stability for Delay SIR and SEIR Epidemic Models with Nonlinear Incidence Rate, 2010, 72, 0092-8240, 1192, 10.1007/s11538-009-9487-6
    42. Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki, Lyapunov functionals for multistrain models with infinite delay, 2017, 22, 1553-524X, 507, 10.3934/dcdsb.2017025
    43. O. Sharomi, A.B. Gumel, Dynamical analysis of a sex-structured Chlamydia trachomatis transmission model with time delay, 2011, 12, 14681218, 837, 10.1016/j.nonrwa.2010.08.010
    44. C. Connell McCluskey, Global stability for an SEI model of infectious disease with age structure and immigration of infecteds, 2016, 13, 1551-0018, 381, 10.3934/mbe.2015008
    45. Xichao Duan, Sanling Yuan, Zhipeng Qiu, Junling Ma, Global stability of an SVEIR epidemic model with ages of vaccination and latency, 2014, 68, 08981221, 288, 10.1016/j.camwa.2014.06.002
    46. Tinggui Chen, Jiawen Shi, Jianjun Yang, Guodong Cong, Gongfa Li, Modeling Public Opinion Polarization in Group Behavior by Integrating SIRS-Based Information Diffusion Process, 2020, 2020, 1076-2787, 1, 10.1155/2020/4791527
    47. Zhigui Lin, Yinan Zhao, Peng Zhou, The infected frontier in an SEIR epidemic model with infinite delay, 2013, 18, 1553-524X, 2355, 10.3934/dcdsb.2013.18.2355
    48. Shengqiang Liu, Shaokai Wang, Lin Wang, Global dynamics of delay epidemic models with nonlinear incidence rate and relapse, 2011, 12, 14681218, 119, 10.1016/j.nonrwa.2010.06.001
    49. Jinliang Wang, Ran Zhang, Toshikazu Kuniya, The stability analysis of an SVEIR model with continuous age-structure in the exposed and infectious classes, 2015, 9, 1751-3758, 73, 10.1080/17513758.2015.1006696
    50. Jinliang Wang, Ran Zhang, Toshikazu Kuniya, The dynamics of an SVIR epidemiological model with infection age: Table 1., 2016, 81, 0272-4960, 321, 10.1093/imamat/hxv039
    51. Stephen A. Gourley, Gergely Röst, Horst R. Thieme, Uniform Persistence in a Model for Bluetongue Dynamics, 2014, 46, 0036-1410, 1160, 10.1137/120878197
    52. Yasin Ucakan, Seda Gulen, Kevser Koklu, Analysing of Tuberculosis in Turkey through SIR, SEIR and BSEIR Mathematical Models, 2021, 27, 1387-3954, 179, 10.1080/13873954.2021.1881560
    53. Pooja Sengupta, Bhaswati Ganguli, Sugata SenRoy, Aditya Chatterjee, An analysis of COVID-19 clusters in India, 2021, 21, 1471-2458, 10.1186/s12889-021-10491-8
    54. Walid Ben Aribi, Bechir Naffeti, Kaouther Ayouni, Hamadi Ammar, Henda Triki, Slimane Ben Miled, Amira Kebir, Global Stability and Numerical Analysis of a Compartmental Model of the Transmission of the Hepatitis A Virus (HAV): A Case Study in Tunisia, 2022, 8, 2349-5103, 10.1007/s40819-022-01326-0
    55. Mohamed Zagour, 2022, Chapter 10, 978-3-030-96561-7, 285, 10.1007/978-3-030-96562-4_10
    56. Enrico Schiassi, Mario De Florio, Andrea D’Ambrosio, Daniele Mortari, Roberto Furfaro, Physics-Informed Neural Networks and Functional Interpolation for Data-Driven Parameters Discovery of Epidemiological Compartmental Models, 2021, 9, 2227-7390, 2069, 10.3390/math9172069
    57. Chunyue Wang, Jinliang Wang, Ran Zhang, Global analysis on an age‐space structured vaccination model with Neumann boundary condition, 2022, 45, 0170-4214, 1640, 10.1002/mma.7879
    58. Soufiane Bentout, Salih Djilali, Sunil Kumar, Tarik Mohammed Touaoula, Threshold dynamics of difference equations for SEIR model with nonlinear incidence function and infinite delay, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-01466-0
    59. Emile Franc Doungmo Goufo, Abdon Atangana, On analysis generalization of TB-HIV dynamics by a two-scale reduction process, 2021, 30, 22113797, 104772, 10.1016/j.rinp.2021.104772
    60. Vijay Pal Bajiya, Jai Prakash Tripathi, Vipul Kakkar, Jinshan Wang, Guiquan Sun, Global Dynamics of a Multi-group SEIR Epidemic Model with Infection Age, 2021, 42, 0252-9599, 833, 10.1007/s11401-021-0294-1
    61. Changjin Xu, Zixin Liu, Yicheng Pang, Ali Akgül, Dumitru Baleanu, Dynamics of HIV-TB coinfection model using classical and Caputo piecewise operator: A dynamic approach with real data from South-East Asia, European and American regions, 2022, 165, 09600779, 112879, 10.1016/j.chaos.2022.112879
    62. Karianne Peterson, René van den Brom, Marian Aalberts, Carlijn ter Bogt-Kappert, Piet Vellema, Loss of Caprine Arthritis Encephalitis Virus (CAEV) Herd Accreditation: Characteristics, Diagnostic Approach, and Specific Follow-Up Scenarios on Large Dairy Goat Farms, 2022, 11, 2076-0817, 1541, 10.3390/pathogens11121541
    63. Zhenzhen Lu, Yongguang Yu, YangQuan Chen, Guojian Ren, Conghui Xu, Shuhui Wang, Stability analysis of a nonlocal SIHRDP epidemic model with memory effects, 2022, 109, 0924-090X, 121, 10.1007/s11071-022-07286-w
    64. Michele Mugnaine, Enrique C. Gabrick, Paulo R. Protachevicz, Kelly C. Iarosz, Silvio L.T. de Souza, Alexandre C.L. Almeida, Antonio M. Batista, Iberê L. Caldas, José D. Szezech Jr, Ricardo L. Viana, Control attenuation and temporary immunity in a cellular automata SEIR epidemic model, 2022, 155, 09600779, 111784, 10.1016/j.chaos.2021.111784
    65. Vanessa Steindorf, Sergio Oliva, Jianhong Wu, Cross immunity protection and antibody-dependent enhancement in a distributed delay dynamic model, 2022, 19, 1551-0018, 2950, 10.3934/mbe.2022136
    66. Huaixing Li, Jiaoyan Wang, Global Dynamics of an SEIR Model with the Age of Infection and Vaccination, 2021, 9, 2227-7390, 2195, 10.3390/math9182195
    67. Jiaxin Nan, Wanbiao Ma, Stability and persistence analysis of a microorganism flocculation model with infinite delay, 2023, 20, 1551-0018, 10815, 10.3934/mbe.2023480
    68. Liancheng WANG, Xiaoqin WU, Stability and Hopf Bifurcation for an SEIR Epidemic Model with Delay, 2018, 2, 2587-2648, 113, 10.31197/atnaa.380970
    69. Adam K. Kiss, Tamas G. Molnar, Aaron D. Ames, Gabor Orosz, Control barrier functionals: Safety‐critical control for time delay systems, 2023, 1049-8923, 10.1002/rnc.6751
    70. D. B. Eshmamatova, Sh. J. Seytov, N. B. Narziev, Basins of Fixed Points for Composition of the Lotka–Volterra Mappings and Their Classification, 2023, 44, 1995-0802, 558, 10.1134/S1995080223020142
    71. Teddy Lazebnik, Computational applications of extended SIR models: A review focused on airborne pandemics, 2023, 483, 03043800, 110422, 10.1016/j.ecolmodel.2023.110422
    72. Timothy Ginn, Lynn Schreyer, Compartment Models with Memory, 2023, 65, 0036-1445, 774, 10.1137/21M1437160
    73. Yanshu Wang, Hailiang Zhang, Dynamical Analysis of an Age-Structured SVEIR Model with Imperfect Vaccine, 2023, 11, 2227-7390, 3526, 10.3390/math11163526
    74. Lianwen Wang, Xingyu Wang, Zhijun Liu, Yating Wang, Global dynamics and traveling waves for a diffusive SEIVS epidemic model with distributed delays, 2023, 10075704, 107638, 10.1016/j.cnsns.2023.107638
    75. Mohammed Salman, Sanjay Kumar Mohanty, Chittaranjan Nayak, Sachin Kumar, The role of delay in vaccination rate on Covid-19, 2023, 9, 24058440, e20688, 10.1016/j.heliyon.2023.e20688
    76. Guojun Li, Baofeng Chang, Jian Zhao, Jiayang Wang, Fan He, Yongheng Wang, Ting Xu, Zhiguang Zhou, VIVIAN: virtual simulation and visual analysis of epidemic spread data, 2024, 1343-8875, 10.1007/s12650-024-00990-2
    77. Mohamed Zagour, 2024, Chapter 6, 978-3-031-56793-3, 127, 10.1007/978-3-031-56794-0_6
    78. Rasul Ganikhodzhaev, Dilfuza Eshmamatova, Mokhbonu Tadzhieva, Botir Zakirov, SOME DEGENERATE CASES OF DISCRETE LOTKA–VOLTERRA DYNAMICAL SYSTEMS AND THEIR APPLICATIONS IN EPIDEMIOLOGY, 2024, 1072-3374, 10.1007/s10958-024-07404-6
    79. Guo Lin, Propagation dynamics in epidemic models with two latent classes, 2024, 01672789, 134509, 10.1016/j.physd.2024.134509
    80. Yan Zhuang, Weihua Li, Yang Liu, Information and Knowledge Diffusion Dynamics in Complex Networks with Independent Spreaders, 2025, 27, 1099-4300, 234, 10.3390/e27030234
    81. Isam Al‐Darabsah, Global Dynamics of a Within‐Host Model for Immune Response With a Generic Distributed Delay, 2025, 0170-4214, 10.1002/mma.11021
    82. Paul J. Hurtado, Cameron Richards, Finding Reproduction Numbers for Epidemic Models and Predator-Prey Models of Arbitrary Finite Dimension Using the Generalized Linear Chain Trick, 2025, 87, 0092-8240, 10.1007/s11538-025-01467-5
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3526) PDF downloads(729) Cited by(82)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog