1.
|
Jinliang Wang, Xiaoqing Yu, Heidi L. Tessmer, Toshikazu Kuniya, Ryosuke Omori,
Modelling infectious diseases with relapse: a case study of HSV-2,
2017,
14,
1742-4682,
10.1186/s12976-017-0059-4
|
|
2.
|
Yongqi Liu, Qigui Yang,
GLOBAL STABILITY ANALYSIS AND PERMANENCE FOR AN HIV-1 DYNAMICS MODEL WITH DISTRIBUTED DELAYS,
2020,
10,
2156-907X,
192,
10.11948/20190106
|
|
3.
|
Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki,
Lyapunov functionals for virus-immune models with infinite delay,
2015,
20,
1531-3492,
3093,
10.3934/dcdsb.2015.20.3093
|
|
4.
|
Paul Georgescu, Hong Zhang,
An impulsively controlled predator–pest model with disease in the pest,
2010,
11,
14681218,
270,
10.1016/j.nonrwa.2008.10.060
|
|
5.
|
GLOBAL ANALYSIS OF A MULTI-GROUP ANIMAL EPIDEMIC MODEL WITH INDIRECT INFECTION AND TIME DELAY,
2016,
6,
2156-907X,
1023,
10.11948/2016066
|
|
6.
|
Peng Wu, Hongyong Zhao,
Dynamics of an HIV Infection Model with Two Infection Routes and Evolutionary Competition between Two Viral Strains,
2020,
84,
0307904X,
240,
10.1016/j.apm.2020.03.040
|
|
7.
|
Michael Y. Li, Zhisheng Shuai, Chuncheng Wang,
Global stability of multi-group epidemic models with distributed delays,
2010,
361,
0022247X,
38,
10.1016/j.jmaa.2009.09.017
|
|
8.
|
Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes,
2012,
9,
1551-0018,
819,
10.3934/mbe.2012.9.819
|
|
9.
|
Aekabut Sirijampa, Settapat Chinviriyasit, Wirawan Chinviriyasit,
Hopf bifurcation analysis of a delayed SEIR epidemic model with infectious force in latent and infected period,
2018,
2018,
1687-1847,
10.1186/s13662-018-1805-6
|
|
10.
|
Dessalegn Y. Melesse, Abba B. Gumel,
Global asymptotic properties of an SEIRS model with multiple infectious stages,
2010,
366,
0022247X,
202,
10.1016/j.jmaa.2009.12.041
|
|
11.
|
Wei Zhong, Tim Lant, Megan Jehn, Yushim Kim,
2012,
Chapter 10,
978-1-4614-1664-7,
181,
10.1007/978-1-4614-1665-4_10
|
|
12.
|
Kasia A. Pawelek, Shengqiang Liu, Faranak Pahlevani, Libin Rong,
A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data,
2012,
235,
00255564,
98,
10.1016/j.mbs.2011.11.002
|
|
13.
|
Jinhu Xu, Yan Geng, Yicang Zhou,
Global stability of a multi-group model with distributed delay and vaccination,
2017,
40,
01704214,
1475,
10.1002/mma.4068
|
|
14.
|
Hongying Shu, Yuming Chen, Lin Wang,
Impacts of the Cell-Free and Cell-to-Cell Infection Modes on Viral Dynamics,
2018,
30,
1040-7294,
1817,
10.1007/s10884-017-9622-2
|
|
15.
|
Mingwang Shen, Yanni Xiao,
Global Stability of a Multi-group SVEIR Epidemiological Model with the Vaccination Age and Infection Age,
2016,
144,
0167-8019,
137,
10.1007/s10440-016-0044-7
|
|
16.
|
Toshikazu Kuniya,
Stability Analysis of an Age-Structured SIR Epidemic Model with a Reduction Method to ODEs,
2018,
6,
2227-7390,
147,
10.3390/math6090147
|
|
17.
|
Marco Paggi,
An Analysis of the Italian Lockdown in Retrospective Using Particle Swarm Optimization in Machine Learning Applied to an Epidemiological Model,
2020,
2,
2624-8174,
368,
10.3390/physics2030020
|
|
18.
|
Jinliang Wang, Min Guo, Xianning Liu, Zhitao Zhao,
Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay,
2016,
291,
00963003,
149,
10.1016/j.amc.2016.06.032
|
|
19.
|
Yongzhen Pei, Li Changguo, Qianyong Wu, Yunfei Lv,
Successive Vaccination and Difference in Immunity of a Delay SIR Model with a General Incidence Rate,
2014,
2014,
1085-3375,
1,
10.1155/2014/678723
|
|
20.
|
Xinzhi Liu, Peter Stechlinski,
Hybrid stabilization and synchronization of nonlinear systems with unbounded delays,
2016,
280,
00963003,
140,
10.1016/j.amc.2016.01.023
|
|
21.
|
Yu Yang, Lan Zou, Shigui Ruan,
Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions,
2015,
270,
00255564,
183,
10.1016/j.mbs.2015.05.001
|
|
22.
|
Lianwen Wang, Zhijun Liu, Xingan Zhang,
Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence,
2016,
284,
00963003,
47,
10.1016/j.amc.2016.02.058
|
|
23.
|
J. Martín-Vaquero, A. Queiruga-Dios, A. Martín del Rey, A.H. Encinas, J.D. Hernández Guillén, G. Rodríguez Sánchez,
Variable step length algorithms with high-order extrapolated non-standard finite difference schemes for a SEIR model,
2018,
330,
03770427,
848,
10.1016/j.cam.2017.03.031
|
|
24.
|
David Lehotzky, Tamas Insperger, Gabor Stepan,
Extension of the spectral element method for stability analysis of time-periodic delay-differential equations with multiple and distributed delays,
2016,
35,
10075704,
177,
10.1016/j.cnsns.2015.11.007
|
|
25.
|
Xinzhi Liu, Peter Stechlinski,
2017,
Chapter 4,
978-3-319-53206-6,
83,
10.1007/978-3-319-53208-0_4
|
|
26.
|
János Marcell Benke,
2018,
10.14232/phd.4208
|
|
27.
|
Hongying Shu, Dejun Fan, Junjie Wei,
Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission,
2012,
13,
14681218,
1581,
10.1016/j.nonrwa.2011.11.016
|
|
28.
|
Pierre Magal, Connell McCluskey,
Two-Group Infection Age Model Including an Application to Nosocomial Infection,
2013,
73,
0036-1399,
1058,
10.1137/120882056
|
|
29.
|
Dávid Lehotzky, Tamás Insperger,
A least-square spectral element method for stability analysis of time delay systems∗∗This work was supported by the Hungarian National Science Foundation under grant OTKA-K105433.,
2015,
48,
24058963,
382,
10.1016/j.ifacol.2015.09.408
|
|
30.
|
P. Magal, C.C. McCluskey, G.F. Webb,
Lyapunov functional and global asymptotic stability for an infection-age model,
2010,
89,
0003-6811,
1109,
10.1080/00036810903208122
|
|
31.
|
Maoxing Liu, Gergely Röst, Gabriella Vas,
SIS model on homogeneous networks with threshold type delayed contact reduction,
2013,
66,
08981221,
1534,
10.1016/j.camwa.2013.02.009
|
|
32.
|
David Lehotzky, Tamas Insperger, Gabor Stepan,
Numerical methods for the stability of time-periodic hybrid time-delay systems with applications,
2018,
57,
0307904X,
142,
10.1016/j.apm.2017.12.029
|
|
33.
|
Global asymptotic properties of staged models with multiple progression pathways for infectious diseases,
2011,
8,
1551-0018,
1019,
10.3934/mbe.2011.8.1019
|
|
34.
|
Wei Zhong, Yushim Kim, Megan Jehn,
Modeling dynamics of an influenza pandemic with heterogeneous coping behaviors: case study of a 2009 H1N1 outbreak in Arizona,
2013,
19,
1381-298X,
622,
10.1007/s10588-012-9146-6
|
|
35.
|
Xinxin Wang, Shengqiang Liu,
An epidemic model with different distributed latencies and nonlinear incidence rate,
2014,
241,
00963003,
259,
10.1016/j.amc.2014.05.032
|
|
36.
|
Sveir epidemiological model with varying infectivity and distributed delays,
2011,
8,
1551-0018,
875,
10.3934/mbe.2011.8.875
|
|
37.
|
Ryosuke Omori, Hiroshi Nishiura,
Theoretical basis to measure the impact of short-lasting control of an infectious disease on the epidemic peak,
2011,
8,
1742-4682,
10.1186/1742-4682-8-2
|
|
38.
|
Ran Zhang, Dan Li, Shengqiang Liu,
GLOBAL ANALYSIS OF AN AGE-STRUCTURED SEIR MODEL WITH IMMIGRATION OF POPULATION AND NONLINEAR INCIDENCE RATE,
2019,
9,
2156-907X,
1470,
10.11948/2156-907X.20180281
|
|
39.
|
Xiulan Lai, Xingfu Zou,
Modeling HIV-1 Virus Dynamics with Both Virus-to-Cell Infection and Cell-to-Cell Transmission,
2014,
74,
0036-1399,
898,
10.1137/130930145
|
|
40.
|
Jinliang Wang, Jiying Lang, Yuming Chen,
Global threshold dynamics of an SVIR model with age-dependent infection and relapse,
2017,
11,
1751-3758,
427,
10.1080/17513758.2016.1226436
|
|
41.
|
Gang Huang, Yasuhiro Takeuchi, Wanbiao Ma, Daijun Wei,
Global Stability for Delay SIR and SEIR Epidemic Models with Nonlinear Incidence Rate,
2010,
72,
0092-8240,
1192,
10.1007/s11538-009-9487-6
|
|
42.
|
Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki,
Lyapunov functionals for multistrain models with infinite delay,
2017,
22,
1553-524X,
507,
10.3934/dcdsb.2017025
|
|
43.
|
O. Sharomi, A.B. Gumel,
Dynamical analysis of a sex-structured Chlamydia trachomatis transmission model with time delay,
2011,
12,
14681218,
837,
10.1016/j.nonrwa.2010.08.010
|
|
44.
|
C. Connell McCluskey,
Global stability for an SEI model of infectious disease with age structure and immigration of infecteds,
2016,
13,
1551-0018,
381,
10.3934/mbe.2015008
|
|
45.
|
Xichao Duan, Sanling Yuan, Zhipeng Qiu, Junling Ma,
Global stability of an SVEIR epidemic model with ages of vaccination and latency,
2014,
68,
08981221,
288,
10.1016/j.camwa.2014.06.002
|
|
46.
|
Tinggui Chen, Jiawen Shi, Jianjun Yang, Guodong Cong, Gongfa Li,
Modeling Public Opinion Polarization in Group Behavior by Integrating SIRS-Based Information Diffusion Process,
2020,
2020,
1076-2787,
1,
10.1155/2020/4791527
|
|
47.
|
Zhigui Lin, Yinan Zhao, Peng Zhou,
The infected frontier in an SEIR epidemic model with infinite delay,
2013,
18,
1553-524X,
2355,
10.3934/dcdsb.2013.18.2355
|
|
48.
|
Shengqiang Liu, Shaokai Wang, Lin Wang,
Global dynamics of delay epidemic models with nonlinear incidence rate and relapse,
2011,
12,
14681218,
119,
10.1016/j.nonrwa.2010.06.001
|
|
49.
|
Jinliang Wang, Ran Zhang, Toshikazu Kuniya,
The stability analysis of an SVEIR model with continuous age-structure in the exposed and infectious classes,
2015,
9,
1751-3758,
73,
10.1080/17513758.2015.1006696
|
|
50.
|
Jinliang Wang, Ran Zhang, Toshikazu Kuniya,
The dynamics of an SVIR epidemiological model with infection age: Table 1.,
2016,
81,
0272-4960,
321,
10.1093/imamat/hxv039
|
|
51.
|
Stephen A. Gourley, Gergely Röst, Horst R. Thieme,
Uniform Persistence in a Model for Bluetongue Dynamics,
2014,
46,
0036-1410,
1160,
10.1137/120878197
|
|
52.
|
Yasin Ucakan, Seda Gulen, Kevser Koklu,
Analysing of Tuberculosis in Turkey through SIR, SEIR and BSEIR Mathematical Models,
2021,
27,
1387-3954,
179,
10.1080/13873954.2021.1881560
|
|
53.
|
Pooja Sengupta, Bhaswati Ganguli, Sugata SenRoy, Aditya Chatterjee,
An analysis of COVID-19 clusters in India,
2021,
21,
1471-2458,
10.1186/s12889-021-10491-8
|
|
54.
|
Walid Ben Aribi, Bechir Naffeti, Kaouther Ayouni, Hamadi Ammar, Henda Triki, Slimane Ben Miled, Amira Kebir,
Global Stability and Numerical Analysis of a Compartmental Model of the Transmission of the Hepatitis A Virus (HAV): A Case Study in Tunisia,
2022,
8,
2349-5103,
10.1007/s40819-022-01326-0
|
|
55.
|
Mohamed Zagour,
2022,
Chapter 10,
978-3-030-96561-7,
285,
10.1007/978-3-030-96562-4_10
|
|
56.
|
Enrico Schiassi, Mario De Florio, Andrea D’Ambrosio, Daniele Mortari, Roberto Furfaro,
Physics-Informed Neural Networks and Functional Interpolation for Data-Driven Parameters Discovery of Epidemiological Compartmental Models,
2021,
9,
2227-7390,
2069,
10.3390/math9172069
|
|
57.
|
Chunyue Wang, Jinliang Wang, Ran Zhang,
Global analysis on an age‐space structured vaccination model with Neumann boundary condition,
2022,
45,
0170-4214,
1640,
10.1002/mma.7879
|
|
58.
|
Soufiane Bentout, Salih Djilali, Sunil Kumar, Tarik Mohammed Touaoula,
Threshold dynamics of difference equations for SEIR model with nonlinear incidence function and infinite delay,
2021,
136,
2190-5444,
10.1140/epjp/s13360-021-01466-0
|
|
59.
|
Emile Franc Doungmo Goufo, Abdon Atangana,
On analysis generalization of TB-HIV dynamics by a two-scale reduction process,
2021,
30,
22113797,
104772,
10.1016/j.rinp.2021.104772
|
|
60.
|
Vijay Pal Bajiya, Jai Prakash Tripathi, Vipul Kakkar, Jinshan Wang, Guiquan Sun,
Global Dynamics of a Multi-group SEIR Epidemic Model with Infection Age,
2021,
42,
0252-9599,
833,
10.1007/s11401-021-0294-1
|
|
61.
|
Changjin Xu, Zixin Liu, Yicheng Pang, Ali Akgül, Dumitru Baleanu,
Dynamics of HIV-TB coinfection model using classical and Caputo piecewise operator: A dynamic approach with real data from South-East Asia, European and American regions,
2022,
165,
09600779,
112879,
10.1016/j.chaos.2022.112879
|
|
62.
|
Karianne Peterson, René van den Brom, Marian Aalberts, Carlijn ter Bogt-Kappert, Piet Vellema,
Loss of Caprine Arthritis Encephalitis Virus (CAEV) Herd Accreditation: Characteristics, Diagnostic Approach, and Specific Follow-Up Scenarios on Large Dairy Goat Farms,
2022,
11,
2076-0817,
1541,
10.3390/pathogens11121541
|
|
63.
|
Zhenzhen Lu, Yongguang Yu, YangQuan Chen, Guojian Ren, Conghui Xu, Shuhui Wang,
Stability analysis of a nonlocal SIHRDP epidemic model with memory effects,
2022,
109,
0924-090X,
121,
10.1007/s11071-022-07286-w
|
|
64.
|
Michele Mugnaine, Enrique C. Gabrick, Paulo R. Protachevicz, Kelly C. Iarosz, Silvio L.T. de Souza, Alexandre C.L. Almeida, Antonio M. Batista, Iberê L. Caldas, José D. Szezech Jr, Ricardo L. Viana,
Control attenuation and temporary immunity in a cellular automata SEIR epidemic model,
2022,
155,
09600779,
111784,
10.1016/j.chaos.2021.111784
|
|
65.
|
Vanessa Steindorf, Sergio Oliva, Jianhong Wu,
Cross immunity protection and antibody-dependent enhancement in a distributed delay dynamic model,
2022,
19,
1551-0018,
2950,
10.3934/mbe.2022136
|
|
66.
|
Huaixing Li, Jiaoyan Wang,
Global Dynamics of an SEIR Model with the Age of Infection and Vaccination,
2021,
9,
2227-7390,
2195,
10.3390/math9182195
|
|
67.
|
Jiaxin Nan, Wanbiao Ma,
Stability and persistence analysis of a microorganism flocculation model with infinite delay,
2023,
20,
1551-0018,
10815,
10.3934/mbe.2023480
|
|
68.
|
Liancheng WANG, Xiaoqin WU,
Stability and Hopf Bifurcation for an SEIR Epidemic Model with Delay,
2018,
2,
2587-2648,
113,
10.31197/atnaa.380970
|
|
69.
|
Adam K. Kiss, Tamas G. Molnar, Aaron D. Ames, Gabor Orosz,
Control barrier functionals: Safety‐critical control for time delay systems,
2023,
1049-8923,
10.1002/rnc.6751
|
|
70.
|
D. B. Eshmamatova, Sh. J. Seytov, N. B. Narziev,
Basins of Fixed Points for Composition of the Lotka–Volterra Mappings and Their Classification,
2023,
44,
1995-0802,
558,
10.1134/S1995080223020142
|
|
71.
|
Teddy Lazebnik,
Computational applications of extended SIR models: A review focused on airborne pandemics,
2023,
483,
03043800,
110422,
10.1016/j.ecolmodel.2023.110422
|
|
72.
|
Timothy Ginn, Lynn Schreyer,
Compartment Models with Memory,
2023,
65,
0036-1445,
774,
10.1137/21M1437160
|
|
73.
|
Yanshu Wang, Hailiang Zhang,
Dynamical Analysis of an Age-Structured SVEIR Model with Imperfect Vaccine,
2023,
11,
2227-7390,
3526,
10.3390/math11163526
|
|
74.
|
Lianwen Wang, Xingyu Wang, Zhijun Liu, Yating Wang,
Global dynamics and traveling waves for a diffusive SEIVS epidemic model with distributed delays,
2023,
10075704,
107638,
10.1016/j.cnsns.2023.107638
|
|
75.
|
Mohammed Salman, Sanjay Kumar Mohanty, Chittaranjan Nayak, Sachin Kumar,
The role of delay in vaccination rate on Covid-19,
2023,
9,
24058440,
e20688,
10.1016/j.heliyon.2023.e20688
|
|
76.
|
Guojun Li, Baofeng Chang, Jian Zhao, Jiayang Wang, Fan He, Yongheng Wang, Ting Xu, Zhiguang Zhou,
VIVIAN: virtual simulation and visual analysis of epidemic spread data,
2024,
1343-8875,
10.1007/s12650-024-00990-2
|
|
77.
|
Mohamed Zagour,
2024,
Chapter 6,
978-3-031-56793-3,
127,
10.1007/978-3-031-56794-0_6
|
|
78.
|
Rasul Ganikhodzhaev, Dilfuza Eshmamatova, Mokhbonu Tadzhieva, Botir Zakirov,
SOME DEGENERATE CASES OF DISCRETE LOTKA–VOLTERRA DYNAMICAL SYSTEMS AND THEIR APPLICATIONS IN EPIDEMIOLOGY,
2024,
1072-3374,
10.1007/s10958-024-07404-6
|
|
79.
|
Guo Lin,
Propagation dynamics in epidemic models with two latent classes,
2024,
01672789,
134509,
10.1016/j.physd.2024.134509
|
|
80.
|
Yan Zhuang, Weihua Li, Yang Liu,
Information and Knowledge Diffusion Dynamics in Complex Networks with Independent Spreaders,
2025,
27,
1099-4300,
234,
10.3390/e27030234
|
|
81.
|
Isam Al‐Darabsah,
Global Dynamics of a Within‐Host Model for Immune Response With a Generic Distributed Delay,
2025,
0170-4214,
10.1002/mma.11021
|
|
82.
|
Paul J. Hurtado, Cameron Richards,
Finding Reproduction Numbers for Epidemic Models and Predator-Prey Models of Arbitrary Finite Dimension Using the Generalized Linear Chain Trick,
2025,
87,
0092-8240,
10.1007/s11538-025-01467-5
|
|