Citation: Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index[J]. Mathematical Biosciences and Engineering, 2017, 14(4): 1019-1033. doi: 10.3934/mbe.2017053
[1] | [ C. Auld, Choices, beliefs, and infectious disease dynamics, J. Health. Econ., 22 (2003): 361-377. |
[2] | [ C. T. Bauch,D. J. D. Earn, Vaccination and the theory of games, Proc. Natl. Acad. Sci. U S A., 101 (2004): 13391-13394. |
[3] | [ C. T. Bauch, Imitation dynamics predict vaccinating behavior, Proc. R. Soc. London B, 272 (2005): 1669-1675. |
[4] | [ E. Beretta,V. Capasso, On the general structure of epidemic systems. Global asymptotic stability, Comput. Math. Appl., Part A, 12 (1986): 677-694. |
[5] | [ S. Bhattacharyya,C. T. Bauch, ''Wait and see'' vaccinating behaviour during a pandemic: A game theoretic analysis, Vaccine, 29 (2011): 5519-5525. |
[6] | [ D. L. Brito,E. Sheshinski,M. D. Intriligator, Externalities and compulsory vaccinations, J. Public Econ., 45 (1991): 69-90. |
[7] | [ B. Buonomo,A. d'Onofrio,D. Lacitignola, Global stability of an SIR epidemic model with information dependent vaccination, Math. Biosci., 216 (2008): 9-16. |
[8] | [ B. Buonomo,A. d'Onofrio,D. Lacitignola, Rational exemption to vaccination for non-fatal SIS diseases: globally stable and oscillatory endemicity, Math. Biosci. Eng., 7 (2010): 561-578. |
[9] | [ B. Buonomo,A. d'Onofrio,D. Lacitignola, Globally stable endemicity for infectious diseases with information-related changes in contact patterns, Appl. Math. Lett., 25 (2012): 1056-1060. |
[10] | [ B. Buonomo,D. Lacitignola, On the use of the geometric approach to global stability for three dimensional ODE systems: a bilinear case, J. Math. Anal. Appl., 348 (2008): 255-266. |
[11] | [ B. Buonomo,C. Vargas-De-León, Global stability for an HIV-1 infection model including an eclipse stage of infected cells, J. Math. Anal. Appl., 385 (2012): 709-720. |
[12] | [ B. Buonomo,C. Vargas-De-León, Stability and bifurcation analysis of a vector-bias model of malaria transmission, Math. Biosci., 242 (2013): 59-67. |
[13] | [ V. Capasso,G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math.Biosci., 42 (1978): 43-61. |
[14] | [ V. Capasso, null, Mathematical Structures of Epidemic Systems, 2 printing, Springer-Verlag, Berlin, 2008. |
[15] | [ A. d'Onofrio,P. Manfredi,E. Salinelli, Vaccinating behaviour, information, and the dynamics of $SIR$ vaccine preventable diseases, Theor. Popul. Biol., 71 (2007): 301-317. |
[16] | [ A. d'Onofrio,P. Manfredi,E. Salinelli, Bifurcation threshold in an SIR model with information-dependent vaccination, Math. Model. Nat. Phenom., 2 (2007): 23-38. |
[17] | [ A. d'Onofrio,P. Manfredi,E. Salinelli, Fatal SIR diseases and rational exemption to vaccination, Math. Med. Biol., 25 (2008): 337-357. |
[18] | [ A. d'Onofrio,P. Manfredi, Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases, J. Theor. Biol., 256 (2009): 473-478. |
[19] | [ P. E. M. Fine,J. A. Clarkson, Individual versus public priorities in the determination of optimal vaccination policies, Am. J. Epidemiol., 124 (1986): 1012-1020. |
[20] | [ S. Funk,M. Salathe,V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review, J. Royal Soc. Interface, 7 (2010): 1247-1256. |
[21] | [ P. Y. Geoffard,T. Philipson, Disease eradication: Private versus public vaccination, Am. Econ. Rev., 87 (1997): 222-230. |
[22] | [ B. S. Goh, Global stability in two species interactions, J. Math. Biol., 3 (1976): 313-318. |
[23] | [ V. Hatzopoulos,M. Taylor,P. L. Simon,I. Z. Kiss, Multiple sources and routes of information transmission: Implications for epidemic dynamics, Math. Biosci., 231 (2011): 197-209. |
[24] | [ I. Z. Kiss,J. Cassell,M. Recker,P. L. Simon, The impact of information transmission on epidemic outbreaks, Math. Biosci., 225 (2010): 1-10. |
[25] | [ A. Korobeinikov,G. C. Wake, Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models, Appl. Math. Lett., 15 (2002): 955-960. |
[26] | [ A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic models, Math. Med. Biol., 21 (2004): 75-83. |
[27] | [ A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004): 879-883. |
[28] | [ A. Korobeinikov,P. K. Maini, Non-linear incidence and stability of infectious disease models, Math. Med. Biol., 22 (2005): 113-128. |
[29] | [ A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull. Math. Biol., 68 (2006): 615-626. |
[30] | [ A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007): 1871-1886. |
[31] | [ A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence, and nonlinear incidence rate, Math. Med. Biol., 26 (2009): 225-239. |
[32] | [ A. Korobeinikov, Stability of ecosystem: Global properties of a general prey-predator model, Math. Med. Biol., 26 (2009): 309-321. |
[33] | [ J. La Salle, null, Stability by Liapunov's Direct Method with Applications, 1 printing, Academic Press, New York-London, 1961. |
[34] | [ M. Y. Li,J. S. Muldowney, Global stability for the SEIR model in epidemiology, Math. Biosci., 125 (1995): 155-164. |
[35] | [ M. Y. Li,J. S. Muldowney, A geometric approach to global-stability problems, SIAM J. Math. Anal., 27 (1996): 1070-1083. |
[36] | [ M. Y. Li,L. Wang, Backward bifurcation in a mathematical model for HIV infection in vivo with anti-retroviral treatment, Nonlinear Anal. Real World Appl., 17 (2014): 147-160. |
[37] | [ G. Lu,Z. Lu, Geometric approach for global asymptotic stability of three-dimensional Lotka-Volterra systems, J. Math. Anal. Appl., 389 (2012): 591-596. |
[38] | [ A. M. Lyapunov, null, The General Problem of the Stability of Motion, Taylor and Francis, London, 1992. |
[39] | [ P. Manfredi,A. d'Onofrio, null, Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, Springer-Verlag, New York, 1992. |
[40] | [ L. Pei,J. Zhang, Losing weight and elimination of weight cycling by the geometric approach to global-stability problem, Nonlinear Anal. RWA, 14 (2013): 1865-1870. |
[41] | [ A. Pimenov,T. C. Kelly,A. Korobeinikov,M. J. A. O'Callaghan,A. V. Pokrovskii,D. Rachinskii, Memory effects in population dynamics: Spread of infectious disease as a case study, Math. Model. Nat. Phenom., 7 (2012): 204-226. |
[42] | [ A. Pimenov,T. C. Kelly,A. Korobeinikov,M. J. A. O'Callaghan,D. Rachinskii, Adaptive behaviour and multiple equilibrium states in a predator-prey model, Theor. Popul. Biol., 101 (2015): 24-30. |
[43] | [ T. C. Reluga,C. T. Bauch,A. P. Galvani, Evolving public perceptions and stability in vaccine uptake, Math. Biosci., 204 (2006): 185-198. |
[44] | [ P. van den Driessche,J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002): 29-48. |
[45] | [ R. Vardavas,R. Breban,S. Blower, Can influenza epidemics be prevented by voluntary vaccination?, PLoS Comp. Biol., 3 (2007): e85. |
[46] | [ C. Vargas-De-León,A. Korobeinikov, Global stability of a population dynamics model with inhibition and negative feedback, Math. Med. Biol., 30 (2013): 65-72. |
[47] | [ C. Vargas-De-León, Global properties for virus dynamics model with mitotic transmission and intracellular delay, J. Math. Anal. Appl., 381 (2011): 884-890. |
[48] | [ C. Vargas-De-León, Global properties for a virus dynamics model with lytic and nonlytic immune responses and nonlinear immune attack rates, J. Biol. Syst., 22 (2014): 449-462. |