
Citation: Viorica Munteanu, Antonella Petaccia, Nicolae Contecaru, Emanuele Amodio, Carlo Virginio Agostoni. Paediatric acute rheumatic fever in developed countries: Neglected or negligible disease? Results from an observational study in Lombardy (Italy)[J]. AIMS Public Health, 2018, 5(2): 135-143. doi: 10.3934/publichealth.2018.2.135
[1] | Samantha L Elliott, Emek Kose, Allison L Lewis, Anna E Steinfeld, Elizabeth A Zollinger . Modeling the stem cell hypothesis: Investigating the effects of cancer stem cells and TGF−β on tumor growth. Mathematical Biosciences and Engineering, 2019, 16(6): 7177-7194. doi: 10.3934/mbe.2019360 |
[2] | Ghassen Haddad, Amira Kebir, Nadia Raissi, Amira Bouhali, Slimane Ben Miled . Optimal control model of tumor treatment in the context of cancer stem cell. Mathematical Biosciences and Engineering, 2022, 19(5): 4627-4642. doi: 10.3934/mbe.2022214 |
[3] | Hsiu-Chuan Wei . Mathematical modeling of tumor growth: the MCF-7 breast cancer cell line. Mathematical Biosciences and Engineering, 2019, 16(6): 6512-6535. doi: 10.3934/mbe.2019325 |
[4] | Maria Vittoria Barbarossa, Christina Kuttler, Jonathan Zinsl . Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells. Mathematical Biosciences and Engineering, 2012, 9(2): 241-257. doi: 10.3934/mbe.2012.9.241 |
[5] | Jihong Yang, Hao Xu, Congshu Li, Zhenhao Li, Zhe Hu . An explorative study for leveraging transcriptomic data of embryonic stem cells in mining cancer stemness genes, regulators, and networks. Mathematical Biosciences and Engineering, 2022, 19(12): 13949-13966. doi: 10.3934/mbe.2022650 |
[6] | Qiaojun Situ, Jinzhi Lei . A mathematical model of stem cell regeneration with epigenetic state transitions. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1379-1397. doi: 10.3934/mbe.2017071 |
[7] | Avner Friedman, Harsh Vardhan Jain . A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences and Engineering, 2013, 10(3): 591-608. doi: 10.3934/mbe.2013.10.591 |
[8] | Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028 |
[9] | Katrine O. Bangsgaard, Morten Andersen, Vibe Skov, Lasse Kjær, Hans C. Hasselbalch, Johnny T. Ottesen . Dynamics of competing heterogeneous clones in blood cancers explains multiple observations - a mathematical modeling approach. Mathematical Biosciences and Engineering, 2020, 17(6): 7645-7670. doi: 10.3934/mbe.2020389 |
[10] | Yuyang Xiao, Juan Shen, Xiufen Zou . Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Mathematical Biosciences and Engineering, 2022, 19(4): 4120-4144. doi: 10.3934/mbe.2022190 |
In this paper, we consider boundary tracing problem of nonlinear fractional diffusion equations with Neumann boundary condition
$ {Dαtφ=φxx+F(x,t,φ,φx),(x,t)∈ΩT,φx(0,t)=u(t),t∈(0,T],φx(1,t)=g(t),t∈(0,T],φ(x,0)=φ0(x),x∈[0,1] $
|
(1.1) |
by iterative learning algorithms, where $ D_{t}^{\alpha} $ is the Caputo fractional derivative of order $ \alpha $, $ 0 < \alpha < 1 $, $ (x, t)\in\Omega_{T}\triangleq [0, 1]\times [0, T] $ and $ F(x, t, \varphi, \varphi_{x}) $ is the nonlinear function.
The basic idea of iterative learning control (ILC) [1,4,16] can be traced back to Garden [8] in 1967 and Uchiyama [28] in 1978. ILC is a control method suitable for dealing with iterative systems, which uses information obtained from previous trial to improve the tracking performance of current trial. Owing to simplicity and effectiveness, ILC plays an important role in many fields and applications [9,10,14].
ILC schemes are widely used for ordinary differential equations (ODEs) [23,25,26,29]. However, there are few studies on its application to partial differential equations (PDEs) and fractional partial differential equations (FPDEs) [11,24]. Choi et al. [3] employed the characteristic line method and the Q-ILC method to study the ILC schemes of a first-order hyperbolic PDE system. Huang et al. [12] studied the $ P $-type ILC scheme for boundary tracking of nonlinear hyperbolic parametric systems and evaluated the robustness of the scheme. Kang et al. [15] proposed a Newton-type ILC algorithm for nonlinear parametric equations and provided sufficient conditions for convergence of the Newton descent method using the $ \lambda $-norm. Different from the convergence in the sense of the $ \lambda $ norm, Dai et al. [5] derived the $ P $-type ILC for linear parabolic parametric equations and proved its convergence in the sense of the $ L^{2} $-norm and the $ W^{1, 2} $-norm. Lan et al. [22] presented a second-order ILC method for a class of multi-agent systems (MAS) with time-delay distributed parameters and proved its convergence.
For the diffusion equation, Xu et al. [30] proposed $ P $-type and $ D $-type ILC methods for infinite-dimensional linear systems in Hilbert spaces. Huang et al. [13] extended ILC to solve the boundary tracking problem of inhomogeneous heat equations and provided evidence for the effectiveness of the $ D $-type ILC scheme. Zhang et al. [32] presented a novel intermittent updating PD-type ILC algorithm for semi-linear distributed parameter systems with sensors or actuators, and provided convergence conditions for the output error. For the fractional diffusion equation, Lan et al. [20] discussed the $ P $-type ILC of fractional order parameter exchange systems and demonstrated that the exchange system maintains traceability over two time periods. Lan et al. [21] proposed a second-order P-type ILC scheme for a class of linear fractional order distributed parameter systems and established a sufficient condition for convergence using $ \lambda $-norm and generalized Gronwall inequality.
Overall, there have been relatively few studies on iterative learning control algorithms for fractional diffusion equations, which can describe a variety of memory materials and genetic processes [6,18]. Applying the ILC algorithm to fractional diffusion equations can improve control of the system for nonlocal transport phenomena and long-range memory effects, leading to faster convergence and improved tracking accuracy [19]. We aim to extend ILC to the nonlinear fractional diffusion equation and study their convergence. However, this work is challenging, as the difficulty lies in proving the convergence of the iterative learning control algorithm for fractional diffusion equations, with added challenges posed by the fractional derivatives and nonlinear source terms. Therefore, we assume that source term is Lipschitz continuous and employ Sobolev imbedding theorem to overcome difficulties in the proof.
In this paper, we consider boundary tracing problem of one dimensional fractional diffusion equation with input, state and output functions at the $ k $-th iteration,
$ {Dαtφk=φkxx+F(x,t,φk,φkx),(x,t)∈ΩT,φkx(0,t)=uk(t),t∈(0,T],φkx(1,t)=g(t),t∈(0,T],φk(x,0)=φ0(x),x∈[0,1],yk(t)=c(t)φk(1,t)+d(t)uk(t), $
|
(1.2) |
where $ k $ denotes the iterative number of the process and $ u^{k}, \varphi^{k}, y^{k}(t) $ are the input, state and output of the system at the $ k $-th iteration respectively. The main idea is to adjust the control input $ u^{k}(t) $ iteratively in order that system output {$ y^{k}(t) $} can track the predefined target $ y^{d}(t) $ when $ k\rightarrow \infty $.
In addition, we make some assumptions about the functions in system (1.2). Suppose $ c(t) $ and $ d(t) $ are bounded and $ F(x, t, \varphi^{k}, \varphi^{k}_{x}) $ satisfies Lipschitz condition.
Assumption 1: The functions $ c(t) $ and $ d(t) $ satisfy
$ |c(t)|\leq c_{1}, 0 < d_{1}\leq d(t)\leq d_{2}, $ |
where $ c_{1}, d_{1}, d_{2} $ are positive constants.
Assumption 2: The nonlinear function $ F^{k}\triangleq F(x, t, \varphi^{k}, \varphi^{k}_{x}) $ is Lipschitz continuous,
$ |Fk+1−Fk|≤CF(|φk+1−φk|+|φk+1x−φkx|), $
|
(1.3) |
where $ C_{F} $ is a constant.
This paper is organized as follows. Preliminaries are presented in Section 2. In Section 3, $ P $-type ILC scheme, $ PI^{\theta} $-type ILC scheme and corresponding convergence conditions are proposed for the nonlinear system. Numerical examples are given in Section 4 to illustrate the effectiveness of the methods. Finally, conclusions are drawn in Section 5.
To prepare for our subsequent analysis, it is essential to introduce some definitions, useful lemmas and theorems.
Definition 2.1. [17] Let $ z(t)\in AC[0, T] $, the Caputo fractional derivative of order $ \alpha $ is defined by
$ Dαtz(t)=1Γ(1−α)∫t0z′(τ)(t−τ)αdτ,0<α<1,0<t≤T. $
|
Definition 2.2. [17] Let $ z(t)\in L(0, T) $, the Riemann-Liouville fractional integral of order $ \alpha $ is defined by
$ Iαtz(t)=1Γ(α)∫t0(t−τ)α−1z(τ)dτ,0<α<1,0<t≤T. $
|
Definition 2.3. [27] The two-parameter Mittag-Leffler function is defined by the series expansion
$ E_{\alpha,\beta}(z) = \sum\limits_{k = 0}^{\infty}\frac{z^{k}}{\Gamma(\alpha k+\beta)}, \quad \alpha > 0, \beta > 0. $ |
Lemma 2.1. [27] Suppose $ 0 < \alpha < 1 $. Caputo fractional derivative and fractional integral of order $ \alpha $ have the following relationship
$ I_{t}^{\alpha}(D_{t}^{\alpha}(x(t))) = x(t)-x(0). $ |
Lemma 2.2. [7] Assume $ x(t) $ be a differentiable function. The following relationship holds
$ \frac{1}{2}D_{t}^{\alpha}x(t)^{2}\leq x(t)D_{t}^{\alpha}x(t), \;\forall \alpha \in (0,1]. $ |
Lemma 2.3. (Gronwall inequality [31]) Suppose a(t) is a nonnegative, nondecreasing, locally integrable function over $ 0\leq t_{0}\leq t\leq T $ and g(t) is a nonnegative, nondecreasing continuous function over $ 0\leq t_{0}\leq t\leq T $, $ g(t)\leq M $, where $ M $ is a postive constant. If u(t) is nonnegative and locally integrable function over $ 0\leq t_{0}\leq t\leq T $ and satisfies
$ u(t)≤a(t)+g(t)∫tt0(t−s)α−1u(s)ds,α>0, $
|
then, we have
$ u(t)\leq a(t)E_{\alpha,1}\left( g(t)\Gamma(\alpha)t^{\alpha}\right). \label{Gronwall inequality} $ |
Theorem 2.1. (Sobolev imbedding theorem [2]) Let $ \Omega \in R^{d} $ be a bounded Lipschitz domain and $ 1\leq p\leq\infty $. If $ 0\leq m < k-\frac{d}{p} < m+1 $, the space $ W^{k, p}(\Omega) $ is continuously imbedded in $ C^{m, \alpha}(\overline{\Omega}) $ for $ \alpha = k-\frac{d}{p}-m $ and compactly imbedded in $ C^{m, \beta}(\overline{\Omega}) $ for all $ 0\leq \beta < \alpha $.
Remark 2.1. Using the Sobolbev imbedding theorem 2.1 in the case of d = 1, we can get
$ maxx∈[0,1]|φ(x,t)|2≤C1||φ(x,t)||2H1, $
|
(2.1) |
where $ ||\varphi(x, t)||^2_{H_{1}}\triangleq \int_{\Omega}^{}\varphi^{2}+\varphi^{2}_{x}dx $ and $ C_{1} $ is a positive constant.
We need to give some necessary lemmas to obtain the convergence conditions for the ILC scheme.
Lemma 3.1. Suppose $ e(t) \in AC[0, T) $ and $ 0.5 < \theta\leq 1 $, then, we have
$ |Iθte|2≤Γ(2θ−1)eλtTΓ(θ)2λ2θ−1|e|2λ. $
|
(3.1) |
Proof. From the Definition 2.2 of fractional integral, we can get
$ |Iθte|2=1Γ(θ)2(∫t0(t−τ)θ−1e(τ)dτ)2=1Γ(θ)2(∫t0(t−τ)θ−1eλ2τe−λ2τe(τ)dτ)2≤1Γ(θ)2∫t0(t−τ)2θ−2eλτdτ∫t0e2(τ)e−λτdτ≤1Γ(θ)2∫t0(t−τ)2θ−2eλτdτ|e|2λt=eλtΓ(θ)2∫t0(t−τ)2θ−2e−λ(t−τ)dτ|e|2λt. $
|
where $ |e|^2_{\lambda}\triangleq \mathop{\sup}\limits_{t\in[0, T]}\{e^{-\lambda t}|e(t)|^2, \lambda > 0\} $ and $ |e(t)| $ represents absolute value of $ e(t) $. Let $ t-\tau = \omega $ and $ \lambda \omega = v $, we have
$ eλtΓ(θ)2∫t0(t−τ)2θ−2e−λ(t−τ)dτ|e|2λt=eλtΓ(θ)2∫t0ω2θ−2e−λωdω|e|2λt=eλtΓ(θ)2∫λt0(vλ)2θ−2e−v1λdv|e|2λt=eλtΓ(θ)2∫λt0v2θ−2e−vdv|e|2λtλ2θ−1. $
|
(3.2) |
From the definition of the Gamma function, we can get
$ 1Γ(θ)2∫t0(t−τ)2θ−2eλτdτ|e|2λt≤eλtΓ(θ)2∫∞0v2θ−2e−vdv|e|2λtλ2θ−1=eλtΓ(θ)2Γ(2θ−1)|e|2λtλ2θ−1=Γ(2θ−1)eλtTΓ(θ)2λ2θ−1|e|2λ. $
|
(3.3) |
This completes the proof.
Lemma 3.2. If $ \psi $ satisfies the equation
$ {Dαtψ=ψxx+δF,(x,t)∈ΩT,ψx(0,t)=e(t),t∈[0,T],ψx(1,t)=0,t∈[0,T],ψ(x,0)=0,x∈[0,1], $
|
(3.4) |
we have
$ ||ψ||2L2,λ≤|e|2λλαEα,1((C2F+2CF+1)Tα), $
|
(3.5) |
$ ||ψx||2L2,λ≤(|e|2λλα+Mc1λα+C2Fλα||ψ||2L2,λ)Eα,1(C2FTα), $
|
(3.6) |
where
$ ||\psi(\cdot,t)||^2_{L_{2},\lambda}\triangleq \mathop{\sup}\limits_{t\in[0,T]}\{e^{-\lambda t}||\psi(\cdot,t)||_{L_{2}}^{2},\lambda > 0\}, $ |
$ |e(t)|^2_{\lambda}\triangleq \mathop{\sup}\limits_{t\in[0,T]}\{e^{-\lambda t}|e(t)|^2,\lambda > 0\}, $ |
$ |e(t)| $ represents absolute value of $ e(t) $, $ M = \mathop{\max}\limits_{t\in [0, T]}|D_{t}^{\alpha}\psi(0, t)|^{2} $, $ c_{1} = \frac{\alpha^{\alpha}}{\alpha\Gamma(\alpha)e^{\alpha}} $, $ \delta F = F(x, t, \varphi^{k+1}, \varphi_{x}^{k+1})-F(x, t, \varphi^{k}, \varphi_{x}^{k}) $ and $ \psi = \varphi^{k+1}-\varphi^{k} $.
Proof. (i) We firstly prove the formula (3.5). Multiplying both sides of the equation $ D_{t}^{\alpha}\psi = \psi_{xx}+ \delta F $ by $ \psi $ and integrating with respect to $ x $, it yields
$ ∫10ψDαtψdx=∫10ψψxx+ψδFdx. $
|
Based on Lemma 2.2, formula (1.3) and boundary condition, it is not hard to know
$ 12Dαt||ψ||2L2≤−∫10|∇ψ|2dx+∫∂Ωψψxds+CF∫10|ψ|(|ψ|+|ψx|)dx≤−∫10|ψx|2dx+|ψ(0,t)e(t)|+CF||ψ||2L2+CF∫10|ψψx|dx. $
|
Using Young inequality (weighted form) and taking the positive constant $ C_1 $ in formula (2.1), it leads to
$ Dαt||ψ||2L2≤−2||ψx||2L2+2|ψ(0,t)e(t)|+2CF||ψ||2L2+2CF∫10|ψψx|dx≤−2||ψx||2L2+C1|e(t)|2+1C1|ψ(0,t)|2+2CF||ψ||2L2+||ψx||2L2+C2F||ψ||2L2≤C1|e(t)|2+1C1|ψ(0,t)|2+c2||ψ||2L2−||ψx||2L2, $
|
where $ c_{2} = C_{F}^{2}+2C_{F} $. It follows from Theorem 2.1 that
$ Dαt||ψ||2L2≤C1|e(t)|2+||ψ||2H1+c2||ψ||2L2−||ψx||2L2≤C1|e(t)|2+(c2+1)||ψ||2L2. $
|
Integrating both sides of the inequality with respect to $ t $, by Lemma 2.1 we have
$ ||ψ||2L2≤||ψ(x,0)||2L2+C1Γ(α)∫t0(t−τ)α−1|e(τ)|2dτ+c2+1Γ(α)∫t0(t−τ)α−1||ψ||2L2dτ≤||ψ(x,0)||2L2+C1Γ(α)∫t0(t−τ)α−1eλτdτ|e|2λ+c2+1Γ(α)∫t0(t−τ)α−1||ψ||2L2dτ. $
|
Using initial condition, we can get
$ ||ψ||2L2≤C1Γ(α)∫t0(t−τ)α−1eλτdτ|e|2λ+c2+1Γ(α)∫t0(t−τ)α−1||ψ||2L2dτ. $
|
(3.7) |
Applying Lemma 2.3, we can obtain
$ ||ψ||2L2≤C1eλtλα|e|2λEα,1((C2F+2CF+1)Tα). $
|
Taking $ \lambda $-norm on both sides of inequality, we can derive
$ ||ψ||2L2,λ≤C1λα|e|2λEα,1((C2F+2CF+1)Tα). $
|
(3.8) |
(ii) We then prove the formula (3.6). Multiplying both sides of the equation $ D_{t}^{\alpha}\psi = \psi_{xx}+\delta F $ by $ \psi_{xx} $ and integrating with respect to $ x $, it yields
$ ∫10ψxxDαtψdx=||ψxx||2L2+∫10ψxxδFdx. $
|
By boundary condition, we get
$ ∫10ψxDαtψxdx=−e(t)Dαtψ(0,t)−||ψxx||2L2−∫10ψxxδFdx. $
|
Based on Lemma 2.2, it is not hard to know
$ 12Dαt||ψx||2L2≤−e(t)Dαtψ(0,t)−||ψxx||2L2−∫10ψxxδFdx. $
|
We can conclude from the formula (1.3) that
$ 12Dαt||ψx||2L2≤−e(t)Dαtψ(0,t)−||ψxx||2L2+CF∫10|ψxxψ|+|ψxxψx|dx. $
|
Using Young inequality (weighted form), it leads to
$ Dαt||ψx||2L2≤|e(t)|2+|Dαtψ(0,t)|2+C2F(||ψx||2L2+||ψ||2L2)≤|e(t)|2+M+C2F||ψ||2L2+C2F||ψx||2L2, $
|
where $ M = \mathop{\max}\limits_{t\in [0, T]}|D_{t}^{\alpha}\psi(0, t)|^{2} $. Integrating both sides of the inequality about $ t $ and using initial condition, according to Lemma 2.1 we get
$ ||ψx||2L2≤||ψx(x,0)||2L2+1Γ(α)∫t0(t−τ)α−1(|e(τ)|2+M+C2F||ψ||2L2)dτ+C2FΓ(α)∫t0(t−τ)α−1||ψx||2L2dτ≤1Γ(α)∫t0(t−τ)α−1eλτdτ|e|2λ+MαΓ(α)tα+C2FΓ(α)∫t0(t−τ)α−1eλτdτ||ψ||2L2,λ+C2FΓ(α)∫t0(t−τ)α−1||ψx||2L2dτ. $
|
Applying Lemma 2.3, we obtian
$ ||ψx||2L2≤(|e|2λeλtλα+MtααΓ(α)+C2Feλtλα||φ||2L2,λ)Eα,1(C2FTα). $
|
Taking $ \lambda $-norm on both sides of inequality, we can derive
$ ||\psi_{x}||_{L^{2}}^{2}e^{-\lambda t}\leq \big{(}\frac{|e|_{\lambda}^{2}}{\lambda^{\alpha}}+\frac{Mt^{\alpha}e^{-\lambda t}}{\alpha\Gamma(\alpha)}+\frac{C_{F}^{2}}{\lambda^{\alpha}}||\varphi||_{L^{2},\lambda}^{2}\big{)} E_{\alpha,1}(C_{F}^{2}T^{\alpha}). $ |
Since $ t^{\alpha}e^{-\lambda t} $ gets the maximum value $ \frac{\alpha^{\alpha}}{\lambda^{\alpha}e^{\alpha}} $ at $ t = \frac{\alpha}{\lambda} $. Therefore, we can get
$ ||ψx||2L2e−λt≤(|e|2λλα+Mc1λα+C2Fλα||ψ||2L2,λ)Eα,1(C2FTα) $
|
(3.9) |
where $ c_{1} = \frac{\alpha^{\alpha}}{\alpha\Gamma(\alpha)e^{\alpha}} $. Then, taking the maximum value on the left side of the inequality, we have
$ ||ψx||2L2,λ≤(|e|2λλα+Mc1λα+C2Fλα||ψ||2L2,λ)Eα,1(C2FTα). $
|
(3.10) |
This completes the proof.
Lemma 3.3. If $ \psi $ satisfies the equation
$ {Dαtψ=ψxx+δF,(x,t)∈ΩT,ψx(0,t)=βe(t)+γIθte(t),t∈[0,T],ψx(1,t)=0,t∈[0,T],ψ(x,0)=0,x∈[0,1], $
|
(3.11) |
we have
$ ||ψ||2L2,λ≤(2C1β2λα+C1c3λα+2θ−1)|e|2λEα,1((C2F+2CF+1)Tα), $
|
$ ||ψx||2L2,λ≤(2β2λα|e|2λ+Mc1λα+C2Fλα||ψ||2L2,λ+c3|e|2λλα+2θ−1)Eα,1(C2FTα), $
|
where
$ ||\psi(\cdot,t)||^2_{L_{2},\lambda}\triangleq \mathop{\sup}\limits_{t\in[0,T]}\{e^{-\lambda t}||\psi(\cdot,t)||_{L_{2}}^{2},\lambda > 0\}, $ |
$ |e(t)|^2_{\lambda}\triangleq \mathop{\sup}\limits_{t\in[0,T]}\{e^{-\lambda t}|e(t)|^2,\lambda > 0\}, $ |
$ |e(t)| $ represents absolute value of $ e(t) $, $ M = \mathop{\max}\limits_{t\in [0, T]}|D_{t}^{\alpha}\psi(0, t)|^{2} $, $ c_{1} = \frac{\alpha^{\alpha}}{\alpha\Gamma(\alpha)e^{\alpha}} $, $ \delta F = F(x, t, \varphi^{k+1}, \varphi_{x}^{k+1})-F(x, t, \varphi^{k}, \varphi_{x}^{k}) $, $ \psi = \varphi^{k+1}-\varphi^{k} $ and $ c_{3} = \frac{2\Gamma(2\theta-1)\gamma^{2}T}{\Gamma(\theta)^{2}} $.
Proof. (i) We firstly prove the formula (3.12). Multiplying both sides of the equation $ D_{t}^{\alpha}\psi = \psi_{xx}+\delta F $ by $ \psi $ and integrating with respect to $ x $, it yields
$ \int_{0}^{1}\psi D_{t}^{\alpha}\psi dx = \int_{0}^{1}\psi\psi_{xx}+\psi \delta Fdx. $ |
Based on Lemma 2.2 and boundary condition, it is not hard to know
$ 12Dαt||ψ||2L2≤−∫10|∇ψ|2dx+ψψx|10+CF∫10|ψ|(|ψ|+|ψx|)dx≤−∫10|ψx|2dx+|ψ(0,t)(βe(t)+γIθte(t))|+CF||ψ||2L2+CF∫10|ψψx|dx. $
|
Using Young inequality (weighted form) and taking the positive constant $ C_1 $ in formula (2.1), we obtain
$ Dαt||ψ||2L2≤2C1β2|e(t)|2+2C1γ2|Iθte(t)|2+1C1|ψ(0,t)|2+(C2F+2CF)||ψ||2L2−||ψx||2L2. $
|
Applying Theorem2.1 and Lemma 3.1, it leads to
$ Dαt||ψ||2L2≤2C1β2|e(t)|2+2C1γ2|Iθte(t)|2+||ψ||2H1+(C2F+2CF)||ψ||2L2−||ψx||2L2≤2C1β2|e|2+C1c3eλtλ2θ−1|e|2λ+(C2F+2CF+1)||ψ||2L2. $
|
where $ c_{3} = \frac{2\Gamma(2\theta-1)\gamma^{2}T}{\Gamma(\theta)^{2}} $. Integrating both sides of the inequality about $ t $ and using initial condition, by Lemma 2.1 we get
$ ||ψ||2L2≤||ψ(x,0)||2L2+2C1β2Γ(α)∫t0(t−τ)α−1|e|2dτ+C1c3eλtλα+2θ−1|e|2λ+C2F+2CF+1Γ(α)∫t0(t−τ)α−1||ψ||2L2dτ≤2C1β2eλtλα|e|2λ+C1c3eλtλα+2θ−1|e|2λ+C2F+2CF+1Γ(α)∫t0(t−τ)α−1||ψ||2L2dτ. $
|
It follows from Lemma 2.3 that
$ ||ψ||2L2≤(2C1β2eλtλα+C1c3eλtλα+2θ−1)|e|2λEα,1((C2F+2CF+1)Tα). $
|
Taking $ \lambda $-norm on both sides of inequality, we can derive
$ ||ψ||2L2,λ≤(2C1β2λα+C1c3λα+2θ−1)|e|2λEα,1((C2F+2CF+1)Tα). $
|
(3.12) |
(ii) We then prove the formula (3.12). Multiplying both sides of the equation $ D_{t}^{\alpha}\psi = \psi_{xx}+\delta F $ by $ \psi_{xx} $ and integrating with respect to $ x $, it yields
$ ∫10ψxxDαtψdx=||ψxx||2L2+∫10ψxxδFdx. $
|
Based on boundary condition, it is not hard to know
$ ∫10ψxDαtψxdx=−(βe(t)+γIθte(t))Dαtψ(0,t)−||ψxx||2L2−∫10ψxxδFdx. $
|
According to Lemma 2.2, we obtain
$ 12Dαt||ψx||2L2≤−(βe(t)+γIθte(t))Dαtψ(0,t)−||ψxx||2L2−∫10ψxxδFdx. $
|
Applying Lipschitz condition (1.3), we have
$ 12Dαt||ψx||2L2≤−(βe(t)+γIθte(t))Dαtψ(0,t)−||ψxx||2L2+CF∫10|ψxxψ|+|ψxxψx|dx. $
|
Using Young inequality (weighted form), it leads to
$ Dαt||ψx||2L2≤2β2|e(t)|2+2γ2|Iθte(t)|2+|Dαtψ(0,t)|2+C2F||ψx||2L2+C2F||ψ||2L2≤2β2|e(t)|2+2γ2|Iθte(t)|2+M+C2F||ψ||2L2+C2F||ψx||2L2. $
|
Integrating both sides of the inequality with respect to $ t $ and using initial condition, by Lemma 2.1 and Lemma 3.1, we get
$ ||ψx||2L2≤||ψx(x,0)||2L2+1Γ(α)∫t0(t−τ)α−1(2β2|e|2+M+C2F||ψ||2L2)dτ+C2FΓ(α)∫t0(t−τ)α−1||ψx||2L2dτ+c3eλt|e|2λλα+2θ−1≤2β2Γ(α)∫t0(t−τ)α−1eλτdτ|e|2λ+MαΓ(α)tα+C2FΓ(α)∫t0(t−τ)α−1eλτdτ||ψ||2L2,λ+c3eλt|e|2λλα+2θ−1+C2FΓ(α)∫t0(t−τ)α−1||ψx||2L2dτ≤2β2eλtλα|e|2λ+MαΓ(α)tα+C2Feλtλα||ψ||2L2,λ+C2FΓ(α)∫t0(t−τ)α−1||ψx||2L2dτ+c3eλt|e|2λλα+2θ−1, $
|
where $ c_{3} = \frac{2\Gamma(2\theta-1)\gamma^{2}T}{\Gamma(\theta)^{2}} $. Using Lemma 2.3, we have
$ ||ψx||2L2≤(2β2|e|2λeλtλα+MαΓ(α)tα)Eα,1(C2FTα)+(C2Feλtλα||ψ||2L2,λ+c3eλt|e|2λλα+2θ−1)Eα,1(C2FTα). $
|
Taking $ \lambda $-norm on both sides of inequality, similar to Lemma (3.2), we obtain
$ ||ψx||2L2,λ≤(2β2λα|e|2λ+Mc1λα+C2Fλα||ψ||2L2,λ+c3|e|2λλα+2θ−1)Eα,1(C2FTα), $
|
where $ c_{1} = \frac{\alpha^{\alpha}}{\alpha\Gamma(\alpha)e^{\alpha}} $. This completes the proof.
The open-loop P-type ILC scheme for Eq (1.2) is
$ uk+1(t)=uk(t)+βek(t), $
|
(3.13) |
where $ e^{k}(t) = y^{d}(t)-y^{k}(t) $ denotes the output error and the learning gain $ \beta $ is an unknown parameter to be determined later.
Theorem 3.1. For system (1.2) and the open-loop P-type law (3.13), if there exist a learning gain $ \beta $ and a constant $ l (l > 0) $ satisfying
$ (1+l)¯ρ21≤1, $
|
(3.14) |
where $ \overline{\rho}_{1} = \mathop{\max}\limits_{t\in[0, T]}|1-\beta d(t)| $, then the output error $ e^{k} $ can converge to the $ \epsilon $-neighborhood of zero for any constant $ \epsilon > 0 $ in the sense of $ \lambda $-norm as $ k\rightarrow \infty $.
Proof. From the definition of error, we get
$ ek+1(t)=yd(t)−yk+1(t)=yd(t)−yk(t)−(yk+1(t)−yk(t)). $
|
(3.15) |
Based on the formula (3.13), it is not hard to know
$ ek+1(t)=ek(t)−c(t)δφk+1(1,t)−βd(t)ek(t)=(1−βd(t))ek(t)−c(t)δφk+1(1,t). $
|
(3.16) |
Squaring both sides of the equation, we get
$ |ek+1(t)|2≤¯ρ21|ek(t)|2+¯c2|δφk+1(1,t)|2+2¯ρ1¯c|ek(t)||δφk+1(1,t)|, $
|
where $ \overline{\rho}_{1} = \mathop{\max}\limits_{t\in[0, T]}|1-\beta d(t)| $ and $ \overline{c} = \mathop{\max}\limits_{t\in [0, T]}|c(t)| $. Using Young inequality (weighted form) to ensure $ (1+l)\overline{\rho}_{1}^{2}\leq 1 $ and Theorem 2.1, we have
$ |ek+1(t)|2≤(1+l)¯ρ21|ek(t)|2+(1+1l)¯c2|δφk+1(1,t)|2≤(1+l)¯ρ21|ek(t)|2+(1+1l)¯c2maxx∈[0,1]|δφk+1(x,t)|2≤(1+l)¯ρ21|ek(t)|2+(1+1l)¯c2C1||δφk+1||2H1. $
|
(3.17) |
Taking $ \lambda $-norm on both sides of inequality, we get
$ |ek+1(t)|2λ≤(1+l)¯ρ21|ek(t)|2λ+(1+1l)¯c2C1||δφk+1||2H1,λ≤(1+l)¯ρ21|ek(t)|2λ+(1+1l)¯c2C1(||δφk+1||2L2,λ+||δφk+1x||2L2,λ). $
|
Using Lemma 3.2, we obtain
$ |ek+1(t)|2λ≤q1|ek(t)|2λ+μ1,k, $
|
(3.18) |
where
$ q_{1} = (1+l)\overline{\rho}_{1}^{2}+(1+\frac{1}{l})\overline{c}^{2}C_{1}\beta^2\big{(}C_{T}+E_{\alpha,1}(C_{F}^{2}T^{\alpha})+C_{F}^{2}C_{T}E_{\alpha,1}(C_{F}^{2}T^{\alpha})\frac{1}{\lambda^{\alpha}}\big{)}\frac{1}{\lambda^{\alpha}}, $ |
$ \mu_{1,k} = (1+\frac{1}{l})\overline{c}^{2}C_{1}\frac{E_{\alpha,1}(C_{F}^{2}T^{\alpha})M_{k}\alpha^{\alpha}}{\alpha\Gamma(\alpha)e^{\alpha}\lambda^{\alpha}}, C_{T} = E_{\alpha,1}\big{(}(C_{F}^{2}+2C_{F}+1)T^{\alpha}\big{)} $ |
and $ M_k = \mathop{\max}\limits_{t\in [0, T]}|D_{t}^{\alpha}\varphi^{k}(0, t)|^{2} $. Choosing $ \lambda $ large enough so that $ q_{1} < 1 $, we get
$ |ek+1(t)|2λ≤q1(|ek−1(t)|2λ+μ1,k−1)+μ1,k≤qk+11|e0(t)|2λ+qk1μ1,0+qk−11μ1,1+⋯+μ1,k≤qk+11|e0(t)|2λ+¯μ1,k1−q1, $
|
(3.19) |
where $ \overline{\mu}_{1, k}\triangleq \mathop{\max}\limits_{m\in\{0, 1, \cdots, k\}}\mu_{1, m} $. We select $ \lambda $ large enough so that $ \overline{\mu}_{1, k} $ is sufficiently small. Therefore, to ensure $ |e^{k+1}(t)|_{\lambda}^{2}\leq \epsilon^2 $, it is sufficient to make
$ qk+11|e0(t)|2λ<ϵ2, $
|
(3.20) |
which means that the output error converges to the $ \epsilon $-neighborhood of zero after finite step iteration ($ k > \frac{2(\ln\epsilon-\ln|e^{0}|_{\lambda})}{\ln q_{1}}-1 $).
Remark 3.1. Due to $ q_{1}(\lambda) $ is a monotonic decreasing function of $ \lambda $ and $ (1+l)\overline{\rho}_{1}^{2} < 1 $, we can see that the inequality $ q_{1} < 1 $ holds when $ \lambda $ is large enough. From the definition of $ \mu_{1, k} $, $ \mu_{1, k} $ is proportional to $ \lambda^{-\alpha} $. The number of iterations k is finited, so $ \overline{\mu}_{1, k} $ is also proportional to $ \lambda^{-\alpha} $ and $ \overline{\mu}_{1, k} $ tends to zero when $ \lambda $ is large enough.
Remark 3.2. In order to satisfy the convergence condition (3.14), the learning gain $ \beta $ should satisfy
$ \frac{\sqrt{1+l}-1}{d_{1}\sqrt{1+l}} < \beta < \frac{\sqrt{1+l}+1}{d_{2}\sqrt{1+l}} . $ |
To ensure that the above inequality holds, parameter $ l $ should satisfy
$ l < (\frac{d_{2}+d_{1}}{d_{2}-d_{1}})^{2}-1. $ |
The closed-loop P-type ILC control scheme for (1.2) is
$ uk+1(t)=uk(t)+βek+1(t), $
|
(3.21) |
where $ e^{k+1}(t) = y^{d}(t)-y^{k+1}(t) $ is the output error and the learning gain $ \beta $ is an unknown parameter to be determined later.
Theorem 3.2. For system (1.2) and the ILC law (3.21), if there exist a learning gain $ \beta $ and a constant $ l (l > 0) $ satisfying
$ (1+¯ρ22l)¯ρ22≤1, $
|
(3.22) |
where $ \overline{\rho}_{2} = \mathop{\max}\limits_{t\in[0, T]}\frac{1}{|1+\beta d(t)|} $, then the output error $ e^{k} $ can converge to the $ \epsilon $-neighborhood of zero for any constant $ \epsilon > 0 $ in the sense of $ \lambda $-norm as $ k\rightarrow \infty $.
Proof. From the definition of error, we get
$ ek+1(t)=yd(t)−yk+1(t)=yd(t)−yk(t)−(yk+1(t)−yk(t))=ek(t)−c(t)δφk+1(1,t)−βd(t)ek+1(t). $
|
(3.23) |
Based on the formula ($ 3.21 $), it is not hard to know
$ (1+βd(t))ek+1(t)=ek(t)−c(t)δφk+1(1,t). $
|
(3.24) |
Simplifying the above equation, we have
$ ek+1(t)=ek(t)(1+βd(t))−c(t)δφk+1(1,t)(1+βd(t)). $
|
(3.25) |
Squaring both sides of the equation, we get
$ |ek+1(t)|2≤¯ρ22|ek(t)|2+¯ρ22¯c2|δφk+1(1,t)|2+2¯ρ22¯c|ek(t)||δφk+1(1,t)|, $
|
where $ \overline{\rho}_{2} = \mathop{\max}\limits_{t\in[0, T]}\frac{1}{|1+\beta d(t)|} $ and $ \overline{c} = \mathop{\max}\limits_{t\in [0, T]}|c(t)| $. Using Theorem 2.1 and Young inequality (weighted form) to ensure $ (1+\overline{\rho}_{2}^{2}l)\overline{\rho}_{2}^{2} < 1 $, we have
$ |ek+1(t)|2≤(1+¯ρ22l)¯ρ22|ek(t)|2+(¯ρ22+1l)¯c2|δφk+1(1,t)|2≤(1+¯ρ22l)¯ρ22|ek(t)|2+(¯ρ22+1l)¯c2maxx∈[0,1]|δφk+1(x,t)|2≤(1+¯ρ22l)¯ρ22|ek(t)|2+(¯ρ22+1l)¯c2C1||δφk+1||2H1. $
|
Taking $ \lambda $-norm on both sides of inequality, we get
$ |ek+1(t)|2λ≤(1+¯ρ22l)¯ρ22|ek(t)|2λ+(¯ρ22+1l)¯c2C1||δφk+1||2H1,λ. $
|
According to Lemma 3.2, we obtain
$ |ek+1(t)|2λ≤(1+¯ρ22l)¯ρ22|ek|2λ+N1|ek+1|2λ+N2,k, $
|
(3.26) |
where
$ N_{1} = (\overline{\rho}_{2}^{2}+\frac{1}{l})\overline{c}^{2}C_{1}\beta^2\big{(}C_{T}+E_{\alpha,1}(C_{F}^{2}T^{\alpha})+C_{F}^{2}C_{T}E_{\alpha,1}(C_{F}^{2}T^{\alpha})\frac{1}{\lambda^{\alpha}}\big{)}\frac{1}{\lambda^{\alpha}}, $ |
$ N_{2,k} = (\overline{\rho}_{2}^{2}+\frac{1}{l})\overline{c}^{2}C_{1}\frac{E_{\alpha,1}(C_{F}^{2}T^{\alpha})M_{k}\alpha^{\alpha}}{\alpha\Gamma(\alpha)e^{\alpha}\lambda^{\alpha}}, $ |
$ C_{T} = E_{\alpha,1}\big{(}(C_{F}^{2}+2C_{F}+1)T^{\alpha}\big{)} $ |
and $ M_k = \mathop{\max}\limits_{t\in [0, T]}|D_{t}^{\alpha}\varphi^{k}(0, t)|^{2} $. Selecting a sufficiently large $ \lambda $ such that $ N_{1} < 1 $, we can get
$ |ek+1(t)|2λ≤(1+¯ρ22l)¯ρ221−N1|ek|2λ+N2,k1−N1≤q2|ek|2λ+μ2,k, $
|
(3.27) |
where $ q_{2} = \frac{(1+\overline{\rho}_{2}^{2}l)\overline{\rho}_{2}^{2}}{1-N_{1}} $ and $ \mu_{2, k} = \frac{N_{2, k}}{1-N_{1}} $. Using recursion, we get
$ |ek+1(t)|2λ≤q2(q2|ek−1(t)|2λ+μ2,k−1)+μ2,k≤qk+12|e0(t)|2λ+qk2μ2,0+qk−12μ2,1+⋯+μ2,k≤qk+12|e0(t)|2λ+¯μ2,k1−q2, $
|
(3.28) |
where $ \overline{\mu}_{2, k}\triangleq \mathop{\max}\limits_{m\in\{0, 1, \cdots, k\}}\mu_{2, m} $. We select $ \lambda $ large enough such that $ q_{2} $ is less than 1 and $ \overline{\mu}_{2, k} $ is sufficiently small. Therefore, to ensure $ |e^{k+1}(t)|_{\lambda}^{2}\leq \epsilon^2 $, it is sufficient to make
$ qk+12|e0(t)|2λ<ϵ2, $
|
(3.29) |
which means that the output error converges to the $ \epsilon $-neighborhood of zero after finite step iteration ($ k > \frac{2(\ln\epsilon-\ln|e^{0}|_{\lambda})}{\ln q_{2}}-1 $).
Remark 3.3. In order to satisfy the convergence condition (3.22), the learning gain $ \beta $ should satisfy
$ \beta > \frac{\sqrt{1+l}-1}{d_{1}} . $ |
The open-loop P-type ILC scheme for (1.2) is
$ uk+1(t)=uk(t)+βek(t)+γIθek(t),0.5<θ≤1, $
|
(3.30) |
where $ e^{k}(t) = y^{d}(t)-y^{k}(t) $ denotes the output error and the learning gain $ \beta $ and $ \gamma $ are unknown parameters to be determined later.
Theorem 3.3. For system (1.2) and the ILC law (3.30), if the learning gain $ \gamma $ is bounded, and there exist the learning gain $ \beta $ and the constant $ l (l > 0) $ satisfying
$ (1+l)¯ρ21≤1, $
|
(3.31) |
where $ \overline{\rho}_{1} = \mathop{\max}\limits_{t\in[0, T]}|1-\beta d(t)| $, then the output error $ e^{k} $ can converge to the $ \epsilon $-neighborhood of zero for any constant $ \epsilon > 0 $ in the sense of $ \lambda $-norm as $ k\rightarrow \infty $.
Proof. By the definition of error, we have
$ ek+1(t)=yd(t)−yk+1(t)=yd(t)−yk(t)−(yk+1(t)−yk(t)). $
|
(3.32) |
Based on the formula (3.30), it is not hard to know
$ ek+1(t)=ek(t)−c(t)δφk+1(1,t)−βd(t)ek(t)−γd(t)Iθtek=(1−βd(t))ek(t)−c(t)δφk+1(1,t)−γd(t)Iθtek(t). $
|
Applying Young inequality (weight form), we get
$ |ek+1(t)|2≤(1+l)(1−βd(t))2|ek(t)|2+(2+2l)(c(t)2|δφk+1(1,t)|2+γ2d(t)2|Iθtek|2). $
|
Using Theorem 2.1, it leads to
$ |ek+1(t)|2≤(1+l)¯ρ21|ek(t)|2+(2+2l)(¯c2|δφk+1(1,t)|2+γ2d22|Iθtek|2)≤(1+l)¯ρ21|ek(t)|2+(2+2l)(¯c2maxx∈[0,1]|δφk+1(x,t)|2+γ2d22|Iθtek|2)≤(1+l)¯ρ21|ek(t)|2+(2+2l)(¯c2C1||δφk+1(⋅,t)||2H1+γ2d22|Iθtek|2), $
|
where $ \overline{\rho}_{1} = \mathop{\max}\limits_{t\in[0, T]}|1-\beta d(t)| $ and $ \overline{c} = \mathop{\max}\limits_{t\in [0, T]}|c(t)| $. Using Lemma 3.1, we obtain
$ |ek+1(t)|2≤(1+l)¯ρ21|ek(t)|2+(2+2l)(¯c2C1||δφk+1||2H1+d22c3eλtλ2θ−1|ek|2λ), $
|
where $ c_{3} = \frac{2\Gamma(2\theta-1)\gamma^{2}T}{\Gamma(\theta)^{2}} $. Taking $ \lambda $-norm on both sides of inequality, we have
$ |ek+1(t)|2λ≤((1+l)¯ρ21+(2+2l)d22c3λ2θ−1)|ek(t)|2λ+(2+2l)¯c2C1||δφk+1||2H1,λ. $
|
According to Lemma 3.3, we get
$ |ek+1(t)|2λ≤q3|ek(t)|2λ+μ3,k, $
|
(3.33) |
where
$ q_{3} = (1+l)\overline{\rho}_{1}^{2}+(2+\frac{2}{l})\overline{c}^2C_{1}\big{(}C_{E}C_{1}C_{P}C_{T}+C_{P}E_{\alpha,1}(C_{F}^{2}T^{\alpha})\big{)}+(2+\frac{2}{l})\frac{d_{2}^2c_{3}}{\lambda^{2\theta-1}}, $ |
$ \mu_{3,k} = (2+\frac{2}{l})\overline{c}^2C_{1}\frac{E_{\alpha,1}(C_{F}^{2}T^{\alpha})M_{k}\alpha^{\alpha}}{\alpha\Gamma(\alpha)e^{\alpha}\lambda^{\alpha}}, $ |
$ C_{T} = E_{\alpha,1}\big{(}(C_{F}^{2}+2C_{F}+1)T^{\alpha}\big{)}, $ |
$ C_{P} = \frac{2\beta^{2}}{\lambda^{\alpha}}+\frac{c_3}{\lambda^{\alpha+2\theta-1}}, $ |
$ C_{E} = 1+\frac{C_{F}^{2}E_{\alpha,1}(C_{F}^{2}T^{\alpha})}{\lambda^{\alpha}} $ |
and
$ M_k = \mathop{\max}\limits_{t\in [0,T]}|D_{t}^{\alpha}\varphi^{k}(0,t)|^{2}. $ |
Choosing $ \lambda $ large enough such that $ q_{3} < 1 $, it leads to
$ |ek+1(t)|2λ≤q3(q3|ek−1(t)|2λ+μ3,k−1)+μ3,k≤qk+13|e0(t)|2λ+qk3μ3,0+qk−13μ3,1+⋯+μ3,k≤qk+13|e0(t)|2λ+¯μ3,k1−q3, $
|
(3.34) |
where $ \overline{\mu}_{3, k}\triangleq \mathop{\max}\limits_{m\in\{0, 1, \cdots, k\}}\mu_{3, m} $. We select $ \lambda $ large enough such that $ q_{3} $ is less than 1 and $ \overline{\mu}_{3, k} $ is sufficiently small. Therefore, to ensure $ |e^{k+1}(t)|_{\lambda}^{2}\leq \epsilon^2 $, it is sufficient to make
$ qk+13|e0(t)|2λ<ϵ2, $
|
(3.35) |
which means that the output error converges to the $ \epsilon $-neighborhood of zero after finite step iteration ($ k > \frac{2(\ln\epsilon-\ln|e^{0}|_{\lambda})}{\ln q_{3}}-1 $).
The closed-loop P-type ILC scheme for (1.2) is
$ uk+1(t)=uk(t)+βek+1(t)+γIθek+1(t),0.5<θ≤1, $
|
(3.36) |
where $ e^{k}(t) = y^{d}(t)-y^{k}(t) $ denotes the output error and the learning gain $ \beta $ and $ \gamma $ are unknown parameters to be determined later.
Theorem 3.4. For system (1.2) and the ILC law (3.36), if the learning gain $ \gamma $ is bounded, and there exist the learning gain $ \beta $ and the constant $ l (l > 0) $ satisfying
$ (1+¯ρ22l)¯ρ22≤1, $
|
(3.37) |
where $ \overline{\rho}_{2} = \mathop{\max}\limits_{t\in[0, T]}\frac{1}{|1+\beta d(t)|} $, then the output error $ e^{k} $ can converge to the $ \epsilon $-neighborhood of zero for any constant $ \epsilon > 0 $ in the sense of $ \lambda $-norm as $ k\rightarrow \infty $.
Proof. By the definition of error, we have
$ ek+1(t)=yd(t)−yk+1(t)=yd(t)−yk(t)−(yk+1(t)−yk(t)). $
|
(3.38) |
Based on the formula (3.36), it is not hard to know
$ ek+1(t)=ek(t)−c(t)δφk+1(1,t)−βd(t)ek+1(t)−γd(t)Iθtek+1. $
|
Combining similar items, it leads to
$ (1+βd(t))ek+1(t)=ek(t)−c(t)δφk+1(1,t)−γd(t)Iθtek+1. $
|
(3.39) |
Simplifying the above equation, we have
$ ek+1(t)=ek(t)1+βd(t)−c(t)δφk+1(1,t)1+βd(t)−γd(t)1+βd(t)Iθtek+1(t). $
|
Applysing Young inequality (weighted form), we get
$ |ek+1(t)|2≤(1+¯ρ22l)¯ρ22|ek(t)|2+(2¯ρ22+2l)(¯c2|δφk+1(1,t)|2+γ2d22|Iθtek+1(t)|2), $
|
where $ \overline{\rho}_{2} = \mathop{\max}\limits_{t\in[0, T]}\frac{1}{|1+\beta d(t)|} $ and $ \overline{c} = \mathop{\max}\limits_{t\in [0, T]}|c(t)| $. Using Theorem 2.1, we obtain
$ |ek+1(t)|2≤(1+¯ρ22l)¯ρ22|ek(t)|2+(2¯ρ22+2l)(¯c2maxx∈[0,1]|δφk+1(⋅,t)|2+γ2d22|Iθtek+1|2)≤(1+¯ρ22l)¯ρ22|ek(t)|2+(2¯ρ22+2l)(¯c2C1||δφk+1||2H1+γ2d22|Iθtek+1|2). $
|
According to Lemma 3.1, we have
$ |ek+1(t)|2≤(1+¯ρ22l)¯ρ22|ek(t)|2+(2¯ρ22+2l)(¯c2C1||δφk+1||2H1+d22c3eλt|ek+1|2λλ2θ−1), $
|
where $ c_{3} = \frac{2\Gamma(2\theta-1)\gamma^{2}T}{\Gamma(\theta)^{2}} $. Taking $ \lambda $-norm on both sides of inequality, it leads to
$ |ek+1(t)|2λ≤(1+¯ρ22l)¯ρ22|ek(t)|2λ+(2¯ρ22+2l)(¯c2C1||δφk+1||2H1,λ+d22c3|ek+1|2λλ2θ−1). $
|
Using Lemma 3.3, we can get
$ |ek+1(t)|2λ≤(1+¯ρ22l)¯ρ22|ek(t)|2λ+N3|ek+1(t)|2λ+N4,k, $
|
(3.40) |
where
$ N_{3} = (2\overline{\rho}_{2}^{2}+\frac{2}{l})\overline{c}^2C_{1}\big{(}C_{E}C_{1}C_{P}C_{T}+C_{P}E_{\alpha,1}(C_{F}^{2}T^{\alpha})\big{)}+(2\overline{\rho}_{2}^{2}+\frac{2}{l})\frac{d_{2}^2c_3}{\lambda^{2\theta-1}}, $ |
$ N_{4,k} = (2\overline{\rho}_{2}^{2}+\frac{2}{l})\overline{c}^2C_{1}\frac{E_{\alpha,1}(C_{F}^{2}T^{\alpha})M_{k}\alpha^{\alpha}}{\alpha\Gamma(\alpha)e^{\alpha}\lambda^{\alpha}}, $ |
$ C_{T} = E_{\alpha,1}\big{(}(C_{F}^{2}+2C_{F}+1)T^{\alpha}\big{)}, $ |
$ C_{P} = \frac{2\beta^{2}}{\lambda^{\alpha}}+\frac{c_3}{\lambda^{\alpha+2\theta-1}}, $ |
$ C_{E} = 1+\frac{C_{F}^{2}E_{\alpha, 1}(C_{F}^{2}T^{\alpha})}{\lambda^{\alpha}} $ and $ M_k = \mathop{\max}\limits_{t\in [0, T]}|D_{t}^{\alpha}\varphi^{k}(0, t)|^{2} $. Selecting a sufficiently large $ \lambda $ such that $ q_{4} < 1 $, we can obtain
$ |ek+1(t)|2λ≤(1+¯ρ22l)¯ρ221−N3|ek(t)|2λ+N4,k1−N3≤q4|ek(t)|2λ+μ4,k, $
|
(3.41) |
where $ q_{4} = \frac{(1+\overline{\rho}_{2}^{2}l)\overline{\rho}_{2}^{2}}{1-N_{3}} $ and $ \mu_{4, k} = \frac{N_{4, k}}{1-N_{3}} $. Using recursion, we get
$ |ek+1(t)|2λ≤q4(q4|ek−1(t)|2λ+μ4,k−1)+μ4,k≤qk+14|e0(t)|2λ+qk4μ4,0+qk−14μ4,1+⋯+μ4,k≤qk+14|e0(t)|2λ+¯μ4,k1−q4, $
|
(3.42) |
where $ \overline{\mu}_{4, k}\triangleq \mathop{\max}\limits_{m\in\{0, 1, \cdots, k\}}\mu_{4, m} $. We select $ \lambda $ large enough such that $ q_{4} $ is less than $ 1 $ and $ \overline{\mu}_{4, k} $ is sufficiently small. Therefore, to ensure $ |e^{k+1}(t)|_{\lambda}^{2}\leq \epsilon^2 $, it is sufficient to make
$ qk+14|e0(t)|2λ<ϵ2, $
|
(3.43) |
which means that the output error converges to the $ \epsilon $-neighborhood of zero after finite step iteration ($ k > \frac{2(\ln\epsilon-\ln|e^{0}|_{\lambda})}{\ln q_{4}}-1 $).
In this section, we use the following numerical examples to verify convergence conditions of the open-loop $ P $-type ILC, Closed-loop $ P $-type ILC, open-loop $ PI^{\theta} $-type ILC and Closed-loop $ PI^{\theta} $-type ILC schemes. We can also observe the convergence speed of the four iterative learning algorithms from the numerical results.
Example 4.1. We consider a boundary tracing problem of one dimensional fractional diffusion equation
$ {C0Dαtφk=φkxx+F(x,t,φk),(x,t)∈(0,1)×(0,1],φkx(0,t)=uk(t),t∈[0,1],φkx(1,t)=2t2−3t+2,t∈[0,1],φk(x,0)=x2,x∈[0,1], $
|
where
$ F(x,t,\varphi^{k}) = 2x^{2}(t-1)^{2-\alpha}+xt^{1-\alpha}-2(t-1)^{2}-x^{2}(t-1)^{2}-xt-(x^{2}(t-1)^{2}+xt)^{2}+\varphi^{k}+|\varphi^{k}|^{2}, $ |
$ \alpha = 0.9 $ and $ T = 1 $. In this simulation, the output is determined as $ y^{k}(t) = t\varphi^{k}(1, t)+(t^{2}-t+1)u^{k}(t) $, that is $ c(t) = t $, $ d(t) = (t^{2}-t+1) $. The output reference trajectory is $ y^{d}(t) = 2(t^{3}-t^{2}+t) $.
Figure 1a displays the tracking performance of the open-loop $ P $-type ILC, while Figure 1b shows the tracking performance of the closed-loop $ P $-type ILC. Additionally, Figure 1c displays the tracking performance of the open-loop $ PI^{\theta} $-type ILC, and Figure 1d shows the tracking performance of the closed-loop $ PI^{\theta} $-type ILC.
Figure 2 displays the maximum norm of four ILC schemes at different iteration times, including the open-loop $ P $-type, closed-loop $ P $-type, open-loop $ PI^{\theta} $-type, and closed-loop $ PI^{\theta} $-type ILC schemes. The results demonstrate that the closed-loop-type ILC schemes converge faster than the open-loop-type ILC schemes.
Figure 3a shows the unstable behavior of the open-loop ILC scheme. When $ \beta $ is set to 2, the open-loop $ P $-type ILC scheme fails to meet the convergence conditions. Figure 3b displays that the closed-loop $ P $-type ILC scheme satisfies the convergence conditions and achieves faster convergence speed.
Figure 4 illustrates the convergence behavior of the maximum error $ ||e^{k}||_{\infty} $ of the closed-loop $ P $-type ILC scheme over 100 iterations. Although the maximum error does not decrease at iteration $ k = 50 $, the scheme remains stable and does not diverge.
Tables 1 and 2 respectively provide the maximum error of open-loop $ PI^{\theta} $-type and closed-loop $ PI^{\theta} $-type schemes. Comparing the data of $ PI^{\theta} $-type and $ P $-type schemes in the tables, it can be observed that the $ PI^{\theta} $-type ILC scheme converges faster than the $ P $-type ILC scheme. Comparing the data of the $ PI^{\theta} $-type $ (0.5 < \theta < 1) $ and the $ PI $-type $ (\theta = 1) $ schemes in the tables, it can be observed that the $ PI^{\theta} $-type ILC scheme converges faster than the $ PI $-type ILC scheme.
open-loop $ P $-type | open-loop $ PI^{\theta} $-type | |||||
$ \theta=1 $ | $ \theta=0.95 $ | $ \theta=0.7 $ | $ \theta=0.5 $ | $ \theta=0.3 $ | ||
$ k=1 $ | 0.630568931 | 0.630568931 | 0.630568931 | 0.630568931 | 0.630568931 | 0.630568931 |
$ k=4 $ | 0.202638726 | 0.019996924 | 0.015212742 | 0.008726639 | 0.005928183 | 0.010502699 |
$ k=7 $ | 0.068332236 | 0.002482255 | 0.001857693 | $ 3.6649 \times 10^{-4} $ | $ 9.5086 \times 10^{-5} $ | 0.002354680 |
$ k=10 $ | 0.021782898 | $ 2.8469\times 10^{-4} $ | $ 1.9983 \times 10 ^{-4} $ | $ 3.1580 \times 10^{-5} $ | $ 6.5572 \times 10^{-6} $ | $ 7.2370 \times 10^{-5} $ |
$ k=13 $ | 0.006572122 | $ 5.0058\times 10^{-5} $ | $ 3.5348 \times 10^{-5} $ | $ 3.5879 \times 10^{-6} $ | $ 2.8750 \times 10^{-7} $ | $ 5.7637 \times 10^{-6} $ |
$ k=15 $ | 0.002889629 | $ 1.5586 \times 10^{-5} $ | $ 1.0709 \times 10^{-5} $ | $ 8.4523 \times 10^{-7} $ | $ 3.3754 \times 10^{-8} $ | $ 1.9978 \times 10^{-7} $ |
closed-loop $ P $-type | closed-loop $ PI^{\theta} $-type | |||||
$ \theta=1 $ | $ \theta=0.95 $ | $ \theta=0.7 $ | $ \theta=0.5 $ | $ \theta=0.3 $ | ||
$ k=1 $ | 0.473649453 | 0.222303282 | 0.218931679 | 0.209854876 | 0.205446586 | 0.199953476 |
$ k=3 $ | 0.132338134 | 0.006667802 | 0.005053414 | 0.001356560 | 0.002265694 | 0.001989692 |
$ k=5 $ | 0.037264451 | $ 7.3260 \times 10^{-4} $ | $ 4.5345\times10^{-4} $ | $ 1.1225\times 10^{-4} $ | $ 7.2258 \times 10^{-5} $ | $ 8.0773 \times 10^{-5} $ |
$ k=7 $ | 0.009879078 | $ 7.2626 \times 10^{-5} $ | $ 4.9175 \times 10^{-5} $ | $ 4.7746 \times 10^{-6} $ | $ 6.0573 \times 10^{-6} $ | $ 7.3168 \times 10^{-6} $ |
$ k=9 $ | 0.002488555 | $ 1.0026 \times 10^{-5} $ | $ 6.6767 \times 10^{-6} $ | $ 4.7218 \times 10^{-7} $ | $ 5.1262 \times 10^{-7} $ | $ 6.9890 \times 10^{-7} $ |
$ k=11 $ | $ 6.0534 \times 10^{-4} $ | $ 1.5862\times 10^{-6} $ | $ 1.0129 \times 10^{-6} $ | $ 4.9032 \times 10^{-7} $ | $ 4.9714 \times 10^{-7} $ | $ 4.3887 \times 10^{-7} $ |
$ k=13 $ | $ 1.4366 \times 10^{-4} $ | $ 2.5168 \times 10^{-7} $ | $ 1.4757 \times 10^{-7} $ | $ 3.1214 \times 10^{-8} $ | $ 3.7037 \times 10^{-8} $ | $ 5.1572 \times 10^{-8} $ |
$ k=15 $ | $ 3.3461 \times 10^{-5} $ | $ 3.8956 \times 10^{-8} $ | $ 2.1760\times 10^{-8} $ | $ 1.2383 \times 10^{-9} $ | $ 5.7806 \times 10^{-9} $ | $ 3.3308 \times 10^{-9} $ |
In this paper, we investigate iterative learning algorithms for boundary tracking of nonlinear fractional diffusion equation. We provide convergence conditions for open-loop $ P $-type, closed-loop $ P $-type, open-loop $ PI^{\theta} $-type and closed-loop $ PI^{\theta} $-type ILC algorithms. Numerical results demonstrate the effectiveness and stability of our proposed ILC schemes. Specifically, the closed-loop ILC schemes converge faster than the open-loop ILC schemes, and the $ PI^{\theta} $-type ILC scheme outperforms the $ P $-type and $ PI $-type ILC schemes.
This research was supported by National Natural Science Foundation of China (No.11971387) and the fund of Sichuan Gas Turbine Establishment Aero Engine Corporation of China (GJCZ-2020-0018).
The authors declare that there is no conflict of interest.
[1] |
Carapetis JR, Steer AC, Mulholland EK, et al. (2005) The global burden of group A streptococcal diseases. Lancet Infect Dis 5: 685–694. doi: 10.1016/S1473-3099(05)70267-X
![]() |
[2] |
Jones TD (1944) The diagnosis of rheumatic fever. J Am Med Assoc 126: 481–484. doi: 10.1001/jama.1944.02850430015005
![]() |
[3] | Seckeler MD, Barton LL, Brownstein R (2010) The persistent challenge of rheumatic fever in the Northern Mariana Islands. Int J Infect Dis 14: e226–e229. |
[4] |
Carapetis JR, Currie BJ, Mathews JD (2000) Cumulative incidence of rheumatic fever in an endemic region: a guide to the susceptibility of the population? Epidemiol Infect 124: 239–244. doi: 10.1017/S0950268800003514
![]() |
[5] |
Breda L, Marzetti V, Gaspari S, et al. (2012) Population-based study of incidence and clinical characteristics of rheumatic fever in Abruzzo, central Italy, 2000–2009. J Pediatr 160: 832–836. doi: 10.1016/j.jpeds.2011.10.009
![]() |
[6] |
Carapetis JR, McDonald M, Wilson NJ (2005) Acute rheumatic fever. Lancet 366: 155–168. doi: 10.1016/S0140-6736(05)66874-2
![]() |
[7] |
Lawrence JG, Carapetis JR, Griffiths K, et al. (2013) Acute rheumatic fever and rheumatic heart disease: incidence and progression in the Northern Territory of Australia, 1997 to 2010. Circulation 128: 492–501. doi: 10.1161/CIRCULATIONAHA.113.001477
![]() |
[8] |
Rothenbühler M, O'Sullivan CJ, Stortecky S, et al. (2014) Active surveillance for rheumatic heart disease in endemic regions: a systematic review and metaanalysis of prevalence among children and adolescents. Lancet Glob Health 2: 717–726. doi: 10.1016/S2214-109X(14)70310-9
![]() |
[9] | Markowitz M (1985) The decline of rheumatic fever: role of medical intervention. Lewis W. Wannamaker Memorial Lecture. J Pediatr 106: 545–550. |
[10] |
Murray CJ, Vos T, Lozano R, et al. (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380: 2197–2223. doi: 10.1016/S0140-6736(12)61689-4
![]() |
[11] |
Global Burden of Disease Study 2013 Mortality and Causes of Death Collaborators (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385: 117–171. doi: 10.1016/S0140-6736(14)61682-2
![]() |
[12] |
Global Burden of Disease Study 2013 Collaborators (2015) Global, regional and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386:743–800. doi: 10.1016/S0140-6736(15)60692-4
![]() |
[13] |
Carapetis JR, Steer AC, Mulholland EK, et al. (2005) The global burden of group A streptococcal diseases. Lancet Infect Dis 5: 685–694. doi: 10.1016/S1473-3099(05)70267-X
![]() |
[14] |
Carapetis JR, Zuhlke L, Taubert K, et al. (2013) Continued challenge of rheumatic heart disease: the gap of understanding or the gap of implementation? Glob Heart 8: 185–186. doi: 10.1016/j.gheart.2013.08.003
![]() |
[15] |
Otto H, Saether SG, Banteyrga L, et al. (2011) High prevalence of subclinical rheumatic heart disease in pregnant women in a developing country: an echocardiographic study. Echocardiography 28: 1049–1053. doi: 10.1111/j.1540-8175.2011.01520.x
![]() |
[16] |
Zuhlke LJ, Engel ME, Watkins D, et al. (2015) Incidence, prevalence and outcome of rheumatic heart disease in South Africa: a systematic review of contemporary studies. Int J Cardiol 199: 375–383. doi: 10.1016/j.ijcard.2015.06.145
![]() |
[17] |
Beaton A, Okello E, Lwabi P, et al. (2012) Echocardiography screening for rheumatic heart disease in Ugandan schoolchildren. Circulation 125: 3127–3132. doi: 10.1161/CIRCULATIONAHA.112.092312
![]() |
[18] |
Carapetis JR, Hardy M, Fakakovikaetau T, et al. (2008) Evaluation of a screening protocol using auscultation and portable echocardiography to detect asymptomatic rheumatic heart disease in Tongan schoolchildren. Nat Clin Pract Cardiovasc Med 5: 411–417. doi: 10.1038/ncpcardio1185
![]() |
[19] | Viali S (2006) Rheumatic fever and rheumatic heart disease in Samoa. Pac Health Dialog 13: 31–38. |
[20] | Steer AC, Kado J, Wilson N, et al. (2009) High prevalence of rheumatic heart disease by clinical and echocardiographic screening among children in Fiji. J Heart Valve Dis 18: 327–335. |
[21] |
Ledos PH, Kamblock J, Bourgoin P, et al. (2015) Prevalence of rheumatic heart disease in young adults from New Caledonia. Arch Cardiovasc Dis 108: 16–22. doi: 10.1016/j.acvd.2014.07.053
![]() |
[22] |
Bocchi EA (2013) Heart failure in South America. Curr Cardiol Rev 9: 147–156. doi: 10.2174/1573403X11309020007
![]() |
[23] | Elamrousy DA, Al-Asy H, Mawlana W (2014) Acute rheumatic fever in Egyptian children: a 30-year experience in a tertiary hospital. J Pediatric Sci 6: e220. |
[24] |
Kočevar U, Toplak N, Kosmač B (2017) Acute rheumatic fever outbreak in southern central European country. Eur J Pediatr 176: 23–29. doi: 10.1007/s00431-016-2801-z
![]() |
[25] |
Ramakrishnan S (2009) Echocardiography in acute rheumatic fever. Ann Pediatr Cardiol 2: 61–64. doi: 10.4103/0974-2069.52812
![]() |
[26] |
Rayamajhi A, Sharma D, Shakya U (2007) Clinical, laboratory and echocardiographic profile of acute rheumatic fever in Nepali children. Ann Trop Paediatr 27: 169–177. doi: 10.1179/146532807X220271
![]() |
[27] | Hayes CS, Williamson H (2001) Management of Group A beta-hemolytic streptococcal pharyngitis. Am Fam Physician 63: 1557–1564. |
[28] |
Stollerman GH (1997) Rheumatic fever. Lancet 349: 935–942. doi: 10.1016/S0140-6736(96)06364-7
![]() |
[29] |
Cunningham MW (2000) Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 13: 470–511. doi: 10.1128/CMR.13.3.470-511.2000
![]() |
[30] | Seckeler MD, Hoke TR (2011) The worldwide epidemiology of acute rheumatic fever and rheumatic heart disease. Clin Epidemiol 3: 67–84. |
[31] |
Carceller A, Tapiero B, Rubin E, et al. (2007) Acute rheumatic fever: 27-year experience from the Montreal's pediatric tertiary care centers. An Pediatr (Barc) 67: 5–10. doi: 10.1157/13108071
![]() |
[32] |
Joseph N, Madi D, Kumar GS, et al. (2013) Clinical spectrum of rheumatic Fever and rheumatic heart disease: a 10-year experience in an urban area of South India. Am J Med Sci 5: 647–652. doi: 10.4103/1947-2714.122307
![]() |
1. | Sara N. Gentry, Trachette L. Jackson, Shree Ram Singh, A Mathematical Model of Cancer Stem Cell Driven Tumor Initiation: Implications of Niche Size and Loss of Homeostatic Regulatory Mechanisms, 2013, 8, 1932-6203, e71128, 10.1371/journal.pone.0071128 | |
2. | Youshan Tao, Qian Guo, Kazuyuki Aihara, A partial differential equation model and its reduction to an ordinary differential equation model for prostate tumor growth under intermittent hormone therapy, 2014, 69, 0303-6812, 817, 10.1007/s00285-013-0718-y | |
3. | Ana Isabel Muñoz, J. Ignacio Tello, On a mathematical model of bone marrow metastatic niche, 2017, 14, 1551-0018, 289, 10.3934/mbe.2017019 | |
4. | Ana I. Muñoz, Numerical resolution of a model of tumour growth, 2016, 33, 1477-8599, 57, 10.1093/imammb/dqv004 | |
5. | Jens Chr. Larsen, Models of cancer growth, 2017, 53, 1598-5865, 613, 10.1007/s12190-016-0985-z | |
6. | Azim Rivaz, Mahdieh Azizian, Madjid Soltani, Various Mathematical Models of Tumor Growth with Reference to Cancer Stem Cells: A Review, 2019, 43, 1028-6276, 687, 10.1007/s40995-019-00681-w | |
7. | L. G. Marcu, D. Marcu, S. M. Filip, In silicostudy of the impact of cancer stem cell dynamics and radiobiological hypoxia on tumour response to hyperfractionated radiotherapy, 2016, 49, 09607722, 304, 10.1111/cpr.12251 | |
8. | Mihaela Negreanu, J. Ignacio Tello, Asymptotic stability of a mathematical model of cell population, 2014, 415, 0022247X, 963, 10.1016/j.jmaa.2014.02.032 | |
9. | Alexander T. Pearson, Patrick Ingram, Shoumei Bai, Patrick O'Hayer, Jaehoon Chung, Euisik Yoon, Trachette Jackson, Ronald J. Buckanovich, Sampling from single-cell observations to predict tumor cell growth in-vitro and in-vivo, 2017, 8, 1949-2553, 111176, 10.18632/oncotarget.22693 | |
10. | Alexander T. Pearson, Trachette L. Jackson, Jacques E. Nör, Modeling head and neck cancer stem cell-mediated tumorigenesis, 2016, 73, 1420-682X, 3279, 10.1007/s00018-016-2226-x |
open-loop $ P $-type | open-loop $ PI^{\theta} $-type | |||||
$ \theta=1 $ | $ \theta=0.95 $ | $ \theta=0.7 $ | $ \theta=0.5 $ | $ \theta=0.3 $ | ||
$ k=1 $ | 0.630568931 | 0.630568931 | 0.630568931 | 0.630568931 | 0.630568931 | 0.630568931 |
$ k=4 $ | 0.202638726 | 0.019996924 | 0.015212742 | 0.008726639 | 0.005928183 | 0.010502699 |
$ k=7 $ | 0.068332236 | 0.002482255 | 0.001857693 | $ 3.6649 \times 10^{-4} $ | $ 9.5086 \times 10^{-5} $ | 0.002354680 |
$ k=10 $ | 0.021782898 | $ 2.8469\times 10^{-4} $ | $ 1.9983 \times 10 ^{-4} $ | $ 3.1580 \times 10^{-5} $ | $ 6.5572 \times 10^{-6} $ | $ 7.2370 \times 10^{-5} $ |
$ k=13 $ | 0.006572122 | $ 5.0058\times 10^{-5} $ | $ 3.5348 \times 10^{-5} $ | $ 3.5879 \times 10^{-6} $ | $ 2.8750 \times 10^{-7} $ | $ 5.7637 \times 10^{-6} $ |
$ k=15 $ | 0.002889629 | $ 1.5586 \times 10^{-5} $ | $ 1.0709 \times 10^{-5} $ | $ 8.4523 \times 10^{-7} $ | $ 3.3754 \times 10^{-8} $ | $ 1.9978 \times 10^{-7} $ |
closed-loop $ P $-type | closed-loop $ PI^{\theta} $-type | |||||
$ \theta=1 $ | $ \theta=0.95 $ | $ \theta=0.7 $ | $ \theta=0.5 $ | $ \theta=0.3 $ | ||
$ k=1 $ | 0.473649453 | 0.222303282 | 0.218931679 | 0.209854876 | 0.205446586 | 0.199953476 |
$ k=3 $ | 0.132338134 | 0.006667802 | 0.005053414 | 0.001356560 | 0.002265694 | 0.001989692 |
$ k=5 $ | 0.037264451 | $ 7.3260 \times 10^{-4} $ | $ 4.5345\times10^{-4} $ | $ 1.1225\times 10^{-4} $ | $ 7.2258 \times 10^{-5} $ | $ 8.0773 \times 10^{-5} $ |
$ k=7 $ | 0.009879078 | $ 7.2626 \times 10^{-5} $ | $ 4.9175 \times 10^{-5} $ | $ 4.7746 \times 10^{-6} $ | $ 6.0573 \times 10^{-6} $ | $ 7.3168 \times 10^{-6} $ |
$ k=9 $ | 0.002488555 | $ 1.0026 \times 10^{-5} $ | $ 6.6767 \times 10^{-6} $ | $ 4.7218 \times 10^{-7} $ | $ 5.1262 \times 10^{-7} $ | $ 6.9890 \times 10^{-7} $ |
$ k=11 $ | $ 6.0534 \times 10^{-4} $ | $ 1.5862\times 10^{-6} $ | $ 1.0129 \times 10^{-6} $ | $ 4.9032 \times 10^{-7} $ | $ 4.9714 \times 10^{-7} $ | $ 4.3887 \times 10^{-7} $ |
$ k=13 $ | $ 1.4366 \times 10^{-4} $ | $ 2.5168 \times 10^{-7} $ | $ 1.4757 \times 10^{-7} $ | $ 3.1214 \times 10^{-8} $ | $ 3.7037 \times 10^{-8} $ | $ 5.1572 \times 10^{-8} $ |
$ k=15 $ | $ 3.3461 \times 10^{-5} $ | $ 3.8956 \times 10^{-8} $ | $ 2.1760\times 10^{-8} $ | $ 1.2383 \times 10^{-9} $ | $ 5.7806 \times 10^{-9} $ | $ 3.3308 \times 10^{-9} $ |
open-loop $ P $-type | open-loop $ PI^{\theta} $-type | |||||
$ \theta=1 $ | $ \theta=0.95 $ | $ \theta=0.7 $ | $ \theta=0.5 $ | $ \theta=0.3 $ | ||
$ k=1 $ | 0.630568931 | 0.630568931 | 0.630568931 | 0.630568931 | 0.630568931 | 0.630568931 |
$ k=4 $ | 0.202638726 | 0.019996924 | 0.015212742 | 0.008726639 | 0.005928183 | 0.010502699 |
$ k=7 $ | 0.068332236 | 0.002482255 | 0.001857693 | $ 3.6649 \times 10^{-4} $ | $ 9.5086 \times 10^{-5} $ | 0.002354680 |
$ k=10 $ | 0.021782898 | $ 2.8469\times 10^{-4} $ | $ 1.9983 \times 10 ^{-4} $ | $ 3.1580 \times 10^{-5} $ | $ 6.5572 \times 10^{-6} $ | $ 7.2370 \times 10^{-5} $ |
$ k=13 $ | 0.006572122 | $ 5.0058\times 10^{-5} $ | $ 3.5348 \times 10^{-5} $ | $ 3.5879 \times 10^{-6} $ | $ 2.8750 \times 10^{-7} $ | $ 5.7637 \times 10^{-6} $ |
$ k=15 $ | 0.002889629 | $ 1.5586 \times 10^{-5} $ | $ 1.0709 \times 10^{-5} $ | $ 8.4523 \times 10^{-7} $ | $ 3.3754 \times 10^{-8} $ | $ 1.9978 \times 10^{-7} $ |
closed-loop $ P $-type | closed-loop $ PI^{\theta} $-type | |||||
$ \theta=1 $ | $ \theta=0.95 $ | $ \theta=0.7 $ | $ \theta=0.5 $ | $ \theta=0.3 $ | ||
$ k=1 $ | 0.473649453 | 0.222303282 | 0.218931679 | 0.209854876 | 0.205446586 | 0.199953476 |
$ k=3 $ | 0.132338134 | 0.006667802 | 0.005053414 | 0.001356560 | 0.002265694 | 0.001989692 |
$ k=5 $ | 0.037264451 | $ 7.3260 \times 10^{-4} $ | $ 4.5345\times10^{-4} $ | $ 1.1225\times 10^{-4} $ | $ 7.2258 \times 10^{-5} $ | $ 8.0773 \times 10^{-5} $ |
$ k=7 $ | 0.009879078 | $ 7.2626 \times 10^{-5} $ | $ 4.9175 \times 10^{-5} $ | $ 4.7746 \times 10^{-6} $ | $ 6.0573 \times 10^{-6} $ | $ 7.3168 \times 10^{-6} $ |
$ k=9 $ | 0.002488555 | $ 1.0026 \times 10^{-5} $ | $ 6.6767 \times 10^{-6} $ | $ 4.7218 \times 10^{-7} $ | $ 5.1262 \times 10^{-7} $ | $ 6.9890 \times 10^{-7} $ |
$ k=11 $ | $ 6.0534 \times 10^{-4} $ | $ 1.5862\times 10^{-6} $ | $ 1.0129 \times 10^{-6} $ | $ 4.9032 \times 10^{-7} $ | $ 4.9714 \times 10^{-7} $ | $ 4.3887 \times 10^{-7} $ |
$ k=13 $ | $ 1.4366 \times 10^{-4} $ | $ 2.5168 \times 10^{-7} $ | $ 1.4757 \times 10^{-7} $ | $ 3.1214 \times 10^{-8} $ | $ 3.7037 \times 10^{-8} $ | $ 5.1572 \times 10^{-8} $ |
$ k=15 $ | $ 3.3461 \times 10^{-5} $ | $ 3.8956 \times 10^{-8} $ | $ 2.1760\times 10^{-8} $ | $ 1.2383 \times 10^{-9} $ | $ 5.7806 \times 10^{-9} $ | $ 3.3308 \times 10^{-9} $ |