In this paper, a novel numerical method is developed to solve a parabolic diffusion equation with a nonlocal-in-time operator. First, drawing upon the mesh equidistribution principle, a modified graded mesh along with its properties is introduced. Additionally, the spatial derivative is discretized using the standard central difference scheme on a uniform mesh, whereas the time nonlocal operator is approximated by employing a finite difference scheme on the aforementioned modified graded mesh. Furthermore, the stability and convergence of our proposed scheme are demonstrated. Finally, the theoretical findings are corroborated through a series of numerical experiments.
Citation: Shujun Liu, Li-Bin Liu, Xiaobing Bao. Error analysis of a finite difference scheme on a modified graded mesh for a nonlocal-in-time parabolic equation[J]. Networks and Heterogeneous Media, 2025, 20(3): 970-986. doi: 10.3934/nhm.2025042
In this paper, a novel numerical method is developed to solve a parabolic diffusion equation with a nonlocal-in-time operator. First, drawing upon the mesh equidistribution principle, a modified graded mesh along with its properties is introduced. Additionally, the spatial derivative is discretized using the standard central difference scheme on a uniform mesh, whereas the time nonlocal operator is approximated by employing a finite difference scheme on the aforementioned modified graded mesh. Furthermore, the stability and convergence of our proposed scheme are demonstrated. Finally, the theoretical findings are corroborated through a series of numerical experiments.
| [1] |
Q. Du, J. Yang, Z. Zhou, Analysis of a nonlocal-in-time parabolic equation, Discrete Contin. Dyn. Syst. B, 22 (2017), 339–368. http://dx.doi.org/10.3934/DCDSB.2017016 doi: 10.3934/DCDSB.2017016
|
| [2] |
K. Huang, Q. Du, Asymptotic compatibility of a class of numerical schemes for a nonlocal traffic flow model, SIAM J. Numer. Anal., 62 (2024), 1119–1144. http://dx.doi.org/10.1137/23M154488X doi: 10.1137/23M154488X
|
| [3] |
F. Bobaru, M. Duangpanya, The peridynamic formulation for transient heat conduction, Int. J. Heat Mass Transfer, 53 (2010), 4047–4059. https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.024 doi: 10.1016/j.ijheatmasstransfer.2010.05.024
|
| [4] |
L. Feo, G. Lovisi, R. Penna, Free vibration analysis of functionally graded nanobeams based on surface stress-driven nonlocal model, Mech. Adv. Mater. Struct., 31 (2024), 10391–10399. https://doi.org/10.1080/15376494.2023.2289079 doi: 10.1080/15376494.2023.2289079
|
| [5] |
V. Sidorov, E. Badina, R. Tsarev, Dynamic model of beam deformation with consider nonlocal in time elastic properties of the material, Int. J. Comput. Civ. Struct. Eng., 18 (2022), 124–131. https://doi.org/10.22337/2587-9618-2022-18-4-124-131 doi: 10.22337/2587-9618-2022-18-4-124-131
|
| [6] |
Z. F. Weng, X. Q. Yue, S. Y. Zhai, A second order accurate SAV numerical method for the nonlocal ternary conservative Allen-Cahn model, Appl. Math. Lett., 142 (2023), 108633. https://doi.org/10.1016/j.aml.2023.108633 doi: 10.1016/j.aml.2023.108633
|
| [7] |
S. Pal, R. Melnik, Nonlocal models in biology and life sciences: Sources, developments, and applications, Phys. Life Rev., 53 (2025), 24–75. https://doi.org/10.1016/j.plrev.2025.02.005 doi: 10.1016/j.plrev.2025.02.005
|
| [8] |
Z. F. Weng, S. Y. Zhai, X. L. Feng, Numerical approximation of the nonlocal ternary viscous Cahn-Hilliard model based on a high order explicit hybrid algorithm, SIAM J. Sci. Comput., 47 (2025), A2221–A2247. https://doi.org/10.1137/24M1645474 doi: 10.1137/24M1645474
|
| [9] |
X. D. Zhang, L. L. Wei, J. Liu, Application of the LDG method using generalized alternating numerical flux to the fourth-order time-fractional sub-diffusion model, Appl. Math. Lett., 168 (2025), 109580. https://doi.org/10.1016/j.aml.2025.109580 doi: 10.1016/j.aml.2025.109580
|
| [10] |
Y. L. Feng, X. D. Zhang, Y. Chen, L. Wei, A compact finite difference scheme for solving fractional Black-Scholes option pricing model, J. Inequal. Appl., 2025 (2025), 36. https://doi.org/10.1186/s13660-025-03261-2 doi: 10.1186/s13660-025-03261-2
|
| [11] |
S. Y. Zhai, Z. F. Weng, Y. F. Yang, A high order operator splitting method based on spectral deferred correction for the nonlocal viscous Cahn-Hilliard equation, J. Comput. Phys., 446 (2021), 110636. https://doi.org/10.1016/j.jcp.2021.110636 doi: 10.1016/j.jcp.2021.110636
|
| [12] |
X. C. Tian, Q. Du, Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations, SIAM J. Numer. Anal., 51 (2013), 3458–3482. https://doi.org/10.1137/13091631X doi: 10.1137/13091631X
|
| [13] |
D. Mezzanotte, D. Occorsio, E. Venturino, Analysis of a line method for reaction-diffusion models of nonlocal type, Appl. Numer. Math., 203 (2024), 255–268. https://dx.doi.org/10.1016/j.apnum.2024.05.011 doi: 10.1016/j.apnum.2024.05.011
|
| [14] |
L. L. Li, Y. Y. Fu, Unconditional error estimate of linearly-implicit and energy-preserving schemes for nonlocal wave equations, Comput. Math. Appl., 176 (2024), 492–509. https://doi.org/10.1016/j.camwa.2024.11.002 doi: 10.1016/j.camwa.2024.11.002
|
| [15] |
H. Tian, J. K. Lu, L. L. Ju, A novel bond-based nonlocal diffusion model with matrix-valued coefficients in non-divergence form and its collocation discretization, Comput. Math. Appl., 173 (2024), 33–46. https://doi.org/10.1016/j.camwa.2024.08.002 doi: 10.1016/j.camwa.2024.08.002
|
| [16] |
J. S. Lu, L. Zhang, X. C. Guo, Q. Qi, A POD based reduced-order local RBF collocation approach for time-dependent nonlocal diffusion problems, Appl. Math. Lett., 160 (2025), 109328. https://doi.org/10.1016/j.aml.2024.109328 doi: 10.1016/j.aml.2024.109328
|
| [17] |
Z. F. Weng, S. Y. Zhai, W. Z. Dai, Y. Yang, Y. Mo, Stability and error estimates of Strang splitting method for the nonlocal ternary conservative Allen-Cahn model, J. Comput. Appl. Math., 441 (2024), 115668. https://doi.org/10.1016/j.cam.2023.115668 doi: 10.1016/j.cam.2023.115668
|
| [18] |
A. Chen, Q. Du, C. P. Li, Z. Zhou, Asymptotically compatible schemes for space-time nonlocal diffusion equations, Chaos, Solitons Fractals, 102 (2017), 361–371. https://doi.org/10.1016/j.chaos.2017.03.061 doi: 10.1016/j.chaos.2017.03.061
|
| [19] |
J. Kemppainen, R. Zacher, Long-time behavior of non-local in time Fokker–Planck equations via the entropy method, Math. Models Methods Appl. Sci., 29 (2019), 209–235. https://doi.org/10.1142/S0218202519500076 doi: 10.1142/S0218202519500076
|
| [20] |
Q. Du, Z. Zhou, Nonlocal-in-time dynamics and crossover of diffusive regimes, Int. J. Numer. Anal. Model., 20 (2023), 353–370. https://doi.org/10.4208/ijnam2023-1014 doi: 10.4208/ijnam2023-1014
|
| [21] |
V. Sidorov, M. Shitikova, E. Badina, E. Detina, Review of nonlocal-in-time damping models in the dynamics of structures, Axioms, 12 (2023), 676. https://doi.org/10.3390/axioms12070676 doi: 10.3390/axioms12070676
|
| [22] |
L. B. Liu, L. Xu, Y. Zhang, Error analysis of a finite difference scheme on a modified graded mesh for a time-fractional diffusion equation, Math. Comput. Simul., 209 (2023), 87–101. https://doi.org/10.1016/j.matcom.2023.02.007 doi: 10.1016/j.matcom.2023.02.007
|
| [23] |
C. P. Li, Q. Yi, A. Chen, Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys., 316 (2016), 614–631. https://doi.org/10.1016/j.jcp.2016.04.039 doi: 10.1016/j.jcp.2016.04.039
|