This paper focuses on the new (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa (DJKM) equation with some variable coefficients and derives its new analytical solutions. Based on the (2+1)-dimensional DJKM equation, this equation adds an additional spatial dimension (z) and introduces time-dependent coefficients. Therefore, it is more suitable for describing dynamic wave behaviors in inhomogeneous media. Firstly, by virtue of the Hirota method, we derive the Hirota bilinear form of the equation. Secondly, based on the bilinear form, we present three types of solutions, including the three wave solution and lump-type solution. Finally, by choosing appropriate parameters, we plot some graphs to intuitively display the physical characteristics of these solutions.
Citation: Wenjing Yang, Kaili Liu, Bo Tang, Shijie Deng, Fengyun Lv. Three wave solution and lump-type solution to a (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation with some variable coefficients in inhomogeneous media[J]. Networks and Heterogeneous Media, 2025, 20(3): 955-969. doi: 10.3934/nhm.2025041
This paper focuses on the new (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa (DJKM) equation with some variable coefficients and derives its new analytical solutions. Based on the (2+1)-dimensional DJKM equation, this equation adds an additional spatial dimension (z) and introduces time-dependent coefficients. Therefore, it is more suitable for describing dynamic wave behaviors in inhomogeneous media. Firstly, by virtue of the Hirota method, we derive the Hirota bilinear form of the equation. Secondly, based on the bilinear form, we present three types of solutions, including the three wave solution and lump-type solution. Finally, by choosing appropriate parameters, we plot some graphs to intuitively display the physical characteristics of these solutions.
| [1] |
T. Liu, H. Zhang, S. Wang, A new high-order compact CN-ADI scheme on graded meshes for three-dimensional nonlinear PIDEs with multiple weakly singular kernels, Appl. Math. Lett., 171 (2025), 109697. https://doi.org/10.1016/j.aml.2025.109697 doi: 10.1016/j.aml.2025.109697
|
| [2] |
J. Zhang, X. Yang, S. Wang, The ADI difference and extrapolation scheme for high-dimensional variable coefficient evolution equations, Electron. Res. Arch., 33 (2025), 3305–3327. https://doi.org/10.3934/era.2025146 doi: 10.3934/era.2025146
|
| [3] |
Y. Shi, X. Yang, The pointwise error estimate of a new energy-preserving nonlinear difference method for supergeneralized viscous Burgers' equation, Comput. Appl. Math., 44 (2025), 1–20. https://doi.org/10.1007/s40314-025-03222-x doi: 10.1007/s40314-025-03222-x
|
| [4] |
R. Conte, A. P. Fordy, A. Pickering, A perturbative Painlevé approach to nonlinear differential equations, Phys. D, 69 (1993), 33–58. https://doi.org/10.1016/0167-2789(93)90179-5 doi: 10.1016/0167-2789(93)90179-5
|
| [5] |
N. A. Kudryashov, The Painlevé approach for finding solitary wave solutions of nonlinear nonintegrable differential equations, Optik, 183 (2019), 642–649. https://doi.org/10.1016/j.ijleo.2019.02.087 doi: 10.1016/j.ijleo.2019.02.087
|
| [6] |
B. Grammaticos, A. J. Ramani, Hietarinta, A search for integrable bilinear equations: The Painlevé approach, J. Math. Phys., 31 (1990), 2572–2578. https://doi.org/10.1063/1.529005 doi: 10.1063/1.529005
|
| [7] |
W. X. Ma, N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation, Math. Comput. Simul., 190 (2021), 270–279. https://doi.org/10.1016/j.matcom.2021.05.020 doi: 10.1016/j.matcom.2021.05.020
|
| [8] |
L. Li, C. Duan, F. J. Yu, An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg-de Vries (MKdV) equation, Phys. Lett. A, 383 (2019), 1578–1582. https://doi.org/10.1016/j.physleta.2019.02.031 doi: 10.1016/j.physleta.2019.02.031
|
| [9] |
S. Ahmad, S. Saifullah, A. Khan, M. Inc, New local and nonlocal soliton solutions of a nonlocal reverse space-time mKdV equation using improved Hirota bilinear method, Phys. Lett. A, 450 (2022), 128393. https://doi.org/10.1016/j.physleta.2022.128393 doi: 10.1016/j.physleta.2022.128393
|
| [10] |
X. H. Wu, Y. T. Gao, X. Yu, C. C. Ding, L. Q. Li, Modified generalized Darboux transformation and solitons for a Lakshmanan-Porsezian-Daniel equation, Chaos, Solitons Fractals, 162 (2022), 112399. https://doi.org/10.1016/j.chaos.2022.112399 doi: 10.1016/j.chaos.2022.112399
|
| [11] |
D. Qiu, J. He, Y. Zhang, K. Porsezian, The Darboux transformation of the Kundu-Eckhaus equation, Proc. R. Soc. A, 471 (2015), 20150236. https://doi.org/10.1098/rspa.2015.0236 doi: 10.1098/rspa.2015.0236
|
| [12] |
J. J. Su, Y. T. Gao, C. C. Ding, Darboux transformations and rogue wave solutions of a generalized AB system for the geophysical flows, Appl. Math. Lett., 88 (2019), 201–208. https://doi.org/10.1016/j.aml.2018.08.022 doi: 10.1016/j.aml.2018.08.022
|
| [13] |
X. Y. Gao, Hetero-Bäcklund transformation, bilinear forms and multi-solitons for a (2+1)-dimensional generalized modified dispersive water-wave system for the shallow water, Chin. J. Phys., 92 (2024), 1233–1239. https://doi.org/10.1016/j.cjph.2024.10.004 doi: 10.1016/j.cjph.2024.10.004
|
| [14] |
H. F. Ismael, H. Bulut, M. S. Osman, The N-soliton, fusion, rational and breather solutions of two extensions of the (2+1)-dimensional Bogoyavlenskii-Schieff equation, Nonlinear Dyn., 107 (2022), 3791–3803. https://doi.org/10.1007/s11071-021-07154-z doi: 10.1007/s11071-021-07154-z
|
| [15] |
C. D. Cheng, B. Tian, C. R. Zhang, X. Zhao, Bilinear form, soliton, breather, hybrid and periodic-wave solutions for a (3+1)-dimensional Korteweg-de Vries equation in a fluid, Nonlinear Dyn., 105 (2021), 2525–2538. https://doi.org/10.21203/rs.3.rs-210173/v1 doi: 10.21203/rs.3.rs-210173/v1
|
| [16] |
X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. https://doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7
|
| [17] |
X. Yang, Z. Zhang, Superconvergence analysis of a robust orthogonal Gauss collocation method for 2D fourth-order subdiffusion equations, J. Sci. Comput., 100 (2024), 62. https://doi.org/10.1007/s10915-024-02616-z doi: 10.1007/s10915-024-02616-z
|
| [18] |
X. Y. Gao, J. G. Liu, G. W. Wang, Inhomogeneity, magnetic auto-Bäcklund transformations and magnetic solitons for a generalized variable-coefficient Kraenkel-Manna-Merle system in a deformed ferrite, Appl. Math. Lett., 171 (2025), 109615. https://doi.org/10.1016/j.aml.2025.109615 doi: 10.1016/j.aml.2025.109615
|
| [19] |
X. Y. Gao, Open-ocean shallow-water dynamics via a (2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system: Oceanic auto-Bäcklund transformation and oceanic solitons, China Ocean Eng., 39 (2025), 541–547. https://doi.org/10.1007/s13344-025-0057-y doi: 10.1007/s13344-025-0057-y
|
| [20] |
X. Y. Gao, In an ocean or a river: Bilinear auto-Bäcklund transformations and similarity reductions on an extended time-dependent (3+1)-dimensional shallow water wave equation, China Ocean Eng., 39 (2025), 160–165. https://doi.org/10.1007/s13344-025-0012-y doi: 10.1007/s13344-025-0012-y
|
| [21] |
E. Date, M. Jimbo, M. Kashiwara, T. Miwa, A new hierarchy of soliton equations of KP-type, Phys. D, 4 (1982), 343–365. https://doi.org/10.1016/0167-2789(82)90041-0 doi: 10.1016/0167-2789(82)90041-0
|
| [22] |
A. M. Wazwaz, A (2+1)-dimensional time-dependent Date-Jimbo-Kashiwara-Miwa equation: Painlevé integrability and multiple soliton solutions, Comput. Math. Appl., 79 (2020), 1145–1149. https://doi.org/10.1016/j.camwa.2019.08.025 doi: 10.1016/j.camwa.2019.08.025
|
| [23] |
A. M. Wazwaz, New (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equations with constant and time-dependent coefficients: Painlevé integrability, Phys. Lett. A, 384 (2020), 126787. https://doi.org/10.1016/j.physleta.2020.126787 doi: 10.1016/j.physleta.2020.126787
|
| [24] |
D. Wang, Y. T. Gao, X. Yu, L. Q. Li, T. T. Jia, Bilinear form, solitons, breathers, lumps and hybrid solutions for a (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation, Nonlinear Dyn., 104 (2021), 1519–1531. https://doi.org/10.1007/s11071-021-06329-y doi: 10.1007/s11071-021-06329-y
|
| [25] |
H. Hu, R. Sun, Lie symmetry analysis and invariant solutions of (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation, Mod. Phys. Lett. B, 36 (2022), 2150587. https://doi.org/10.1142/S0217984921505874 doi: 10.1142/S0217984921505874
|
| [26] | R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, 2004. |