Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Error estimate of BDF2 scheme on a Bakhvalov-type mesh for a singularly perturbed Volterra integro-differential equation

  • A singularly perturbed Volterra integro-differential problem is considered. The variable two-step backward differentiation formula is used to approximate the first-order derivative term and the trapezoidal formula is used to discretize the integral term. Then, the stability and convergence analysis of the proposed numerical method are proved. It is shown that the proposed scheme is second-order uniformly convergent with respect to perturbation parameter ε in the discrete maximum norm. Finally, a numerical experiment verifies the theoretical results.

    Citation: Li-Bin Liu, Yige Liao, Guangqing Long. Error estimate of BDF2 scheme on a Bakhvalov-type mesh for a singularly perturbed Volterra integro-differential equation[J]. Networks and Heterogeneous Media, 2023, 18(2): 547-561. doi: 10.3934/nhm.2023023

    Related Papers:

    [1] Zhi Mao, Dan Luo . A robust adaptive grid method for first-order nonlinear singularly perturbed Fredholm integro-differential equations. Networks and Heterogeneous Media, 2023, 18(3): 1006-1023. doi: 10.3934/nhm.2023044
    [2] Li-Bin Liu, Limin Ye, Xiaobing Bao, Yong Zhang . A second order numerical method for a Volterra integro-differential equation with a weakly singular kernel. Networks and Heterogeneous Media, 2024, 19(2): 740-752. doi: 10.3934/nhm.2024033
    [3] Xiongfa Mai, Ciwen Zhu, Libin Liu . An adaptive grid method for a singularly perturbed convection-diffusion equation with a discontinuous convection coefficient. Networks and Heterogeneous Media, 2023, 18(4): 1528-1538. doi: 10.3934/nhm.2023067
    [4] Chaoqun Huang, Nung Kwan Yip . Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks and Heterogeneous Media, 2015, 10(4): 897-948. doi: 10.3934/nhm.2015.10.897
    [5] Yves Achdou, Victor Perez . Iterative strategies for solving linearized discrete mean field games systems. Networks and Heterogeneous Media, 2012, 7(2): 197-217. doi: 10.3934/nhm.2012.7.197
    [6] Nurehemaiti Yiming . Asymptotic behavior of the solution of a stochastic clearing queueing system. Networks and Heterogeneous Media, 2025, 20(2): 590-624. doi: 10.3934/nhm.2025026
    [7] Cécile Appert-Rolland, Pierre Degond, Sébastien Motsch . Two-way multi-lane traffic model for pedestrians in corridors. Networks and Heterogeneous Media, 2011, 6(3): 351-381. doi: 10.3934/nhm.2011.6.351
    [8] Chaoqun Huang, Nung Kwan Yip . Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8(4): 1009-1034. doi: 10.3934/nhm.2013.8.1009
    [9] Kexin Li, Hu Chen, Shusen Xie . Error estimate of L1-ADI scheme for two-dimensional multi-term time fractional diffusion equation. Networks and Heterogeneous Media, 2023, 18(4): 1454-1470. doi: 10.3934/nhm.2023064
    [10] Jie Gu, Lijuan Nong, Qian Yi, An Chen . Two high-order compact difference schemes with temporal graded meshes for time-fractional Black-Scholes equation. Networks and Heterogeneous Media, 2023, 18(4): 1692-1712. doi: 10.3934/nhm.2023074
  • A singularly perturbed Volterra integro-differential problem is considered. The variable two-step backward differentiation formula is used to approximate the first-order derivative term and the trapezoidal formula is used to discretize the integral term. Then, the stability and convergence analysis of the proposed numerical method are proved. It is shown that the proposed scheme is second-order uniformly convergent with respect to perturbation parameter ε in the discrete maximum norm. Finally, a numerical experiment verifies the theoretical results.



    Volterra integro-differential equations (VIDEs) with a first-order derivative term arise from population growth models, biology, medicine, physics, and so on [1,2,3]. When the first-order derivative of such problems is multiplied by a perturbation parameter ε, these problems are called singularly perturbed Volterra integro-differential equations (SPVIDEs), which are given by

    {Lu:=εu(x)+a(x)u(x)+x0K(x,t)u(t)dt=f(x), xΩ:=(0,1],u(0)=w, (1.1)

    where 0<ε1 is a perturbation parameter and functions a(x), f(x), K(x,t) are sufficiently smooth. In additional, we assume that there exists a positive constant β such that a(x)β>0. Under these conditions, Eq (1.1) has a unique solution [4]. Furthermore, the derivatives of u(x) have following bounds (see [4, Lemma 1.1])

    |u(k)(x)|C(1+εkeβx/ε),xΩ,k=0,1,2,3, (1.2)

    where C is a positive constant, which is independent of ε. Obviously, it can be seen from Eq (1.2) that the exact solution u(x) of Eq (1.1) exists a exponential boundary layer at x=0 as ε0. It is well known that SPVIDEs are widely used to describe a nonlocal reaction-diffusion model in spatially inhomogeneous media that takes into account feedback and nonlocal interactions [5].

    Due to the presence of perturbation parameter ε, some traditional finite difference and finite element methods on a uniform mesh could not obtain reliable numerical results. Therefore, the layer-adaptive grid (Bakhvalov and Shishkin meshes) and adaptive grid methods are widely used to construct some parameter-uniform numerical methods for solving SPVIDEs, see [6,7,8,9,10,11,12] and references therein. Among these existing methods, the accuracy of most of these methods is only first-order. For this reason, many researchers studied some second-order accurate numerical methods for Eq (1.1). For example, the authors in [13] used the Richardson extrapolation technique to improve the ε-uniform convergence of the adaptive grid method from first-order to second-order. Yapman [14] designed a homogeneous (nonhybrid) type difference scheme on Shishkin-type mesh for Eq (1.1), and confirmed that the numerical method was almost second-order convergent.

    It is well known that the variable two-step backward differential formula (BDF2) technique has widely used to approximate the time derivative with second-order accurate for linear parabolic equations and differential-algebraic problems [15,16,17]. In particular, in [17], the authors introduced discrete orthogonal convolution kernels for the first time and utilized them to prove the stability and convergent of the adaptive BDF2 time-stepping scheme in L2 norm. Recently, the authors [18] applied the BDF2 technique on a Shishkin mesh to solve the problem in Eq (1.1) and proved that the proposed method was almost second-order uniformly convergent. In addition, the result in [19] suggests that the BDF2 all-at-once system utilizing the preconditioned Krylov subspace solvers can be a competitive solution method for Riesz fractional diffusion equations.

    Inspired by the BDF2 that we recently used in [18], where we designed a novel finite difference scheme to prove ε-uniform convergence for a Shishkin mesh. In this paper, we prove ε-uniform convergence of this finite difference scheme on a Bakhvalov-type (B-type) mesh. The advantage of this paper is that the convergence rate of our numerical method do not contain lnN-factors, where N is the number of mesh steps.

    The paper is organized as follows: The construction and characteristics of Bakhvalov-type mesh is introduced in Section 2. This is followed by the stability analysis of the discretization scheme in Section 3. Then the bound of truncation error and the parameter-uniform convergence of the numerical method are proved in Section 4. In Section 5, the statement of the numerical experiment illustrates that our theoretical findings are effective. Finally, some concluding discussions are presented in Section 6.

    To simplify the notation we set gi=g(xi) for any function g and set Ki,k=K(xi,xk). The maximum norm denoted by K:=max(x,t)Ω2|K(x,t)| and g:=maxxΩ|g(x)|. In addition, for any sequences {γk} if the index j>i, we assume the summation ik=jγk=0 and ik=jγk=1.

    Let ˉΩN:={0=x0<x1<<xN=1} be a B-type mesh with the local mesh step size hi=xixi1, i=1,2,,N. Then, for ti=i/N, the B-type mesh points xi can be obtained by the following generating function [20,21]

    xi={μεφ(ti),fori=0,1,,J,12(1xJ)(1i/N)fori=J+1,,N, (2.1)

    where φ(t)=ln[12(1ε)t], J=N/2 and μ is a positive mesh-parameter that satisfy μβ2. For the sake of simplicity, ri=hi/hi1(i=2,,N) represents the i-th step-size ratios.

    Next, the next two lemmas list some characteristics of the above B-type mesh.

    Lemma 2.1. The step sizes of the B-type mesh defined by Eq (2.1) satisfy

    hihi+1CN1,i=1,,N1, (2.2)
    h1CεN1. (2.3)
    hiμε,i=1,,J1, (2.4)
    1ri3,i=2,,J1, (2.5)

    Proof. The proof of Eqs (2.2)–(2.4) can be found in [22, Lemma 1]. Here, we just need to prove Eq (2.5). In fact, by using Eqs (2.1) and (2.2), one has

    1ri=φ(ti)φ(ti1)φ(ti1)φ(ti2)=φ(ξi)φ(ξi1)φ(ti)φ(ti2)=12(1ε)(i2)/N12(1ε)i/N=1+4(1ε)/N12(1ε)i/N1+4(1ε)/N12(1ε)(J1)/N=1+4(1ε)/Nε+2(1ε)/N3,

    where ξi[ti1,ti], i=2,,J1, which completes the proof.

    Lemma 2.2. Let {xi}Ni=0 be the B-type mesh generated by Eq (2.1). Then we have

    xixi1(1+ε1eβx2ε)dxCN1,i=1,,N.

    Proof. The proof can be found in [23,24].

    Before constructing a second-order discretization scheme for Eq (1.1), we first give the definition of two-step backward differential formula as follows: For a given function g, let Pi,kg be the corresponding Lagrange interpolating polynomial over points xi,xi1,,xik. Then the first-order derivative of this polynomial at point x=xi can be obtained by

    D2gi:=(Pi,2g)(xi)=ik=1biik(gkgk1)fori1, (3.1)

    where b10:=1/h1, bi0:=1+2rihi(1+ri),bi1:=r2ihi(1+ri) and bij:=0 for 2ji1,i2. Therefore, by using Eq (3.1) and the trapezoidal formula to approximate the first-order derivative and the integral term, respectively, we obtain the following discretization scheme

    {LNuNi:=εD2uNi+aiuNi+ik=1hk2[Ki,k1uNk1+Ki,kuNk]=fi,uN0=μ, (3.2)

    where uNi is the approximation solution of u(x) at point x=xi.

    To facilitate the analysis of the stability and convergence of the discretization scheme in Eq (3.2), we first define a discrete orthogonal convolution (DOC) kernels {θiij}ij=1, which is given by (see [17, Lemma 2.3])

    θiij=hibj0hjik=j+1rk1+2rk. (3.3)

    Then by using the following discrete orthogonal identity

    ij=kθiijbjjk=δikfor1ki, (3.4)

    where δik is the Kronecker delta symbol, we obtain

    ij=1θiijD2uj=ik=1(ukuk1)ij=kθiijbjjk=uiui1,1iN. (3.5)

    Furthermore, the next lemma list a characteristics of DOC kernels:

    Lemma 3.1. [17, Corollary 2.1] The DOC kernels θiij has following property

    θiij>0,1jiandij=1θiij=hi,i1. (3.6)

    Now, based on the above definition of DOC kernels in Eq (3.3) and the proof of Lemma 2 in [18], we list the stability of the above discretization scheme in Eq (3.2).

    Lemma 3.2. Under the condition that there exists a constant α such that

    β+hiKi,i2α>0, (3.7)

    the solution uNi of Eq (3.2) satisfies

    max0iN|uNi|C(max0iN|fi|+|uN0|).

    Proof. For i=1,,N, multiplying both sides of Eq (3.2) by the DOC kernels θiij, and summing j from 1 to i, we get

    εij=1θiijD2uNj+ij=1θiijajuNj+ij=1θiijjk=1hk2[Ki,k1uNk1+Ki,kuNk]=ij=1θiijfj.

    Then, combining with Eq (3.5), yields,

    |(ε+θi0ai+θi0Ki,ihi2)uNi|=|ij=1θiijfj+εuNi1i1j=1θiijajuNjθi0i1k=1hk2Ki,kuNkij=1θiijjk=1hk2Ki,k1uNk1i1j=1θiijjk=1hk2Kj,kuNk|. (3.8)

    Based on Eq (3.7), we have

    C|(ε+hi)uNi||(ε+θi0α)uNi||(ε+θi0ai+θi0Ki,ihi2)uNi|. (3.9)

    where we have applied the fact that

    ε+θi0α=ε+hi(1+ri)1+2riαε+hiα/2min{1,α/2}(ε+hi)=C(ε+hi).

    Then, from Eqs (3.8), (3.9), it is easy to obtain

    |(ε+hi)uNi|C(ij=1θiij|fj|+ε|uNi1|+ai1j=1θiij|uNj|+Kθi0i1k=1hk|uNk|+Kij=1θiijjk=1hk|uNk1|+Ki1j=1θiijjk=1hk|uNk|). (3.10)

    Furthermore, we have

    |uNi|C(1ε+hiij=1θiij|fj|+|uNi1|+1ε+hii1j=1θiij|uNj|+3j=1Ij), (3.11)

    where

    I1=1(ε+hi)ij=1θiijjk=1hk|uNk1|,I2=1(ε+hi)i1j=1θiijjk=1hk|uNk|,I3=1(ε+hi)θi0i1k=1hk|uNk|.

    Obviously, to derive the bound for |uNi|, we only need to estimate the bounds of Ij, j=1,2,3, respectively. For I1, it follows from Lemma 3.1 that

    I11ε+hiik=1hk|uNk1|ij=kθiijhiε+hiik=1hk|uNk1|ik=1hk|uNk1|, (3.12)

    where we have interchanged the order of summation. Similar to Eq (3.12), we get

    I2i1k=1hk|uNk|andI3i1k=1hk|uNk|. (3.13)

    From Eqs (3.11)–(3.13), we obtain

    |uNi|C(1ε+hiij=1θiij|fj|+i1k=0λk|uNk|), (3.14)

    where the sequences {λk} are defined by

    λk={h1,k=0,hk+hk+1+θiikε+hi,1ki2,1+hk+hk+1+θiikε+hi,k=i1.

    Finally, by using the Grönwall inequality, see [25, Lemma 3.2], one has

    |uNi|Cε+hiij=1θiij|fj|exp(i1k=0λk)Cmax1ji|fj|ε+hiij=1θiijexp(i1k=0hk+1+i1k=1hk+1+i1j=1θiijε+hi)Cmax1ji|fj|hiε+hiexp(xi+xi1+1+hiε+hi)Cmax1ji|fj|,i1, (3.15)

    which completes the proof.

    In order to derive convergence analysis below, we also give the bound of |uNi| for i=1,,J1 as follows:

    Lemma 3.3. For i=1,,J1, we have

    |uNi|C(|uN0|+|fi|).

    Proof. Firstly, for i=1, it follows from Eq (3.2) that

    |(εh1+a1+h1K1,12)uN1|=|f1+εh1uN0h1K1,02uN0|.

    Then, by using Eq (2.3), yields,

    |uN1|(|f1|+|εh1||uN0|+|h1K1,02||uN0|)/|εh1+a1+h1K1,12|C[|f1|+N|uN0|]/|CN+α|C(|f1|N1+|uN0|). (3.16)

    In addition, set ηi=εhi1+2ri1+ri+ai+hiKi,i2, by using the Eq (2.5), we have ηiC(ε/hi+α). Furthermore, similarly to Eq (3.11), one has

    |uNi|=|fi+εhi(1+ri)uNi1εhir2i1+riuNi2ik=1hkKi,k12uNk1i1k=1hkKi,k2uNk|/|ηi|C(|fi|+εhi|uNi1|+εhi|uNi2|+ik=1hk|uNk1|+i1k=1hk|uNk|)/|ηi|,C(|fi|+|uNi1|+|uNi2|+ik=1hk|uNk1|+i1k=1hk|uNk|)=C(|fi|+i1k=0λk|uNk|),

    where the sequences {λk} are defined by

    λk={hk+1,k=0,hk+hk+1,1ki3,1+hk+hk+1,k=i2,i1.

    Using the Grönwall inequality, we get

    |uNi|C|fi|exp(i1k=0λk)C|fi|,i2. (3.17)

    The result of this lemma can be implied by Eqs (3.16), (3.17).

    Let eNi:=uiuNi, i=1,2,3,,N, denote the error at point x=xi in the numerical solution. Then we have

    LNeNi=R1,i+R2,i, (4.1)

    where

    R1,i=εD2uiεui, (4.2)
    R2,i=ik=1hk2[Ki,k1uNk1+Ki,kuNk]ik=1xkxk1K(xi,t)u(s)ds. (4.3)

    Lemma 4.1. Under the B-type mesh defined in Eq (2.1), we obtain the following estimations

    |R1,i|CN1,i=1, (4.4)
    |R1,i|CN2,i2, (4.5)

    and

    |R2,i|CN2,i1. (4.6)

    Proof. We first consider the truncation error |R1,i| when i=1, by using Taylor's expansion formula, Eq (1.2), Lemma 2.1 and Lemma 2.2, we have

    |R1,1|εh1x10t|u(t)|dtCx10(1+ε1eβt/(2ε))dtCN1. (4.7)

    For 2iJ1 and iJ+2, the step-size ratios 1ri3, then for the reason of Eq (4.7), we can obtain

    |R1,i|=ε|1+ri2hixixi1(txi1)2u(t)dtr2i2hi(1+ri)xixi2(txi2)2u(t)dt|C[xixi1(txi1)ε|u(t)|dt+xixi2(txi2)ε|u(t)|dt]C[xixi1(txi1)(1+ε2eβt/ε)dt+xixi2(txi2)(1+ε2eβt/ε)dt]C[(xixi1(1+ε1eβt/(2ε))dt)2+(xixi2(1+ε1eβt/(2ε))dt)2]CN2, (4.8)

    where we have used fact that

    dcϕ(s)(sc)ds12[dcϕ(s)ds]2

    for any positive monotonically decreasing function ϕ on [c,d], see [26].

    Furthermore, for i=J,J+1, the truncation error R1,i can also be estimated in the following form:

    |R1,i|=ε|1+2ri2(1+ri)hixixi1(txi1)2u(t)dtr2i2hi(1+ri)xi1xi2(txi2)2u(t)dtri2(1+ri)xixi1(2(txi1)+hi1)u(t)dt|C[xixi1(txi1)(1+ε2eβt/ε)dt+xi1xi2(txi2)(1+ε2eβt/ε)dt+xixi1hi1(1+ε2eβt/ε)dt]CN2+Chi1xixi1ε2eβt/εdt. (4.9)

    Now, we need to estimate the second term on the right-hand side of Eq (4.9) to obtain a estimate of |R1,i|fori=J,J+1. Firstly, for i=J+1, one has

    hJxJ+1xJε2eβt/εdthJhJ+1ε2eβxJ/ε=CN2εμβ2CN2. (4.10)

    Secondly, for i=J, if εN1, by using Eq (2.4) it is easy to get that

    hJ1xJxJ1ε2eβt/εdtμβeβxJ1/ε=μβ(ε+2(1ε)N1)μβCN2. (4.11)

    On the other hand, if ε>N1, we can get that

    hJ1xJxJ1ε2eβt/εdthJ1hJε2eβxJ1/εCN2ε2(ε+2(1ε)N1)μβCN2ε2εμβCN2. (4.12)

    From Eqs (4.8)–(4.12), we get |R1,i|CN2 for 2iN.

    Different from BDF2, the discretization of the integral part in Eq (3.2) does not require two starting points, we can estimate R2,i for 1iN.

    |R2,i|=|ik=1xkxk1[xkshkxkxk1(txk1)[K(xi,t)u(t)]dt+xks(ts)[K(xi,t)u(t)]dt]ds|Cik=1xkxk1[xkxk1(txk1)(1+|u(t)|+|u(t)|+|u(t)|)dt+xks(ts)(1+|u(t)|+|u(t)|+|u(t)|)dt]dsCik=1xkxk1xkxk1(txk1)(1+ε1eβt/ε+ε2eβt/ε)dtdsCmax1kixkxk1(txk1)(1+ε2eβt/ε)dtik=1xkxk1dsCN2, (4.13)

    which completes the proof.

    Finally, we can get the main result of this paper as follows:

    Theorem 4.1. Let u(x) be the solution of Eq (1.1) and uNi be the solution of Eq (3.2) on the mesh ˉΩN. Then, under the condition β+hiKi,i2α>0, the error satisfy

    |eNi|CN2,i1. (4.14)

    Proof. From Eq (3.16), we have |eN1|CN1|R1,1+R2,1|CN2. In particular, Lemma 3.3 imply that

    |eNi|C|R1,i+R2,i|C|R1,i|+C|R2,i|CN2for2iJ1. (4.15)

    Next, for iJ, it follows from Eq (3.3) and Eq (3.15) that

    |eNi|Cε+hiij=1θiij|R1,j+R2,j|Cε+hi(max1ji|R2,j|ij=1θiij+max2ji|R1,j|ij=2θiij+θii1|R1,1|)CN2+CN1ε+hihib10h1ik=2rk1+2rkCN2+CN1ik=2rk2rkCN2+CN1(12)J1CN2+CN1(2)NCN2, (4.16)

    where Lemma 3.1 are used. This completes the proof.

    In this section, to confirm our theoretical results, we present numerical results for two test examples. As the exact solution of this test problem is available, the computed errors and rates of convergence are defined by

    EN:=max0iN|uNiu(xi)|,ρ=log2(ENE2N), (5.1)

    respectively, where uNi is the solution of the discretization scheme in Eq (3.2). Here, in all numerical experiments below, we choose ε=10k,k=1,,7 and N=2m,m=5,,9. Meanwhile, to obtain the Bakhvalov mesh ˉΩN, we choose μ=2 for Example 1 and μ=23 for Example 2. All experiments were performed on a Windows 10(64 bit)PC-Intel(R) Core(TM) i7-7500U CPU 2.70GHz 8 GB of RAM using MATLAB R2017a.

    Example 1. The first example is taken from [14]:

    {εu(x)+u(x)+x0xu(t)dt=f(x),0<x<1,u(0)=2,

    where

    f(x)=ε(1+x)2+11+x+xε(1ex/ε)+xln(1+x).

    The exact solution is u(x)=1/(1+x)+ex/ε. The numerical results of Example 1 are listed in Table 1.

    Table 1.  The maximum errors and convergence orders for Example 1.
    ε Number of mesh-intervals, N
    25 26 27 28 29
    101 EN 6.8315e-03 1.9417e-03 5.3305e-04 1.4033e-04 3.6211e-05
    ρ 1.8148 1.8650 1.9254 1.9543
    102 EN 7.8978e-03 2.2569e-03 6.2633e-04 1.6537e-04 4.2822e-05
    ρ 1.8071 1.8494 1.9212 1.9493
    103 EN 8.0206e-03 2.2931e-03 6.3704e-04 1.6825e-04 4.3582e-05
    ρ 1.8064 1.8479 1.9208 1.9488
    104 EN 8.0331e-03 2.2968e-03 6.3813e-04 1.6854e-04 4.3659e-05
    ρ 1.8063 1.8477 1.9207 1.9488
    105 EN 8.0343e-03 2.2972e-03 6.3824e-04 1.6857e-04 4.3667e-05
    ρ 1.8063 1.8477 1.9207 1.9488
    106 EN 8.0345e-03 2.2972e-03 6.3825e-04 1.6858e-04 4.3667e-05
    ρ 1.8063 1.8477 1.9207 1.9488
    107 EN 8.0345e-03 2.2972e-03 6.3825e-04 1.6858e-04 4.3667e-05
    ρ 1.8063 1.8477 1.9207 1.9488

     | Show Table
    DownLoad: CSV

    Example 2. We consider the following singularly perturbed Volterra integro-differential equation:

    {εu(x)+(3+ex)u(x)+x0sin(t+x)u(t)dt=10(εx+ε2)ex/ε+5x2,0<x<1,u(0)=1.

    Since the exact solution of this test problem is not available, we use the double-mesh principle [14] to calculate the maximum point-wise errors as follows:

    EN:=max0iN|uNiu2Ni|,

    where u2Ni is the solution of the Eq (3.2) on the following mesh:

    ˜ΩN:=ˉΩN{xi1/2=xi+xi12}Ni=1.

    For different values of ε and N, the numerical results of Example 2 are displayed in Table 2.

    Table 2.  The maximum errors and convergence orders for Example 2.
    ε Number of mesh-intervals, N
    25 26 27 28 29
    101 EN 8.0584e-03 2.4171e-03 6.8617e-04 1.8417e-04 4.8068e-05
    ρ 1.7372 1.8167 1.8975 1.9379
    102 EN 9.1666e-03 2.7679e-03 7.9616e-04 2.1448e-04 5.6218e-05
    ρ 1.7276 1.7977 1.8922 1.9317
    103 EN 9.2972e-03 2.8091e-0 8.0908e-04 2.1804e-04 5.7175e-05
    ρ 1.7267 1.7958 1.8917 1.9311
    104 EN 9.3105e-03 2.8133e-03 8.1040e-04 2.1840e-04 5.7272e-05
    ρ 1.7266 1.7956 1.8916 1.9311
    105 EN 9.3118e-03 2.8138e-03 8.1053e-04 2.1844e-04 5.7282e-05
    ρ 1.7266 1.7956 1.8916 1.9311
    106 EN 9.3119e-03 2.8138e-03 8.1054e-04 2.1844e-04 5.7283e-05
    ρ 1.7266 1.7956 1.8916 1.9311
    107 EN 9.3120e-03 2.8138e-03 8.1054e-04 2.1844e-04 5.7283e-05
    ρ 1.7266 1.7956 1.8916 1.9311

     | Show Table
    DownLoad: CSV

    Tables 12 illustrate that the errors are robust with respect to ε, and the convergence order is close to 2. Meanwhile, Figures 12 display the log-log plot of these errors computed by our presented numerical method. In summary, our numerical results confirm our theoretical results.

    Figure 1.  Loglog plot for order of convergence for Example 1.
    Figure 2.  Loglog plot for order of convergence for Example 2.

    We have discussed the ε-uniform convergence of the variable two-step backward differentiation formula of a reduced linear singularly perturbed Volterra integro-differential equation on a Bakhvalov-type mesh. We first proved the stability of our discretization scheme. Then, the proof of ε-uniform convergence can be given by the stability of the numerical method.

    This work is supported by the key project of the Natural Science Foundation of Guangxi Province (AD20238065), the Natural Science Foundation of Guangxi Province (2020GXNSFAA159010), and the National Science Foundation of China (12261062).

    The authors declare there is no conflict of interest.



    [1] G. A. Bocharov, F. A. Rihan, Numerical modelling in biosciences using delay differential equations, J. Comput. Appl. Math., 125 (2000), 183–199. https://doi.org/10.1016/s0377-0427(00)00468-4 doi: 10.1016/s0377-0427(00)00468-4
    [2] A. De Gaetano, O. Arino, Mathematical modelling of the intravenous glucose tolerance test, J. Math. Biol., 40 (2000), 136–168. https://doi.org/10.1007/s002850050007 doi: 10.1007/s002850050007
    [3] S. Marino, E. Beretta, D. E. Kirschner, The role of delays in innate and adaptive immunity to intracellular bacterial infection, Math. Biosci. Eng., 4 (2007), 261–286. https://doi.org/10.3934/mbe.2007.4.261 doi: 10.3934/mbe.2007.4.261
    [4] B. C. Iragi, J. B. Munyakazi, A uniformly convergent numerical method for a singularly perturbed Volterra integro-differential equation, Int. J. Comput. Math., 97 (2020), 759–771. https://doi.org/10.1080/00207160.2019.1585828 doi: 10.1080/00207160.2019.1585828
    [5] N. N. Nefedov, A. G. Nikitin, T. A. Urazgil'dina, The Cauchy problem for a singularly perturbed Volterra integro-differential equation, Comput. Math. and Math. Phys., 46 (2006), 768–775. https://doi.org/10.1134/s0965542506050046 doi: 10.1134/s0965542506050046
    [6] A. A. Salama, S. A. Bakr, Difference schemes of exponential type for singularly perturbed Volterra integro-differential problems, Appl. Math. Model., 31 (2007), 866–879. https://doi.org/10.1016/j.apm.2006.02.007 doi: 10.1016/j.apm.2006.02.007
    [7] J. I. Ramos, Exponential techniques and implicit Runge-Kutta method for singularly-perturbed Volterra integro-differential equations, Neural Parallel Sci. Comput., 16 (2008), 387–404.
    [8] S. Şevgin, Numerical solution of a singularly perturbed Volterra integro-differential equation, Adv. Differ. Equ., 2014 (2014), 171. https://doi.org/10.1186/1687-1847-2014-171 doi: 10.1186/1687-1847-2014-171
    [9] J. Huang, Z. Cen, A. Xu, L. B. Liu, A posteriori error estimation for a singularly perturbed Volterra integro-differential equation, Numer. Algor., 83 (2020), 549–563. https://doi.org/10.1007/s11075-019-00693-y doi: 10.1007/s11075-019-00693-y
    [10] Sumit, S. Kumar, J. Vigo-Aguiar, Analysis of a nonlinear singularly perturbed Volterra integro-differential equation, J. Comput. Appl. Math., 404 (2021), 113410. https://doi.org/10.1016/j.cam.2021.113410 doi: 10.1016/j.cam.2021.113410
    [11] X. M. Gu, S. L. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576. https://doi.org/10.1016/j.jcp.2020.109576 doi: 10.1016/j.jcp.2020.109576
    [12] Y. L. Zhao, X. M. Gu, A. Ostermann, A preconditioning technique for an all-at-once system from Volterra subdiffusion equations with graded time steps, J. Sci. Comput., 88 (2021), 11. https://doi.org/10.1007/s10915-021-01527-7 doi: 10.1007/s10915-021-01527-7
    [13] G. Long, L. B. Liu, Z. Huang, Richardson extrapolation method on an adaptive grid for singularly perturbed Volterra integro-differential equations, Numer. Funct. Anal. Optim., 42 (2021), 739–757. https://doi.org/10.1080/01630563.2021.1928698 doi: 10.1080/01630563.2021.1928698
    [14] O. Yapman, G.M. Amiraliyev, A novel second-order fitted computational method for a singularly perturbed Volterra integro-differential equation, Int. J. Comput. Math., 97 (2020), 1293–1302. https://doi.org/10.1080/00207160.2019.1614565 doi: 10.1080/00207160.2019.1614565
    [15] W. Chen, X. Wang, Y. Yan, Z. Zhang, A second order BDF numerical scheme with variable steps for the Cahn-Hilliard equation, SIAM J. Numer. Anal., 57 (2019), 495–525. https://doi.org/10.1137/18m1206084 doi: 10.1137/18m1206084
    [16] E. Emmrich, Stability and error of the variable two-step BDF for semilinear parabolic problems, J. Appl. Math. Computing., 19 (2005), 33–55. https://doi.org/10.1007/bf02935787 doi: 10.1007/bf02935787
    [17] H. L. Liao, Z. Zhang, Analysis of adaptive BDF2 scheme for diffusion equations, Math. Comp., 90 (2020), 1207–1226. https://doi.org/10.1090/mcom/3585 doi: 10.1090/mcom/3585
    [18] L. B. Liu, Y. Liao, G. Long, A novel parameter-uniform numerical method for a singularly perturbed Volterra integro-differential equation, Comp. Appl. Math., 42 (2023), 12. https://doi.org/10.1007/s40314-022-02142-4 doi: 10.1007/s40314-022-02142-4
    [19] X. M. Gu, Y. L. Zhao, X. L. Zhao, C. Bruno; Y. Y. Huang, A note on parallel preconditioning for the all-at-once solution of Riesz fractional diffusion equations, Numer. Math. Theor. Meth. Appl., 14 (2021), 893–919. https://doi.org/10.4208/nmtma.OA-2020-0020 doi: 10.4208/nmtma.OA-2020-0020
    [20] H. G. Roos, Error estimates for linear finite elements on Bakhvalov-type meshes, Appl Math, 51 (2006), 63–72. https://doi.org/10.1007/s10492-006-0005-y doi: 10.1007/s10492-006-0005-y
    [21] H. G. Roos, M. Schopf, Analysis of finite element methods on Bakhvalov-type meshes for linear convection-diffusion problems in 2D, Appl. Math., 57 (2012), 97–108. https://doi.org/10.1007/s10492-012-0007-x doi: 10.1007/s10492-012-0007-x
    [22] T. A. Nhan, A uniform convergence analysis for a Bakhvalov-type mesh with an explicitly defined transition point, Numerical Geometry, Grid Generation and Scientific Computing, New York City: Springer, 2021,136–168.
    [23] H. G. Roos, T. Linß, Sufficient conditions for uniform convergence on layer-adapted grids, Computing, 63 (1999), 27–45. https://doi.org/10.1007/s006070050049 doi: 10.1007/s006070050049
    [24] T. Linß, Sufficient conditions for uniform convergence on layer-adapted grids, Appl. Numer. Math., 37 (2001), 241–255.
    [25] C. Li, Q. Yi, A. Chen, Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys., 316 (2016), 614–631. https://doi.org/10.1016/j.jcp.2016.04.039 doi: 10.1016/j.jcp.2016.04.039
    [26] T. Linß, Error expansion for a first-order upwind difference scheme applied to a model convection-diffusion problem, IMA J. Numer. Anal., 24 (2004), 239–253. https://doi.org/10.1093/imanum/24.2.239 doi: 10.1093/imanum/24.2.239
  • This article has been cited by:

    1. Yige Liao, Xianbing Luo, Li-Bin Liu, A second order difference scheme on a Bakhvalov-type mesh for the singularly perturbed Volterra delay-integro-differential equation, 2024, 43, 2238-3603, 10.1007/s40314-024-02873-6
    2. Yige Liao, Li-Bin Liu, Limin Ye, Tangwei Liu, Uniform convergence analysis of the BDF2 scheme on Bakhvalov-type meshes for a singularly perturbed Volterra integro-differential equation, 2023, 145, 08939659, 108755, 10.1016/j.aml.2023.108755
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1701) PDF downloads(55) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog