[1]
|
N. Alikakos, G. Fusco and V. Stefanopoulos, Critical spectrum and stability of interfaces for a class of reaction-diffusion equations, Journal of Differential Equations, 126 (1996), 106-167. doi: 10.1006/jdeq.1996.0046
|
[2]
|
S. B Angenent, J. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, Journal of Differential Equations, 67 (1987), 212-242. doi: 10.1016/0022-0396(87)90147-1
|
[3]
|
S. Chow, J. K. Hale and J. Mallet-Paret, Applications of generic bifurcation. I, Arch. Rational Mech. Anal., 59 (1975), 159-188.
|
[4]
|
S. Chow, J. K. Hale and J. Mallet-Paret, Applications of generic bifurcation. II, Arch. Rational Mech. Anal., 62 (1976), 209-235.
|
[5]
|
P. C. Fife and W. M. Greenlee, Interior transition layers for elliptic boundary value problems with a small parameter, Russian Math. Surveys, 29 (1974), 103-130. doi: 10.1070/RM1974v029n04ABEH001291
|
[6]
|
M. Golubitsky and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Volume I, Applied Mathematical Sciences 51, Spring-Verlag, New York 1985. doi: 10.1007/978-1-4612-5034-0
|
[7]
|
J. K. Hale and K. Sakamoto, Existence and stability of transition layers, Japan Journal Applied Math., 5 (1988), 367-405. doi: 10.1007/BF03167908
|
[8]
|
C. Q. Huang and N. K. Yip, Singular perturbation and bifurcation of diffused transition layers in inhomogeneous media, part I, Networks and Heterogeneous Media, 8 (2013), 1009-1034. doi: 10.3934/nhm.2013.8.1009
|
[9]
|
T. Iibun and K. Sakamoto, Internal layer intersecting the boundary of domains in the allen-cahn equation, Japan J. Indust. Appl. Math., 18 (2001), 697-738. doi: 10.1007/BF03167411
|
[10]
|
H. Ikeda, Singular perturbation approach to stability properties of traveling wave solutions of reaction-diffusion systems, Hiroshima Math. J., 19 (1989), 587-630.
|
[11]
|
H. Ikeda, M. Mimura and Y. Nishirura, Global bifurcation phenomena of traveling wave solutions for some bistable reaction-diffusion systems, Nonlinear Analysis, Theory, Method and Application, 13 (1989), 507-526. doi: 10.1016/0362-546X(89)90061-8
|
[12]
|
M. Ito, A remark on singular perturbation methods, Hiroshima Math. J., 14 (1985), 619-629.
|
[13]
|
H. Kokubu, Y. Nishirura and H. Oka, Heteroclinic and homoclinic bifurcations in bistable reaction-diffusion systems, Journal of Differential Equations, 86 (1990), 260-341. doi: 10.1016/0022-0396(90)90033-L
|
[14]
|
B. Matkowsky and E. Reiss, Singular perturbations of bifurcations, SIAM J. Appl. Math., 33 (1977), 230-255. doi: 10.1137/0133014
|
[15]
|
K. Nakamura, H. Matano, D. Hilhorst and R. Schätzle, Singular limit of a reaction-diffusion equation with a spatially inhomogeneous reaction term, J. Statist. Phys., 95 (1999), 1165-1185. doi: 10.1023/A:1004518904533
|
[16]
|
Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593. doi: 10.1137/0513037
|
[17]
|
Y. Nishiura, Singular limit approach to stability and bifurcation for bistable reaction diffusion systems, Rocky Mountain J. Math., 21 (1991), 727-767. doi: 10.1216/rmjm/1181072964
|
[18]
|
M. Taniguchi, A uniform convergence theorem for singular limit eigenvalue problems, Advances in Differential Equations, 8 (2003), 29-54.
|
[19]
|
M. Taniguchi, A remark on singular perturbation methods via the Lyapunov-Schmidt reduction, Publ. RIMS. Kyoto Univ., 31 (1995), 1001-1010. doi: 10.2977/prims/1195163593
|