
The first aim of this paper is to study, by means of the periodic unfolding method, the homogenization of elliptic problems with source terms converging in a space of functions less regular than the usual $ L^2 $, in an $ \varepsilon $-periodic two component composite with an imperfect transmission condition on the interface. Then we exploit this result to describe the asymptotic behaviour of the exact controls and the corresponding states of hyperbolic problems set in composites with the same structure and presenting the same condition on the interface. The exact controllability is developed by applying the Hilbert Uniqueness Method, introduced by J. -L. Lions, which leads us to the construction of the exact controls as solutions of suitable transposed problem.
Citation: Sara Monsurrò, Carmen Perugia. Homogenization and exact controllability for problems with imperfect interface[J]. Networks and Heterogeneous Media, 2019, 14(2): 411-444. doi: 10.3934/nhm.2019017
[1] | Sara Monsurrò, Carmen Perugia . Homogenization and exact controllability for problems with imperfect interface. Networks and Heterogeneous Media, 2019, 14(2): 411-444. doi: 10.3934/nhm.2019017 |
[2] | Renata Bunoiu, Claudia Timofte . Homogenization of a thermal problem with flux jump. Networks and Heterogeneous Media, 2016, 11(4): 545-562. doi: 10.3934/nhm.2016009 |
[3] | Antonio DeSimone, Martin Kružík . Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks and Heterogeneous Media, 2013, 8(2): 481-499. doi: 10.3934/nhm.2013.8.481 |
[4] | Tom Freudenberg, Michael Eden . Homogenization and simulation of heat transfer through a thin grain layer. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025 |
[5] | Shi Jin, Min Tang, Houde Han . A uniformly second order numerical method for the one-dimensional discrete-ordinate transport equation and its diffusion limit with interface. Networks and Heterogeneous Media, 2009, 4(1): 35-65. doi: 10.3934/nhm.2009.4.35 |
[6] | Xavier Blanc, Claude Le Bris . Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5(1): 1-29. doi: 10.3934/nhm.2010.5.1 |
[7] | Hakima Bessaih, Yalchin Efendiev, Florin Maris . Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10(2): 343-367. doi: 10.3934/nhm.2015.10.343 |
[8] | Patrizia Donato, Florian Gaveau . Homogenization and correctors for the wave equation in non periodic perforated domains. Networks and Heterogeneous Media, 2008, 3(1): 97-124. doi: 10.3934/nhm.2008.3.97 |
[9] | Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111 |
[10] | Serge Nicaise, Cristina Pignotti . Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3(4): 787-813. doi: 10.3934/nhm.2008.3.787 |
The first aim of this paper is to study, by means of the periodic unfolding method, the homogenization of elliptic problems with source terms converging in a space of functions less regular than the usual $ L^2 $, in an $ \varepsilon $-periodic two component composite with an imperfect transmission condition on the interface. Then we exploit this result to describe the asymptotic behaviour of the exact controls and the corresponding states of hyperbolic problems set in composites with the same structure and presenting the same condition on the interface. The exact controllability is developed by applying the Hilbert Uniqueness Method, introduced by J. -L. Lions, which leads us to the construction of the exact controls as solutions of suitable transposed problem.
Let
In the first part of the paper, we consider the stationary heat equation in the two component composite modelized by
This interface problem was studied in [28,49,50] in the case of fixed source term in
- for
- for
- for
- for
Later on, in [26], the above results were recovered and completed by specifying the convergences of the flux by means of the periodic unfolding method, introduced for the first time by D. Cioranescu, A. Damlamian and G. Griso in [6].
In [35], with the further assumption of symmetry of the coefficients' matrix, these results were extended, only for
In this paper, our first aim is to overcome these difficulties by means of the periodic unfolding method and to conclude the asymptotic analysis started in [35] by considering the remaining cases
More precisely, in Theorems 3.14 and 3.18 (see also Corollaries 3.15 and 3.19), we prove that also in this framework, at the limit one gets the same effective thermal conductivities of [26,49]. Nevertheless, due to the less regularity of the source terms, a relevant difference appears. Indeed, here the heat source in the limit problem depends on subsequences of the heat sources at
Physically speaking, the weak data may model two different wiry heat sources positioned in the two components of the material, for
The above mentioned homogenization results with less regular source terms, interesting in itself, have as relevant application the study of the exact controllability of hyperbolic problems set in composites with the same structure and presenting the same jump condition on the interface, that cannot be performed at all using the results of [26,49].
For an evolution problem, given a time interval
The plan of the paper is the following one. In Section 2, we describe in details the two component domain
Similar elliptic homogenization problems and corrector results can be found in [1,3,19,20,28,41,47,48,49,50,51]. Different homogenization results for stationary problems in
The exact controllability of hyperbolic problems with oscillating coefficients in fixed domains is treated in [44] and, in the case of perforated domains, in [8,11]. In [14]
Let
$ ¯Y2⊂YY:=Y1∪¯Y2. $ |
Moreover we suppose that
For any
$ Y^{k}_{i}: = \ k_{l}+Y_{i}, i = 1, 2, \qquad \Gamma_{k}: = \ k_{l}+\Gamma, $ |
where
$ K^{\varepsilon}: = \ \{k\in \mathbb{Z}^{n}| \; \varepsilon \Gamma_{k}\cap\Omega\neq\emptyset\}, $ |
where
Let
$ \Omega_{i }^{\varepsilon}: = \ \Omega\cap\left\{\bigcup\limits_{k \in K^{\varepsilon} }\varepsilon Y^{k}_{i}\right\}, \; i = 1, 2, \quad \quad \Gamma^{\varepsilon}: = \partial \Omega_{2}^{\varepsilon} $ |
and assume that
$ ∂Ω∩(⋃k∈Zn(εΓk))=∅. $ | (2.1) |
We explicitly observe that, by construction, the set
Throughout the paper we denote by
●
●
●
Let us recall (see for istance [9]) that, as
$ χΩεi⇀θi:=|Yi||Y|weakly inL2(Ω), for i=1,2, $ | (2.2) |
Our first goal is to describe, for
$ {−div(Aε∇u1ε)=f1ε inΩε1,−div(Aε∇u2ε)=f2ε in Ωε2,Aε∇u1ε⋅n1ε=−Aε∇u2ε⋅n2ε on Γε,Aε∇u1ε⋅n1ε=−εγhε(u1ε−u2ε) on Γε,u1ε=0 on ∂Ω, $ | (3.1) |
where
We suppose that
$ A∈M(α,β,Y) $ | (3.2) |
for some
$ {(Aλ,λ)≥α|λ|2a.e. in Y,|Aλ|≤β|λ|a.e. in Y. $ | (3.3) |
We assume that
$ {h is a Y−periodic function in L∞(Γ) and∃h0∈Rsuch that 0<h0<h(y) a.e. in Γ. $ | (3.4) |
Moreover, for any fixed
$ Aε(x)=A(xε)a.e. in Ω, $ | (3.5) |
$ hε(x)=h(xε)a.e. on Γε. $ | (3.6) |
In this subsection, we recall the definition and some useful properties of a class of functional spaces introduced for the first time in [49], and successively in [28], when studying the analogous stationary problem but with regular data (see also [19,23]). These spaces take into account the geometry of the domain where the material is confined as well as the boundary and interfacial conditions, hence they are suitable for the solutions of this particular kind of interface problems.
Definition 3.01. [[49]] For every
$ Hεγ:={u=(u1,u2)|u1∈Vε,u2∈H1(Ωε2)} $ | (3.7) |
equipped with the norm
$ ‖u‖2Hεγ=‖∇u1‖2L2(Ωε1)+‖∇u2‖2L2(Ωε2)+εγ‖u1−u2‖2L2(Γε) $ | (3.8) |
where
$ V^{\varepsilon }: = \left\{ \left. v\in H^{1}\left( \Omega _{1}^{\varepsilon }\right) \right\vert \; v = 0 \text{ on }\partial \Omega \right\} $ |
is a Banach space endowed with the norm
$ ‖v‖Vε=‖∇v‖L2(Ωε1), $ | (3.9) |
see [12].
The condition on
Proposition 3.2 ([23,26]). There exists a positive constant
$ ‖u‖2Hεγ≤C1(1+εγ−1)‖u‖2Vε×H1(Ωε2)∀γ∈R,∀u∈Hεγ. $ | (3.10) |
If
$ C2‖u‖2Vε×H1(Ωε2)≤‖u‖2Hεγ≤C1(1+εγ−1)‖u‖2Vε×H1(Ωε2)∀u∈Hεγ. $ | (3.11) |
Corollary 3.3 ([26]). Let
$ ‖u2ε‖H1(Ωε2)≤C. $ | (3.12) |
We denote by
$ ⟨v,u⟩(Hεγ)′,Hεγ=⟨v1,u1⟩(Vε)′,Vε+⟨v2,u2⟩(H1(Ωε2))′,H1(Ωε2). $ | (3.13) |
For sake of simplicity, throughout this paper, we denote by
$ \|\left(w_{1}, w_{2}\right)\|^2_{L^{2}_{\varepsilon}(\Omega)} = \|w_{1}\|^{2}_{L^{2}\left(\Omega_{1}^{\varepsilon}\right)}+\|w_{2}\|^{2}_{L^{2}\left(\Omega_{2}^{\varepsilon}\right)}\, \, \, \, \, \forall \left(w_{1}, w_{2}\right)\in L^{2}_{\varepsilon}(\Omega). $ |
Since the homogenization results proved in this section will be applied to study the exact controllability of the wave equation in composites with the same structure, we need to recall some further properties of the space
Remark 3.4. We point out that
In this subsection, we recall the definitions and the main properties of two unfolding operators. The first one,
Using the notations of Section 2, let us introduce the following sets (see Figure 2)
●
●
●
In the sequel, for
$ {z}Y=z−[z]Y∈Y a.e. in Rn. $ |
Then, for a.e.
$ x=ε([xε]Y+{xε}Y). $ |
Definition 3.5. [[7,26]] For any Lebesgue-measurable function
$ \mathcal{T}_{i}^{\varepsilon }\left( \phi \right) \left( x, y\right) = \left\{ ϕ(ε[xε]Y+εy)a.e. (x,y)∈ˆΩε×Yi, 0a.e. (x,y)∈Λε×Yi. \right. $ |
Remark 3.6. In order to simplify the presentation, in the sequel if
Let us collect the following results which are proved in [7,10,26].
Proposition 3.7 ([7,10,26]). Let
i)
ii) For every
$ 1|Y|∫Ω×YiTεi(φ)(x,y)dxdy=∫ˆΩεiφ(x)dx=∫Ωεiφ(x)dx−∫Λεiφ(x)dx. $ |
iii) For every
$ ‖Tεi(φ)‖Lp(Ω×Yi)≤|Y|1/p‖φ‖Lp(Ωεi). $ |
iv) For every
$ Tεi(φ)⟶φ strongly in Lp(Ω×Yi). $ |
v) Let
$ Tεi(φε)⟶φ strongly in Lp(Ω×Yi). $ |
vi) Let
$ \mathcal{T}^\varepsilon_i(\varphi^\varepsilon)(x, y) = \varphi(y) \quad { a.e. in }~\widehat{\Omega}^\varepsilon \times Y_i. $ |
vii) Let
$ \nabla _{y}\left[ \mathcal{T}_{i}^{\varepsilon }\left(\varphi \right) \right] = \varepsilon \mathcal{T}_{i}^{\varepsilon }\left(\nabla \varphi \right) ~{ and }~\mathcal{T}_{i}^{\varepsilon }\left(\varphi\right) \in L^{2}\left( \Omega, W^{1, p}\left( Y_{i}\right) \right) . $ |
The following convergence result holds:
Proposition 3.8 ([6,7,10,26]). Let
If
$ ˜φε⇀θiMYi(ˆφ) weakly in Lp(Ω), $ |
where
We now give a result concerning the jump on the interface proved in [26].
Lemma 3.9 ([26]). Let
$ ε∫Γεhε(u1ε−u2ε)φdσx=1|Y|∫Ω×Γh(y)(Tε1(u1ε)−Tε2(u2ε))Tε1(φ)dxdσy, $ |
with
Let us finally recall a known result about the convergences of the unfolding operators, previously introduced, applied to bounded sequences in
Theorem 3.10 ([26,27]). Let
$ {Tε1(u1ε)⟶ustrongly inL2(Ω,H1(Y1)),Tε1(∇u1ε)⇀∇u+∇yˆu1weakly inL2(Ω×Y1), $ | (3.14) |
$ {Tε2(u2ε)⇀uweakly inL2(Ω,H1(Y2)), Tε2(∇u2ε)⇀∇u+∇yˆu2weakly inL2(Ω×Y2). $ | (3.15) |
Furthermore,
i) if
$ ˆu1=ˆu2+ξΓ on Ω×Γ, $ |
for some function
ii) if
$ Tε1(u1ε)−Tε2(u2ε)ε⇀ˆu1−ˆu2 weakly in L2(Ω×Γ). $ |
Let
$ {Find (u1ε,u2ε)∈Hεγ s. t. ∫Ωε1Aε∇u1ε∇v1dx+∫Ωε2Aε∇u2ε∇v2dx+εγ∫Γεhε(u1ε−u2ε)(v1−v2)dσx=⟨f1ε,v1⟩(Vε)′,Vε+⟨f2ε,v2⟩(H1(Ωε2))′,H1(Ωε2) ∀(v1,v2)∈Hεγ. $ | (3.16) |
The existence and uniqueness of a solution
In order to describe the asymptotic behaviour, as
$ ‖fε‖(Hεγ)′≤C. $ | (3.17) |
Remark 3.11. Let us observe that, if
$ \overline{f}_{1\varepsilon}: H^1_{0}(\Omega) \to \mathbb{R}, $ |
$ \overline{f}_{2\varepsilon}: H^{1}(\Omega) \to \mathbb{R} $ |
defined as
$ ¯f1ε(u1)=⟨f1ε,u1|Ωε1⟩(Vε)′,Vε $ | (3.18) |
$ ¯f2ε(u2)=⟨f2ε,u2|Ωε2⟩(H1(Ωε2))′,H1(Ωε2), $ | (3.19) |
are linear and continuous. Therefore (3.18) and (3.19) can be rewritten as
$ ⟨¯f1ε,u1⟩H−1(Ω),H10(Ω)=⟨f1ε,u1|Ωε1⟩(Vε)′,Vε $ | (3.20) |
$ ⟨¯f2ε,u2⟩(H1(Ω))′,H1(Ω)=⟨f2ε,u2|Ωε2⟩(H1(Ωε2))′,H1(Ωε2). $ | (3.21) |
Moreover, due to (3.17), one has
$ ¯f1ε⇀f1 in H−1(Ω),¯f2ε⇀f2 in (H1(Ω))′, $ | (3.22) |
up to a subsequence, still denoted
In the sequel, for sake of simplicity and where no ambiguity arises, in view of (3.20) and (3.21) we will still denote by
Let us first recall an a priori estimate proved in [28,49] in the case of fixed datum in
Proposition 3.12. Let
We describe the homogenized problems for every
Now, let us consider an auxiliary problem related to problem (3.1), already introduced in [35], i.e.
$ {−Δρ1ε=f1ε inΩε1,−Δρ2ε=f2ε inΩε2,∇ρ1ε⋅n1ε=−∇ρ2ε⋅n2ε on Γε,∇ρ1ε⋅n1ε=−εγhε(ρ1ε−ρ2ε) on Γε,ρ1ε=0 on ∂Ω, $ | (3.23) |
where
$ {Find (ρ1ε,ρ2ε)∈Hεγ s. t. ∫Ωε1∇ρ1ε∇v1dx+∫Ωε2∇ρ2ε∇v2dx+εγ∫Γεhε(ρ1ε−ρ2ε)(v1−v2)dσx=⟨f1ε,v1⟩(Vε)′,Vε+⟨f2ε,v2⟩(H1(Ωε2))′,H1(Ωε2) ∀(v1,v2)∈Hεγ. $ | (3.24) |
Observe that, clearly, also for the solution
Let us start by using the unfolding method to prove a preliminary convergence result for a subsequence of the solutions of problem (3.23).
Lemma 3.13. Let
$ {Tε1(ρ1ε)⟶ρstrongly inL2(Ω,H1(Y1)),Tε1(∇ρ1ε)⇀∇ρ+∇yˆρ|Ω×Y1weakly inL2(Ω×Y1),Tε2(ρ2ε)⇀ρweakly inL2(Ω,H1(Y2)), Tε2(∇ρ2ε)⇀∇ρ+∇yˆρ|Ω×Y2weakly inL2(Ω×Y2) $ | (3.25) |
and
$ 1|Y|∫Ω×Y(∇ρ+∇yˆρ)∇yΦdxdy=limn→+∞(limε→0(⟨f1ε,εωnψεn⟩H−1(Ω),H10(Ω)+⟨f2ε,εωnψεn⟩(H1(Ω))′,H1(Ω)), $ | (3.26) |
for every
$ wnψn→Φ strongly in L2(Ω,H1per(Y)). $ | (3.27) |
Proof. From Theorem 3.10 and Proposition 3.12 we deduce there exist a subsequence, still denoted
$ {Tε1(∇ρ1ε)⇀∇ρ+∇yˆρ1weakly inL2(Ω×Y1),Tε2(∇ρ2ε)⇀∇ρ+∇yˆρ2weakly inL2(Ω×Y2). $ | (3.28) |
Let us take
The term concerning the interface vanishes and, in view of Remark 3.11, we get
$ ∫Ωε1∇ρ1ε∇vεdx+∫Ωε2∇ρ2ε∇vεdx=⟨f1ε,vε⟩H−1(Ω),H10(Ω)+⟨f2ε,vε⟩(H1(Ω))′,H1(Ω). $ | (3.29) |
In view of the definitions of
$ 1|Y|∫Ω×Y1Tε1(∇ρ1ε)Tε1(∇vε)dxdy+1|Y|∫Ω×Y2Tε2(∇ρ2ε)Tε2(∇vε)dxdy=⟨f1ε,vε⟩H−1(Ω),H10(Ω)+⟨f2ε,vε⟩(H1(Ω))′,H1(Ω), $ | (3.30) |
where we also used Proposition 3.7
Since
$ Tεi(∇vε)=ε ψTεi(∇ω)+∇yψTεi(ω)⟶∇y(ωψ) strongly in L2(Ω×Yi). $ | (3.31) |
From
$ 1|Y|∫Ω×Y1(∇ρ+∇yˆρ1)∇y(ωψ)dxdy+1|Y|∫Ω×Y2(∇ρ+∇yˆρ2)∇y(ωψ)dxdy=limε→0(⟨f1ε,εωψε⟩H−1(Ω),H10(Ω)+⟨f2ε,εωψε⟩(H1(Ω))′,H1(Ω). $ | (3.32) |
According to Theorem 3.10
Thus, if we set
$ ˆρ(⋅,y)={ˆρ1(⋅,y)y∈Y1, ˆρ2(⋅,y)+ξΓy∈Y2, $ |
a.e. in
$ ˆρ∈L2(Ω,H1per(Y)) $ |
and
$ {∇yˆρ|Ω×Y1=∇yˆρ1, ∇yˆρ|Ω×Y2=∇yˆρ2. $ | (3.33) |
Therefore
$ 1|Y|∫Ω×Y(∇ρ+∇yˆρ)∇y(ωψ)dxdy=limε→0(⟨f1ε,εωψε⟩H−1(Ω),H10(Ω)+⟨f2ε,εωψε⟩(H1(Ω))′,H1(Ω). $ | (3.34) |
Now let us take
$ wnψn→Φ strongly in L2(Ω,H1per(Y)). $ |
Hence, (3.34) gives, for any fixed
$ 1|Y|∫Ω×Y(∇ρ+∇yˆρ)∇y(ωnψn)dxdy=limε→0(⟨f1ε,εωnψεn⟩H−1(Ω),H10(Ω)+⟨f2ε,εωnψεn⟩(H1(Ω))′,H1(Ω), $ |
where
Now we are able to prove the homogenization result for problem (3.1) when
Theorem 3.14. Let
$ {˜uiε⇀θiuweakly inL2(Ω), i=1,2,Tε1(u1ε)⟶ustrongly inL2(Ω,H1(Y1)), Tε1(∇u1ε)⇀∇u+∇yˆu|Ω×Y1weakly inL2(Ω×Y1), Tε2(u2ε)⇀uweakly inL2(Ω,H1(Y2)), Tε2(∇u2ε)⇀∇u+∇yˆu|Ω×Y2weakly inL2(Ω×Y2), $ | (3.35) |
where the pair
$ {Find u∈H10(Ω), ˆu∈L2(Ω,H1per(Y)),withMΓ(ˆu)=0 a.e. x∈Ω, s.t. 1|Y|∫Ω×YA(y)(∇u+∇yˆu)(∇φ+∇yΦ)dxdy=⟨f1,φ⟩H−1(Ω),H10(Ω)+⟨f2,φ⟩(H1(Ω))′,H1(Ω)+1|Y|∫Ω×Y(∇ρ+∇yˆρ)∇yΦdxdy∀φ∈H10(Ω), ∀Φ∈L2(Ω,H1per(Y)), $ | (3.36) |
where
Proof. Arguing as in the proof of Lemma 3.13, we get that there exist a subsequence, still denoted
$ {Tε1(∇u1ε)⇀∇u+∇yˆu1weakly inL2(Ω×Y1),Tε2(∇u2ε)⇀∇u+∇yˆu2weakly inL2(Ω×Y2). $ | (3.37) |
Then, from (3.12) of Corollary 3.3,
$ ˜uiε⇀θiMYi(u) weakly in L2(Ω) $ |
and, since
In order to get the limit problem, let
$ ∫Ωε1Aε∇u1ε∇(φ+vε)dx+∫Ωε2Aε∇u2ε∇(φ+vε)dx=⟨f1ε,φ⟩H−1(Ω),H10(Ω)+⟨f2ε,φ⟩(H1(Ω))′,H1(Ω)+⟨f1ε,vε⟩H−1(Ω),H10(Ω)+⟨f2ε,vε⟩(H1(Ω))′,H1(Ω). $ | (3.38) |
Then if we take
$ ∫Ωε1Aε∇u1ε∇(φ+vε)dx+∫Ωε2Aε∇u2ε∇(φ+vε)dx=⟨f1ε,φ⟩H−1(Ω),H10(Ω)+⟨f2ε,φ⟩(H1(Ω))′,H1(Ω)+∫Ωε1∇ρ1ε∇vεdx+∫Ωε2∇ρ2ε∇vεdx. $ | (3.39) |
In view of the definitions of
$ 1|Y|∫Ω×Y1A(y)Tε1(∇u1ε)Tε1(∇φ+∇vε)dxdy+1|Y|∫Ω×Y2A(y)Tε2(∇u2ε)Tε2(∇φ+∇vε)dxdy=⟨f1ε,φ⟩H−1(Ω),H10(Ω)+⟨f2ε,φ⟩(H1(Ω))′,H1(Ω)+1|Y|∫Ω×Y1Tε1(∇ρ1ε)Tε1(∇vε)dxdy+1|Y|∫Ω×Y2Tε2(∇ρ2ε)Tε2(∇vε)dxdy, $ | (3.40) |
where we also used Proposition 3.7
From (3.22),
$ 1|Y|∫Ω×Y1A(y)(∇u+∇yˆu1)(∇φ+∇y(ωψ))dxdy+1|Y|∫Ω×Y2A(y)(∇u+∇yˆu2)(∇φ+∇y(ωψ))dxdy=⟨f1,φ⟩H−1(Ω),H10(Ω)+⟨f2,φ⟩(H1(Ω))′,H1(Ω)+1|Y|∫Ω×Y(∇ρ+∇yˆρ)∇y(ωψ)dxdy. $ | (3.41) |
Arguing as in Lemma 3.13, by Theorem 3.10
$ ˆu(⋅,y)={ˆu1(⋅,y)y∈Y1, ˆu2(⋅,y)+ζΓy∈Y2, $ | (3.42) |
where
$ ˆu∈L2(Ω,H1per(Y)) $ |
and
$ {∇yˆu|Ω×Y1=∇yˆu1, ∇yˆu|Ω×Y2=∇yˆu2. $ | (3.43) |
Therefore,
$ 1|Y|∫Ω×YA(y)(∇u+∇yˆu)(∇φ+∇y(ωψ))dxdy=⟨f1,φ⟩H−1(Ω),H10(Ω)+⟨f2,φ⟩(H1(Ω))′,H1(Ω)+1|Y|∫Ω×Y(∇ρ+∇yˆρ)∇y(ωψ)dxdy, $ | (3.44) |
for every
Finally, by density we get (3.36).
In the following result we point out that the limit problem (3.36) is equivalent to an elliptic problem set in the fixed domain
Corollary 3.15. Let
$ {˜uiε⇀θiu weakly in L2(Ω),i=1,2, Aε~∇u1ε⇀A1γ∇u+θ1MYl(A∇yˆχ|Y1) weakly in L2(Ω), Aε~∇u2ε⇀A2γ∇u+θ2MY2(A∇yˆχ|Y2) weakly in L2(Ω). $ | (3.45) |
In (3.45) the constant matrices
$ alij=θlMYl(aij−n∑k=1aik∂χj∂yk), $ | (3.46) |
where the functions
$ {−div(A∇(χj−yj))=0 in Y, χjY−periodic, MY(χj)=0 $ | (3.47) |
and the function
$ {Findˆχ∈L2(Ω;H1per(Y))s. t.∫YA(y)∇yˆχ∇yψdy=∫Y(∇ρ+∇yˆρ)∇yψdy, ∀ψ∈H1per(Y), $ | (3.48) |
where
Moreover the limit function
$ {−div(A0γ∇u)=f1+f2+div(MY(A(y)∇yˆχ))in Ω, u=0on ∂Ω, $ | (3.49) |
where the homogenized matrix is given by
$ A0γ:=A1γ+A2γ. $ | (3.50) |
Proof. Choosing
$ 1|Y|∫Ω×YA(y)(∇u+∇yˆu)∇yΦdxdy=1|Y|∫Ω×Y(∇ρ+∇yˆρ)∇yΦdxdy, $ |
for all
By following some classical arguments as in the two-scale method (see [9], ch. 9), this gives
$ ˆu(x,y)=ˆχ(x,y)−n∑j=1∂u∂xj(x)χj(y), $ | (3.51) |
where
We now choose
$ 1|Y|∫Ω×YA(y)(∇u+∇yˆu)∇φdxdy=⟨f1,φ⟩H−1(Ω),H10(Ω)+⟨f2,φ⟩(H1(Ω))′,H1(Ω), $ |
for all
Replacing
$ ∫Ωn∑i=1n∑j=1(1|Y|∫Y(aij(y)−n∑k=1aik(y)∂χj∂yk(y))dy)∂u∂xj∂φ∂xidx =⟨f1,φ⟩H−1(Ω),H10(Ω)+⟨f2,φ⟩(H1(Ω))′,H1(Ω)−∫Ωn∑i=1n∑j=1(1|Y|∫Yaij(y)∂ˆχ∂yj(y)dy)∂φ∂xidx, $ |
for all
$ {−n∑i=1∂∂xin∑j=1(1|Y|∫Y(aij(y)−n∑k=1aik(y)∂χj∂yk(y))dy)∂u∂xj=f1+f2+n∑i=1∂∂xin∑j=1(1|Y|∫Yaij(y)∂ˆχ∂yj(y)dy) in Ω, u=0 on ∂Ω. $ |
This implies that
From (3.42) and (3.51), we have
$ {ˆu1=ˆu|Ω×Y1=ˆχ|Ω×Y1−n∑j=1∂u∂xjχj|Y1, ˆu2=ˆu|Ω×Y2−ζΓ=ˆχ|Ω×Y2−n∑j=1∂u∂xjχj|Y2−ζΓ, $ | (3.52) |
where
$ {Tε1(Aε∇u1ε)⇀A(y)(∇u+∇yˆu1)weakly inL2(Ω×Y1),Tε2(Aε∇u2ε)⇀A(y)(∇u+∇yˆu2)weakly inL2(Ω×Y2). $ |
Then, using Proposition 3.8, we deduce that
$ {Aε~∇u1ε⇀θ1MY1[A(y)(∇u+∇yˆu1)]weakly in L2(Ω),Aε~∇u2ε⇀θ2MY2[A(y)(∇u+∇yˆu2)]weakly in L2(Ω). $ | (3.53) |
After some computations, by using (3.52), convergences (3.53) give (3.45)
Remark 3.16. Let us observe that in problem (3.49) the right-hand side of the limit equation is not exactly the sum of the weak limits of
As in the previous case, let us start by using the unfolding method to prove a preliminary convergence result for a subsequence of the solutions of problem (3.23).
Lemma 3.17. Let
$ {Tε1(ρ1ε)⟶ρstrongly inL2(Ω,H1(Y1)),Tε1(∇ρ1ε)⇀∇ρ+∇yˆρ1weakly inL2(Ω×Y1),Tε2(ρ2ε)⇀ρweakly inL2(Ω,H1(Y2)), Tε2(∇ρ2ε)⇀∇ρ+∇yˆρ2weakly inL2(Ω×Y2), $ | (3.54) |
and
$ 1|Y|∫Ω×Y1(∇ρ+∇yˆρ1)∇yΦ1dxdy+1|Y|∫Ω×Y2(∇ρ+∇yˆρ2)∇yΦ2dxdy +1|Y|∫Ω×Γh(y)(ˆρ1−ˆρ2)(Φ1−Φ2)dx dσy=limn→+∞(limε→0(⟨f1ε,εω1nψε1n⟩H−1(Ω),H10(Ω)+⟨f2ε,εω2nψε2n⟩(H1(Ω))′,H1(Ω)), $ | (3.55) |
for every
$ w1nψ1n→Φ1 strongly in L2(Ω,H1per(Y1)), $ |
$ w2nψ2n→Φ2 strongly in L2(Ω,H1(Y2)). $ |
Proof. Arguing as in Lemma 3.13, we deduce there exist a subsequence, still denoted
For
In view of Remark 3.11, we get
$ ∫Ωε1∇ρ1ε∇v1εdx+∫Ωε2∇ρ2ε∇v2εdx+ε−1∫Γεhε(ρ1ε−ρ2ε)(v1ε−v2ε)dσx=⟨f1ε,v1ε⟩H−1(Ω),H10(Ω)+⟨f2ε,v2ε⟩(H1(Ω))′,H1(Ω). $ | (3.56) |
Following the same argument as in Lemma 3.13, we have that, for
$ Tεi(∇viε)⟶∇y(ωiψi) strongly in L2(Ω×Yi). $ | (3.57) |
In view of the definitions of
$ 1|Y|∫Ω×Y1Tε1(∇ρ1ε)Tε1(∇v1ε)dxdy+1|Y|∫Ω×Y2Tε2(∇ρ2ε)Tε2(∇v2ε)dxdy+1ε|Y|∫Ω×Γh(y)(Tε1(ρ1ε)−Tε2(ρ2ε))(ψ1(y)Tε1(ω1)−ψ2(y)Tε2(ω2))dxdσy=⟨f1ε,εω1ψε1⟩H−1(Ω),H10(Ω)+⟨f2ε,εω2ψε2⟩(H1(Ω))′,H1(Ω), $ | (3.58) |
where we also used Proposition 3.7
From
$ 1|Y|∫Ω×Y1(∇ρ+∇yˆρ1)∇y(ω1ψ1)dxdy+1|Y|∫Ω×Y2(∇ρ+∇yˆρ2)∇y(ω2ψ2)dxdy+1|Y|∫Ω×Γh(y)(ˆρ1−ˆρ2)(ω1ψ1−ω2ψ2)dx dσy=limε→0(⟨f1ε,εω1ψε1⟩H−1(Ω),H10(Ω)+⟨f2ε,εω2ψε2⟩(H1(Ω))′,H1(Ω). $ | (3.59) |
Now let us take
$ w1nψ1n→Φ1 strongly in L2(Ω,H1per(Y1)), $ |
$ w2nψ2n→Φ2 strongly in L2(Ω,H1(Y2)). $ |
Hence, (3.59) gives, for any fixed
$ 1|Y|∫Ω×Y1(∇ρ+∇yˆρ1)∇y(w1nψ1n)dxdy+1|Y|∫Ω×Y2(∇ρ+∇yˆρ2)∇y(w2nψ2n)dxdy+1|Y|∫Ω×Γh(y)(ˆρ1−ˆρ2)(w1nψ1n−w2nψ2n)dx dσy=limε→0(⟨f1ε,εω1nψε1n⟩H−1(Ω),H10(Ω)+⟨f2ε,εω2nψε2n⟩(H1(Ω))′,H1(Ω) $ | (3.60) |
where, for
Passing to the limit as
Now we are able to prove the homogenization result for problem (3.1) when
Theorem 3.18. Let
$ {˜uiε⇀θiuweakly inL2(Ω), i=1,2,Tε1(u1ε)⟶ustrongly inL2(Ω,H1(Y1)), Tε1(∇u1ε)⇀∇u+∇yˆu1weakly inL2(Ω×Y1), Tε2(u2ε)⇀uweakly inL2(Ω,H1(Y2)), Tε2(∇u2ε)⇀∇u+∇yˆu2weakly inL2(Ω×Y2), $ | (3.61) |
where
$ {Findu∈H10(Ω),ˆu1∈L2(Ω,H1per(Y1))withMΓ(^u1)=0a.e.x∈Ω,ˆu2∈L2(Ω,H1(Y2)), s. t.1|Y|∫Ω×Y1A(y)(∇u+∇yˆu1)(∇φ+∇yΦ1)dxdy +1|Y|∫Ω×Y2A(y)(∇u+∇yˆu2)(∇φ+∇yΦ2)dxdy+1|Y|∫Ω×Γh(y)(ˆu1−ˆu2)(Φ1−Φ2)dx dσy=⟨f1,φ⟩H−1(Ω),H10(Ω)+⟨f2,φ⟩(H1(Ω))′,H1(Ω)+1|Y|∫Ω×Y1(∇ρ+∇yˆρ1)∇yΦ1dxdy+1|Y|∫Ω×Y2(∇ρ+∇yˆρ2)∇yΦ2dxdy+1|Y|∫Ω×Γh(y)(ˆρ1−ˆρ2)(Φ1−Φ2)dx dσy,∀φ∈H10(Ω),Φ1∈L2(Ω,H1per(Y1)),Φ2∈L2(Ω,H1(Y2)), $ | (3.62) |
where the functions
$ ∫Ω×Y1(∇ρ+∇yˆρ1)∇yΦ1dxdy+∫Ω×Y2(∇ρ+∇yˆρ2)∇yΦ2dxdy+∫Ω×Γh(y)(ˆρ1−ˆρ2)(Φ1−Φ2)dx dσy $ |
depends only on a subsequence of
Proof. Convergences
In order to get the limit problem satisfied by
$ ∫Ωε1Aε∇u1ε∇(φ+v1ε)dx+∫Ωε2Aε∇u2ε∇(φ+v2ε)dx+ε−1∫Γεhε(u1ε−u2ε)(v1ε−v2ε)dσx=⟨f1ε,φ⟩H−1(Ω),H10(Ω)+⟨f2ε,φ⟩(H1(Ω))′,H1(Ω)+⟨f1ε,v1ε⟩H−1(Ω),H10(Ω)+⟨f2ε,v2ε⟩(H1(Ω))′,H1(Ω). $ | (3.63) |
Then if we take
$ ∫Ωε1Aε∇u1ε∇(φ+v1ε)dx+∫Ωε2Aε∇u2ε∇(φ+v2ε)dx+ε−1∫Γεhε(u1ε−u2ε)(v1ε−v2ε)dσx=⟨f1ε,φ⟩H−1(Ω),H10(Ω)+⟨f2ε,φ⟩(H1(Ω))′,H1(Ω)+∫Ωε1∇ρ1ε∇v1εdx+∫Ωε2∇ρ2ε∇v2εdx+ε−1∫Γεhε(ρ1ε−ρ2ε)(v1ε−v2ε)dσx. $ | (3.64) |
In view of the definitions of
$ 1|Y|∫Ω×Y1A(y)Tε1(∇u1ε)Tε1(∇φ+∇v1ε)dxdy+1|Y|∫Ω×Y2A(y)Tε2(∇u2ε)Tε2(∇φ+∇v2ε)dxdy+1ε|Y|∫Ω×Γh(y)(Tε1(u1ε)−Tε2(u2ε))(ψ1(y)Tε1(ω1)−ψ2(y)Tε2(ω2))dxdσy=⟨f1ε,φ⟩H−1(Ω),H10(Ω)+⟨f2ε,φ⟩(H1(Ω))′,H1(Ω)+1|Y|∫Ω×Y1Tε1(∇ρ1ε)Tε1(∇v1ε)dxdy+1|Y|∫Ω×Y2Tε2(∇ρ2ε)Tε2(∇v2ε)dxdy+1ε|Y|∫Ω×Γh(y)(Tε1(ρ1ε)−Tε2(ρ2ε))(ψ1(y)Tε1(ω1)−ψ2(y)Tε2(ω2))dxdσy. $ | (3.65) |
where we also used Proposition
From (3.22),
$ 1|Y|∫Ω×Y1A(y)(∇u+∇yˆu1)(∇φ+∇y(ω1ψ1))dxdy+1|Y|∫Ω×Y2A(y)(∇u+∇yˆu2)(∇φ+∇y(ω2ψ2))dxdy+1|Y|∫Ω×Γh(y)(ˆu1−ˆu2)(ω1ψ1−ω2ψ2)dx dσy=⟨f1,φ⟩H−1(Ω),H10(Ω)+⟨f2,φ⟩(H1(Ω))′,H1(Ω)+1|Y|∫Ω×Y1(∇ρ+∇yˆρ1)∇y(ω1ψ1)dxdy+∫Ω×Y2(∇ρ+∇yˆρ2)∇y(ω2ψ2)dxdy+1|Y|∫Ω×Γh(y)(ˆρ1−ˆρ2)(ω1ψ1−ω2ψ2)dx dσy. $ |
Then, by density we get the limit problem (3.62).
Let us finally show that
To this aim, let
$ {\mathcal B}: = H_{0}^{1}\left( \Omega \right) \times L^{2}\left( \Omega, W_{per}\left( Y_{1}\right) \right) \times L^{2}\left( \Omega, H^{1}\left( Y_{2}\right) \right), $ |
where the space
$ Wper(Y1):={g∈H1per(Y1)|MΓ(g)=0}. $ |
For
$ ‖V‖2B:=∫Ω×Y1|∇v1+∇yv2|2dxdy+∫Ω×Y2|∇v1+∇yv3|2dxdy+∫Ω×Γ|v2−v3|2dxdσy. $ |
As proved in [27], this last application is a norm on
Now, for any
$ a(V,W)=1|Y|∫Ω×Y1A(y)(∇v1+∇yv2)(∇w1+∇yw2)dxdy+1|Y|∫Ω×Y2A(y)(∇v1+∇yv3)(∇w1+∇yw3)dxdy+1|Y|∫Ω×Γh(y)(v2−v3)(w2−w3)dx dσy $ |
and the map
$ F:V=(v1,v2,v3)∈B⟶⟨f1,v1⟩H−1(Ω),H10(Ω)+⟨f2,v1⟩(H1(Ω))′,H1(Ω)+∫Ω×Y1(∇ρ+∇yˆρ1)∇yv2dxdy+∫Ω×Y2(∇ρ+∇yˆρ2)∇yv3dxdy+∫Ω×Γh(y)(ˆρ1−ˆρ2)(v2−v3)dx dσy. $ |
It is easily seen that
As for the previous case, in the following result we point out that the limit problem (3.62) is equivalent to an elliptic problem set in the fixed domain
Corollary 3.19. Let
$ {˜uiε⇀θiu weakly in L2(Ω), i=1,2, Aε~∇u1ε⇀A1γ∇u+θ1MY1(A∇yˆχ1) weakly in L2(Ω), Aε~∇u2ε⇀A2γ∇u+θ2MY2(A∇yˆχ2) weakly in L2(Ω). $ | (3.66) |
In (3.66), the constant matrices
$ {a1ij=θ1MY1(aij−n∑k=1aik∂χj1∂yk),a2ij=θ2MY2(aij−n∑k=1aik∂χj2∂yk), $ | (3.67) |
where the couples
$ {−div(A∇(χj1−yj))=0in Y1, −div(A∇(χj2−yj))=0in Y2, A∇(χj1−yj)⋅n1=−A∇(χj2−yj)⋅n2on Γ, A∇(χj1−yj)⋅n1=−h(χj1−χj2)on Γ, χj1Y−periodic,MY1(χj1)=0. $ | (3.68) |
The couple
$ {Find(ˆχ1,ˆχ2)∈L2(Ω,H1per(Y1)×H1(Y2))s. t.∫Y1A(y)∇yˆχ1∇yψ1dy+∫Y2A(y)∇yˆχ2∇yψ2dy+∫Γh(y)(ˆχ1−ˆχ2)(ψ1−ψ2)dσy=∫Y1(∇ρ+∇yˆρ1)∇yψ1dy+∫Y2(∇ρ+∇yˆρ2)∇yψ2dy+∫Γh(y)(ˆρ1−ˆρ2)(ψ1−ψ2)dσy, ∀(ψ1,ψ2)∈H1per(Y1)×H1(Y2), $ | (3.69) |
where
Moreover, the limit function
$ {−div(A0γ∇u)=f1+f2+θ1div(MY1(A∇yˆχ1))+θ2div(MY2(A∇yˆχ2))in Ω, u=0on ∂Ω, $ | (3.70) |
where the homogenized matrix is defined by
$ A0γ:=A1γ+A2γ. $ | (3.71) |
Proof. Choosing
$ ∫Ω×Y1A(y)(∇u+∇yˆu1)∇yΦ1dxdy+∫Ω×Y2A(y)(∇u+∇yˆu2)∇yΦ2dxdy+∫Ω×Γh(y)(ˆu1−ˆu2)(Φ1−Φ2)dxdσy=∫Ω×Y1(∇ρ+∇yˆρ1)∇yΦ1dxdy+∫Ω×Y2(∇ρ+∇yˆρ2)∇yΦ2dxdy+∫Ω×Γh(y)(ˆρ1−ˆρ2)(Φ1−Φ2)dxdσy, $ |
for all
By standard arguments, as in the two scale method (see [9], ch. 9), this gives
$ {ˆu1(x,y)=ˆχ1(x,y)−n∑j=1∂u∂xj(x)χj1(y), ˆu2(x,y)=ˆχ2(x,y)−n∑j=1∂u∂xj(x)χj2(y), $ | (3.72) |
where
We now choose
$ 1|Y|∫Ω×Y1A(y)(∇u+∇yˆu1)∇φdxdy+1|Y|∫Ω×Y2A(y)(∇u+∇yˆu2)∇φdxdy=⟨f1,φ⟩H−1(Ω),H10(Ω)+⟨f2,φ⟩(H1(Ω))′,H1(Ω), $ | (3.73) |
for all
Replacing
$ ∫Ωn∑i=1n∑j=1(1|Y|∫Y1(aij(y)−n∑k=1aik(y)∂χj1∂yk(y))dy)∂u∂xj∂φ∂xidx+∫Ωn∑i=1n∑j=1(1|Y|∫Y2(aij(y)−n∑k=1aik(y)∂χj2∂yk(y))dy)∂u∂xj∂φ∂xidx=⟨f1,φ⟩H−1(Ω),H10(Ω)+⟨f2,φ⟩(H1(Ω))′,H1(Ω)−∫Ωn∑i=1n∑j=1(1|Y|∫Y1aij(y)∂ˆχ1∂yj(y)dy)∂φ∂xidx−∫Ωn∑i=1n∑j=1(1|Y|∫Y2aij(y)∂ˆχ2∂yj(y)dy)∂φ∂xidx, $ |
for all
$ {−n∑i=1∂∂xin∑j=1(1|Y|∫Y1(aij(y)−n∑k=1aik(y)∂χj1∂yk(y))dy)∂u∂xj−n∑i=1∂∂xin∑j=1(1|Y|∫Y2(aij(y)−n∑k=1aik(y)∂χj2∂yk(y))dy)∂u∂xj=f1+f2+n∑i=1∂∂xin∑j=1(1|Y|∫Y1aij(y)∂ˆχ1∂yj(y)dy)+n∑i=1∂∂xin∑j=1(1|Y|∫Y2aij(y)∂ˆχ2∂yj(y)dy) in Ω, u=0 on ∂Ω. $ |
This implies that
Arguing as in the last part of the proof of Corollary 3.15, when proving (3.53), but taking into account that in this case
Remark 3.20. As in the previous case, in problem (3.70) the right-hand side of the limit equation is not exactly the sum of the weak limits of
The second issue we deal with concerns the study of the exact controllability of a hyperbolic imperfect transmission problem posed in the domain
$ {u″1ε−div(Aε∇u1ε)=ζ1εin Ωε1×]0,T[,u″2ε−div(Aε∇u2ε)=ζ2εin Ωε2×]0,T[,Aε∇u1ε⋅n1ε=−Aε∇u2ε⋅n2εon Γε×]0,T[,Aε∇u1ε⋅n1ε=−εγhε(u1ε−u2ε)on Γε×]0,T[,u1ε=0on ∂Ω×]0,T[,u1ε(0)=U01ε,u′1ε(0)=U11εin Ωε1,u2ε(0)=U02ε,u′2ε(0)=U12εin Ωε2, $ | (4.1) |
where
$ {i) U0ε:=(U01ε,U02ε)∈Hεγ,ii) U1ε:=(U11ε,U12ε)∈L2ε(Ω). $ | (4.2) |
Moreover
$ aij=aji,i,j=1,...n. $ | (4.3) |
For clearness sake, throughout the paper, we denote by
Definition 4.1. System (4.1) is exactly controllable at time
$ u_{\varepsilon}(T) = \overline{U}^{0}_{\varepsilon}, \, \, \, u'_{\varepsilon}(T) = \overline{U}^{1}_{\varepsilon}. $ |
Remark 4.2. It is well known that for a linear system, driving it to any state is equivalent to driving it to the null state and this is known as null controllability. Hence, in the sequel we study the null controllability of the considered systems, namely we take
We will prove that the system (4.1) is null controllable. We use a constructive method known as the Hilbert Uniqueness Method introduced by Lions (see [44,45]). The idea is to build a control as the solution of a transposed problem associated to some suitable initial conditions. These initial conditions are obtained by calculating at zero time the solution of a backward problem. Let us underline that the control obtained by HUM is unique being the one minimizing the norm in
We give a positive answer to this question by proving the following main result:
Theorem 4.3. Let
$ {i)~U0ε⇀U0:=(U01,U02) weakly in [L2(Ω)]2, with U02∈H10(Ω),ii)~U1ε⇀U1:=(U11,U12) weakly in [L2(Ω)]2,iii)‖U0ε‖Hεγ≤C, $ | (4.4) |
with
Let
$ {~ζex1ε⇀θ1ζex1weakly in L2(0,T;L2(Ω)),~ζex2ε⇀θ2ζex1weakly in L2(0,T;L2(Ω)), $ | (4.5) |
where
$ {u″1−div(A0γ∇u1)=ζex1in Ω×]0,T[,u1=0on ∂Ω×]0,T[,u1(0)=U01+U02in Ω,u′1(0)=U11+U12in Ω. $ | (4.6) |
The homogenized matrix
Moreover denoted by
$ P_1^\varepsilon \in {\mathcal L} (L^{\infty} (0, T;H^k(\Omega _{1}^{\varepsilon })); L^{\infty} (0, T;H^k (\Omega))), $ |
for
$ {Pε1u1ε(ζexε)⇀u1(ζex1)weakly∗ in L∞(0,T;H10(Ω)),~u1ε(ζexε)⇀θ1u1(ζex1)weakly∗ in L∞(0,T;L2(Ω)),~u2ε(ζexε)⇀θ2u1(ζex1)weakly∗ in L∞(0,T;L2(Ω)), $ | (4.7) |
and
$ {Pε1u′1ε(ζexε)⇀u′1(ζex1)weakly∗ in L∞(0,T;L2(Ω)),~u′1ε(ζexε)⇀θ1u′1(ζex1)weakly∗ in L∞(0,T;L2(Ω)),~u′2ε(ζexε)⇀θ2u′1(ζex1)weakly∗ in L∞(0,T;L2(Ω)). $ | (4.8) |
Let us observe that by (4.4),
In this subsection, for reader's convenience, we start by recalling some properties of the solution of the evolution imperfect transmission problem already studied in [21]. Although these results hold for
Hence, for
$ {z″1ε−div(Aε∇z1ε)=g1εin Ωε1×]0,T[,z″2ε−div(Aε∇z2ε)=g2εin Ωε2×]0,T[,Aε∇z1ε⋅n1ε=−Aε∇z2ε⋅n2εon Γε×]0,T[,Aε∇z1ε⋅n1ε=−εγhε(z1ε−z2ε)on Γε×]0,T[,z1ε=0on ∂Ω×]0,T[,z1ε(0)=Z01ε,z′1ε(0)=Z11εin Ωε1,z2ε(0)=Z02ε,z′2ε(0)=Z12εin Ωε2, $ | (4.9) |
where
$ {i) gε:=(g1ε,g2ε)∈L2(0,T;L2ε(Ω)),ii) Z0ε:=(Z01ε,Z02ε)∈Hεγ,iii) Z1ε:=(Z11ε,Z12ε)∈L2ε(Ω). $ | (4.10) |
For any
$ Wε:={v=(v1,v2)∈L2(0,T;Hεγ)s.t.v′=(v′1,v′2)∈L2(0,T;L2ε(Ω))}, $ | (4.11) |
which is a Hilbert space if equipped with the norm
$ ‖v‖Wε=‖v1‖L2(0,T;Vε)+‖v2‖L2(0,T;H1(Ωε2))+‖v′1‖L2(0,T;L2(Ωε1))+‖v′2‖L2(0,T;L2(Ωε2)), $ |
(see [21]).
Thanks to Remark 3.4, by using an approach to evolutionary problems based on evolution triples, we assume as variational formulation of the formal problem
$ {Findzε=(z1ε,z2ε)∈Wε s. t. ⟨z″1ε,v1⟩(Vε)′,Vε+⟨z″2ε,v2⟩(H1(Ωε2))′,H1(Ωε2)+∫Ωε1Aε∇z1ε∇v1dx+∫Ωε2Aε∇z2ε∇v2dx+εγ∫Γεhε(z1ε−z2ε)(v1−v2)dσx=∫Ωε1g1εv1dx+∫Ωε2g2εv2dx,∀(v1,v2)∈Hεγ in D′(0,T),z1ε(0)=Z01ε,z′1ε(0)=Z11εin Ωε1,z2ε(0)=Z02ε,z′2ε(0)=Z22εin Ωε2. $ | (4.12) |
As observed in [21], an abstract Galerkin's method provides the existence and uniqueness result for the solution of problem (4.9) and also some a priori estimates for any
Theorem 4.4 ([21]). Under the assumptions
$ \begin{equation*} \label{3.1+} \left\Vert z_{\varepsilon}\right\Vert _{L^{\infty}(0, T;H^{\varepsilon}_{\gamma})}+\left\Vert z_{\varepsilon}'\right\Vert _{L^{\infty}(0, T;L^{2}_{\varepsilon}\left( \Omega\right))}\leq C\left( \left\Vert Z_{\varepsilon}^{0}\right\Vert _{H^{\varepsilon}_{\gamma} }+\left\Vert Z_{\varepsilon}^{1}\right\Vert _{L^{2}_{\varepsilon}\left( \Omega\right) }+\left\Vert g_{\varepsilon}\right\Vert _{L^{2}\left( 0, T;L^{2}_{\varepsilon}\left( \Omega\right) \right) }\right). \end{equation*} $ |
Let us point out that, for any fixed
$ \begin{equation*} z_{\varepsilon}\in C\left( \left[ 0, T\right] ;H^{\varepsilon}_{\gamma}\right), \, z_{\varepsilon}'\in C\left( \left[ 0, T\right] ;L^{2}_{\varepsilon}(\Omega) \right). \end{equation*} $ |
Now, let us recall the homogenization result for problem (4.9), proved in [21].
Theorem 4.5 ([21]). Let
$ \begin{equation} \left\{ \begin{array}{ll} {\mbox{i) }} \widetilde{Z^0_{\varepsilon}} \rightharpoonup Z^{0}: = (Z^0_1, Z^0_2) { ~weakly ~in ~} {\left[L^{2}(\Omega)\right]^{2}}, { ~with ~} Z^0_2 \in H_0^1(\Omega), \\ {\mbox{ii) }} \widetilde{Z^1_{\varepsilon}} \rightharpoonup Z^{1}: = (Z^1_1, Z^1_2) { ~weakly~ in~ } {\left[L^{2}(\Omega)\right]^{2}}, \\ {\mbox{iii) }} \| Z^0_\varepsilon \|_{H^\varepsilon_{\gamma}} \leq C, \end{array} \right. \end{equation} $ | (4.13) |
with
$ \begin{equation} \left(\widetilde{g_{1\varepsilon}}, \widetilde{g_{2\varepsilon}}\right)\rightharpoonup (g_1, g_2) \, \, {weakly~ in} \, L^{2}\left(0, T;\left[L^{2}\left(\Omega\right)\right]^2\right). \end{equation} $ | (4.14) |
Under the assumptions
$ P_1^\varepsilon \in {\mathcal L} (L^{\infty} (0, T;H^k(\Omega _{1}^{\varepsilon })); L^{\infty} (0, T;H^k (\Omega))), $ |
for
$ \begin{equation*} \label{convp} \left\{ \begin{array}{@{}ll} P_1^\varepsilon z_{1\varepsilon} \rightharpoonup z_{1}& ~weakly*~ in~ {L^{\infty} \left(0, T;H_0^1(\Omega)\right) }, \\ \widetilde{z_{1\varepsilon}}\rightharpoonup \theta_1z_1&~weakly*~ in~ L^{\infty} \left(0, T;L^2(\Omega)\right), \\ \widetilde{z_{2\varepsilon}}\rightharpoonup \theta_2z_1&~weakly*~ in~ L^{\infty} \left(0, T;L^2(\Omega)\right), \end{array} \right. \end{equation*} $ |
$ \begin{equation*} \label{convp'} \left\{ \begin{array}{@{}ll} P_1^\varepsilon {z_{1\varepsilon}'}\rightharpoonup z'_1 &weakly*~ in~ {L^{\infty}\left(0, T;L^2 (\Omega)\right) }, \\ \widetilde{z_{1\varepsilon}'}\rightharpoonup \theta_1z'_1 &weakly*~ in~{L^{\infty} \left(0, T;L^2 (\Omega)\right) }, \\ \widetilde{z_{2\varepsilon}'}\rightharpoonup \theta_2z'_1&weakly*~ in~{L^{\infty} \left(0, T;L^2 (\Omega)\right) } \end{array} \right. \end{equation*} $ |
where
$ \begin{equation*} \label{eq2.17} \left\{\begin{array}{@{}ll} z''_1 - {\rm div}\; \left(A_{\gamma}^0\nabla z_1\right) = g_1 + g_2 &in~ {\Omega \times ]0, T[}, \\ z_1 = 0 & on~\partial \Omega\times ]0, T[, \\ z_1(0) = Z^0_1+ Z^0_2 & in~\Omega, \\ z'_1(0) = Z^1_1+Z^1_2 & in~ \Omega. \end{array} \right. \end{equation*} $ |
Moreover
$ \begin{equation*} \label{eq2.1666} A^\varepsilon \widetilde{\nabla z_{1\varepsilon}}+A^\varepsilon \widetilde{\nabla z_{2\varepsilon}}\rightharpoonup A_{\gamma}^0 \nabla z_{1}\quad weakly* ~in~ {L^{\infty} \left(0, T;L^2(\Omega)\right)}. \end{equation*} $ |
The homogenized matrix
Remark 4.6. Let us observe that (see for instance [9])
$ \begin{equation} A_{\gamma}^0\in M\left(\alpha, \beta, \Omega\right), \end{equation} $ | (4.15) |
where
In order to prove Theorem 4.3, we need to study the homogenization of another evolution imperfect transmission problem with less regular initial data (see Subsection 4.2).
More precisely, for
$ \begin{equation} \left\{ \begin{array}{@{}ll} \varphi_{1\varepsilon}'' - \text{div} (A^{\varepsilon} \nabla \varphi_{1\varepsilon} ) = 0 & \text{in } \Omega_{1}^{ \varepsilon} \times ]0, T[, \\ \varphi_{2\varepsilon}'' - {div} (A^{\varepsilon} \nabla \varphi_{2\varepsilon} ) = 0 & \text{in } \Omega_{2}^{\varepsilon} \times ]0, T[, \\ A^{\varepsilon} \nabla \varphi_{1\varepsilon} \cdot n_{1 \varepsilon} = -A^{\varepsilon} \nabla \varphi_{2\varepsilon} \cdot n_{2 \varepsilon} & \text{on } \Gamma^{\varepsilon}\times ]0, T[, \\ A^{\varepsilon} \nabla \varphi_{1\varepsilon} \cdot n_{1 \varepsilon} = -\varepsilon^{\gamma}h^{\varepsilon}(\varphi_{1\varepsilon}-\varphi_{2\varepsilon}) & \text{on } \Gamma^{\varepsilon}\times ]0, T[, \\ \varphi_{1\varepsilon} = 0 & \text{on } \partial \Omega \times ]0, T[, \\ \varphi_{1\varepsilon}(0) = \varphi_{1 \varepsilon}^0, \quad \varphi'_{1\varepsilon}(0) = \varphi_{1 \varepsilon}^1 & \text{in } \Omega _{1}^{\varepsilon }, \\ \varphi_{2\varepsilon}(0) = \varphi^0_{2\varepsilon}, \quad \varphi'_{2\varepsilon}(0) = \varphi_{2 \varepsilon}^1 & \text{in } \Omega_{2}^{\varepsilon}, \end{array} \right. \end{equation} $ | (4.16) |
where
$ \begin{equation} \left\{ \begin{array}{@{}ll} \mbox{i) } \varphi^{0}_{\varepsilon}: = \left( \varphi^0_{ 1 \varepsilon}, \varphi^0_{ 2 \varepsilon}\right)\in L_{\varepsilon}^{2}(\Omega), \\ \mbox{ii) } \varphi^{1}_{\varepsilon}: = \left( \varphi^1_{ 1 \varepsilon}, \varphi^1_{ 2 \varepsilon}\right)\in (H_{\gamma}^{\varepsilon})'. \end{array}\right. \end{equation} $ | (4.17) |
Since the initial data are in a weak space, in order to give an appropriate definition of weak solution of problem (4.16), one needs to apply the so called transposition method (see [46], Chapter 3, Section 9, Theorems 9.3 and 9.4) to obtain a unique solution
$ \begin{equation} \|\varphi_\varepsilon\|_{L^\infty(0, T; L^2_\varepsilon(\Omega))}+ \|\varphi'_\varepsilon\|_{L^\infty(0, T; (H_{\gamma}^{\varepsilon})') }\leq C( \|\varphi^0_\varepsilon\|_{L^2_\varepsilon(\Omega)}+ \|\varphi^1_\varepsilon\|_{(H_{\gamma}^{\varepsilon})' }), \end{equation} $ | (4.18) |
with
Assume that the initial data satisfy
$ \begin{equation} \left\{ \begin{array}{@{}ll} \mbox{i) } \widetilde{\varphi^{0}_{\varepsilon}}\rightharpoonup \varphi^{0}: = \left(\varphi_1^{0}, \varphi_2^{0}\right)\, \, \text{weakly in}\, (L^{2}(\Omega))^{2}, \\ \mbox{ii) }\| \varphi^{1}_{\varepsilon}\|_{(H^\varepsilon_{\gamma})'} \leq C, \end{array} \right. \end{equation} $ | (4.19) |
with
The results of Theorem 4.5 can't be applied directly to problem (4.16), hypotheses (4.17) and (4.19) being too weak, but, thanks to the homogenization results of Section 3, we overcome the difficulty and prove the following new result.
Theorem 4.7. Let
$ \begin{equation} \begin{array}{c} \widetilde{\varphi_{1\varepsilon}}\rightharpoonup \theta_1\varphi_{1}\, \, \, \mathit{\text{in}}\, L^{2}\left(0, T;L^{2}(\Omega)\right)\\ \widetilde{\varphi_{2\varepsilon}}\rightharpoonup \theta_2\varphi_{1} \, \, \, \mathit{\text{in}}\, L^{2}\left(0, T;L^{2}(\Omega)\right), \end{array} \end{equation} $ | (4.20) |
where
$ \begin{equation} \left\{\begin{array}{@{}ll} \varphi_1'' - {\rm div}\; \left(A_{\gamma}^0\nabla \varphi_1\right) = 0 &in~ {\Omega \times ]0, T[}, \\ \varphi_1 = 0 & on~\partial \Omega\times ]0, T[, \\ \varphi_1(0) = \varphi^0_1+ \varphi^0_2 & in~\Omega, \\ \varphi_1'(0) = \varphi^* & in~ \Omega. \end{array} \right. \end{equation} $ | (4.21) |
The homogenized matrix
Proof. Estimate (4.18) and hypothesis (4.19) provide the existence of two functions
$ \begin{equation} \begin{array}{c} \widetilde{\varphi_{1\varepsilon}}\rightharpoonup \bar{\varphi}\, \, \, \text{in}\, L^{2}\left(0, T;L^{2}(\Omega)\right), \\ \widetilde{\varphi_{2\varepsilon}}\rightharpoonup \varphi_{2} \, \, \, \text{in}\, L^{2}\left(0, T;L^{2}(\Omega)\right). \end{array} \end{equation} $ | (4.22) |
Let
$ \begin{equation} \left\{ \begin{array}{@{}ll} - \text{div} (A^{\varepsilon} \nabla \xi_{1\varepsilon} ) = -\varphi^{1}_{1\varepsilon} & \text{in } \Omega_{1}^{ \varepsilon} , \\ - {div} (A^{\varepsilon}\nabla \xi_{2\varepsilon} ) = -\varphi^{1}_{2\varepsilon} & \text{in } \Omega_{2}^{\varepsilon} , \\ A^{\varepsilon} \nabla \xi_{1\varepsilon} \cdot n_{1 \varepsilon} = -A^{\varepsilon} \nabla \xi_{2\varepsilon} \cdot n_{2 \varepsilon} & \text{on } \Gamma^{\varepsilon}, \\ A^{\varepsilon} \nabla \xi_{1\varepsilon} \cdot n_{1 \varepsilon} = -\varepsilon^{\gamma}h^{\varepsilon}(\xi_{1\varepsilon}-\xi_{2\varepsilon}) & \text{on } \Gamma^{\varepsilon}, \\ \xi_{1\varepsilon} = 0 & \text{on } \partial \Omega . \end{array} \right. \end{equation} $ | (4.23) |
By hypotheses (3.2)
$ \begin{equation} \left\{ \begin{array}{@{}ll} \mbox{i) } \widetilde{\xi_{1\varepsilon}}\rightharpoonup \theta_1\xi_1& \text{weakly in } L^2(\Omega), \\] \mbox{ii) } \widetilde{\xi_{2\varepsilon}}\rightharpoonup \theta_2\xi_1 & \text{weakly in } L^2(\Omega), \end{array} \right. \end{equation} $ | (4.24) |
with
$ \begin{equation} \left\{\begin{array}{@{}ll} - {\rm div}\; \left(A_{\gamma}^0\nabla \xi_1\right) = -\varphi^* & \text{in } {\Omega}, \\ \xi_1 = 0 & \text{on }\partial \Omega, \end{array} \right. \end{equation} $ | (4.25) |
where
$ \begin{equation} \sigma_{i\varepsilon}(x, t): = \int_{0}^{t}\varphi_{i\varepsilon}(x, s)ds + \xi_{i\varepsilon}(x), \, \, \, \, \, i = 1, 2. \end{equation} $ | (4.26) |
We do observe that this transformation leads to a system whose initial data are more regular than
$ \begin{equation} \left\{ \begin{array}{@{}ll} \sigma_{1\varepsilon}'' - \text{div} (A^{\varepsilon} \nabla \sigma_{1\varepsilon} ) = 0 & \text{in } \Omega_{1}^{ \varepsilon} \times ]0, T[, \\ \sigma_{2\varepsilon}'' - \text{div} (A^{\varepsilon} \nabla \sigma_{2\varepsilon} ) = 0 & \text{in } \Omega_{2}^{\varepsilon} \times ]0, T[, \\ A^{\varepsilon} \nabla \sigma_{1\varepsilon} \cdot n_{1 \varepsilon} = -A^{\varepsilon} \nabla \sigma_{2\varepsilon} \cdot n_{2 \varepsilon} & \text{on } \Gamma^{\varepsilon}\times ]0, T[, \\ A^{\varepsilon} \nabla \sigma_{1\varepsilon} \cdot n_{1 \varepsilon} = -\varepsilon^{\gamma}h^{\varepsilon}(\sigma_{1\varepsilon}-\sigma_{2\varepsilon}) & \text{on } \Gamma^{\varepsilon}\times ]0, T[, \\ \sigma_{1\varepsilon} = 0 & \text{on } \partial \Omega \times ]0, T[, \\ \sigma_{1\varepsilon}(0) = \xi_{1\varepsilon}, \quad \sigma'_{1\varepsilon}(0) = \varphi_{1 \varepsilon}^0 & \text{in } \Omega _{1}^{\varepsilon }, \\ \sigma_{2\varepsilon}(0) = \xi_{2\varepsilon}, \quad \sigma'_{2\varepsilon}(0) = \varphi_{2 \varepsilon}^0 & \text{in } \Omega_{2}^{\varepsilon}. \end{array} \right. \end{equation} $ | (4.27) |
Since
$ \begin{equation} \|\xi_\varepsilon\|_{H^{\varepsilon}_{\gamma}}\leq C \end{equation} $ | (4.28) |
with
By (4.19) i), (4.24) and (4.28) we can apply Theorem 4.5 to system (4.27) obtaining in particular
$ \begin{equation} \left\{ \begin{array}{@{}ll} \mbox{i) } \widetilde{\sigma_{1\varepsilon}}\rightharpoonup \theta_1\sigma_1& \text{weakly in } L^2(0, T; L^2(\Omega)), \\ \mbox{ii) } \widetilde{\sigma'_{1\varepsilon}}\rightharpoonup \theta_1\sigma'_1 & \text{weakly in } L^2(0, T; L^2(\Omega)), \\ \mbox{iii) } \widetilde{\sigma_{2\varepsilon}}\rightharpoonup \theta_2\sigma_1& \text{weakly in } L^2(0, T; L^2(\Omega)), \\ \mbox{iv) } \widetilde{\sigma'_{2\varepsilon}}\rightharpoonup \theta_2\sigma'_1 & \text{weakly in } L^2(0, T; L^2(\Omega)), \end{array} \right. \end{equation} $ | (4.29) |
where
$ \begin{equation} \left\{\begin{array}{@{}ll} \sigma''_1 - {\rm div}\; \left(A_{\gamma}^0\nabla \sigma_1\right) = 0 & \text{in } {\Omega \times ]0, T[}, \\ \sigma_1 = 0 & \text{on }\partial \Omega\times ]0, T[, \\ \sigma_1(0) = \xi_1 & \text{in }\Omega, \\ \sigma'_1(0) = \varphi^0_1+\varphi^0_2 & \text{in } \Omega. \end{array} \right. \end{equation} $ | (4.30) |
By (4.26) it results
$ \begin{equation} \widetilde{\sigma'_{i\varepsilon}} = \widetilde{\varphi_{i\varepsilon}}, \, \, \, \, \, i = 1, 2. \end{equation} $ | (4.31) |
Hence (4.22), (4.29) ⅱ) and (4.29) ⅳ), by passing to the limit in (4.31), provide
By classical regularity results for hyperbolic equations we have
$ \sigma_{1}\in C\left([0, T];H^{1}_{0}(\Omega)\right)\cap C^{1}\left([0, T];L^{2}(\Omega)\right)\cap C^{2}\left([0, T];H^{-1}(\Omega)\right). $ |
Hence, by (4.25) and (4.30)
$ \begin{equation*} \sigma_{1}''(0) = {\rm div}\; \left(A_{\gamma}^0\nabla \sigma_1(0)\right) = {\rm div}\; \left(A_{\gamma}^0\nabla \xi_1\right) = \varphi^*. \end{equation*} $ |
Therefore, the function
Now the proof is complete.
The proof of the main result of this section developes into two steps. At first we prove the null controllability (or equivalently the exact controllability, see Remark 4.2) of problem (4.1), by using HUM (Hilbert Uniqueness Method), a constructive method introduced by Lions in [44,45]. As already observed, the idea is to build a control as the solution of a transposed problem associated to some suitable initial conditions. These initial conditions are obtained by calculating at zero time the solution of a backward problem. The crucial point is constructing an isomorphism between
In the second step, having in mind the homogenization result of the previous subsection (see Theorem 4.5), we show that the exact control of the problem at
Step1. Let us start by proving that there exists a control
$ \begin{equation} u_{\varepsilon}(T) = u'_{\varepsilon}(T) = 0, \end{equation} $ | (4.32) |
see Definition 4.1 and Remark 4.2. To this aim, let
$ \begin{equation} \left\{ \begin{array}{@{}ll} \psi_{2\varepsilon}'' - \text{div} (A^{\varepsilon} \nabla \psi_{1\varepsilon} ) = - \varphi_{1\varepsilon} & \text{in } \Omega_{1}^{ \varepsilon} \times ]0, T[, \\ \psi_{2\varepsilon}'' - \text{div} (A^{\varepsilon} \nabla \psi_{2\varepsilon} ) = - \varphi_{2\varepsilon} & \text{in } \Omega_{2}^{\varepsilon}\times ]0, T[, \\ A^{\varepsilon} \nabla \psi_{1\varepsilon} \cdot n_{1 \varepsilon} = -A^{\varepsilon} \nabla \psi_{2\varepsilon} \cdot n_{2 \varepsilon} & \text{on } \Gamma^{\varepsilon}\times ]0, T[, \\ A^{\varepsilon} \nabla \psi_{1\varepsilon} \cdot n_{1 \varepsilon} = -\varepsilon^{\gamma}h^{\varepsilon}(\psi_{1\varepsilon}-\psi_{2\varepsilon}) & \text{on } \Gamma^{\varepsilon}\times ]0, T[, \\ \psi_{1\varepsilon} = 0 & \text{on } \partial \Omega \times ]0, T[, \\ \psi_{1\varepsilon}(T) = \psi'_{1\varepsilon}(T) = 0 & \text{in } \Omega_{1}^{ \varepsilon}, \\ \psi_{2\varepsilon}(T) = \psi'_{2\varepsilon}(T) = 0 & \text{in } \Omega_{2}^{\varepsilon}, \end{array} \right. \end{equation} $ | (4.33) |
where
As previously, for clearness sake, we denote by
$ \psi_\varepsilon(\varphi_\varepsilon): = (\psi_{1\varepsilon}(\varphi_\varepsilon), \psi_{2\varepsilon}(\varphi_\varepsilon))\in C\left([0, T];H^{\varepsilon}_{\gamma}\right)\cap C^{1}\left([0, T];L^{2}_\varepsilon(\Omega)\right) $ |
the unique solution of problem (4.33) and, where no ambiguity arises, we omit the explicit dependence on the right hand member. Then we introduce the linear operator
$ \begin{equation} {\mathcal L}_\varepsilon :L^{2}_\varepsilon(\Omega) \times \left(H^{\varepsilon}_{\gamma}\right)'\rightarrow L^{2}_\varepsilon(\Omega) \times H^{\varepsilon}_{\gamma} \end{equation} $ | (4.34) |
by setting for all
$ \begin{equation} {\mathcal L}_\varepsilon \left(\varphi^{0}_{\varepsilon}, \varphi^{1}_{\varepsilon}\right) = \left(\psi_\varepsilon'(0), -\psi_\varepsilon(0)\right). \end{equation} $ | (4.35) |
Following exactly the same argument as in [36] for the case
$ \begin{equation} \left\|{\mathcal L}^{-1}_\varepsilon\right\|_{\mathcal{L}\left(L^{2}_\varepsilon(\Omega)\times H^{\varepsilon}_{\gamma};L^{2}_\varepsilon(\Omega)\times (H^{\varepsilon}_{\gamma})'\right)}\leq C, \end{equation} $ | (4.36) |
with
Let now
$ \begin{equation} \left(\Phi^{0}_{\varepsilon}, \Phi^{1}_{\varepsilon}\right) = {\mathcal L}^{-1}_\varepsilon\left(U^{1}_\varepsilon, -U^{0}_\varepsilon\right). \end{equation} $ | (4.37) |
Denote
$ \begin{equation} \zeta_{\varepsilon}^{ex}: = -\Phi_\varepsilon, \end{equation} $ | (4.38) |
where
$ \begin{equation} u_\varepsilon(\zeta_{\varepsilon}^{ex}) = \Psi_\varepsilon, \end{equation} $ | (4.39) |
which implies (4.32). Hence
Step2. Let now
$ \begin{equation} \|(\Phi^{0}_{\varepsilon}, \Phi^{1}_{\varepsilon})\|_{L^{2}_{\varepsilon}(\Omega)\times \left(H_{\gamma}^{\varepsilon}\right)'}\leq C, \end{equation} $ | (4.40) |
with
$ \begin{equation} \widetilde{\Phi^{0}_{\varepsilon}}\rightharpoonup \Phi^{0}\, \, \text{weakly in}\, [L^{2}(\Omega)]^{2}. \end{equation} $ | (4.41) |
Now we can apply Theorem 4.7 to system (4.16) for the choice
$ \begin{equation} \begin{array}{c} \widetilde{\Phi_{1\varepsilon}}\rightharpoonup \theta_1\Phi_{1}\, \, \, \text{in}\, L^{2}\left(0, T;L^{2}(\Omega)\right)\\ \widetilde{\Phi_{2\varepsilon}}\rightharpoonup \theta_2\Phi_{1} \, \, \, \text{in}\, L^{2}\left(0, T;L^{2}(\Omega)\right), \end{array} \end{equation} $ | (4.42) |
where
$ \begin{equation} \left\{\begin{array}{@{}ll} \Phi_1'' - {\rm div}\; \left(A_{\gamma}^0\nabla \Phi_1\right) = 0 & \text{in } {\Omega \times ]0, T[}, \\ \Phi_1 = 0 & \text{on }\partial \Omega\times ]0, T[, \\ \Phi_1(0) = \Phi^0_1+ \Phi^0_2 & \text{in }\Omega, \\ \Phi_1'(0) = \Phi^* & \text{in } \Omega. \end{array} \right. \end{equation} $ | (4.43) |
The homogenized matrix
Observe that, as a result of (4.38) and (4.42), we get, up to a subsequence, still denoted
$ \begin{equation} \left\lbrace \begin{array}{@{}ll} \widetilde{\zeta_{1\varepsilon}^{ex}}\rightharpoonup -\theta_1\Phi_1& \text{weakly in }L^{2}(0, T;L^{2}(\Omega)), \\ \widetilde{\zeta_{2\varepsilon}^{ex}}\rightharpoonup -\theta_2\Phi_1& \text{weakly in }L^{2}(0, T;L^{2}(\Omega)). \end{array} \right. \end{equation} $ | (4.44) |
Let now pass to the limit, as
$ \begin{equation} \left\{ \begin{array}{@{}ll} P_1^\varepsilon u_{1\varepsilon}(\zeta_{\varepsilon}^{ex}) \rightharpoonup u_{1}(\Phi_1)& \text{weakly* in } {L^{\infty} \left(0, T;H_0^1(\Omega)\right) }, \\ \widetilde{u_{1\varepsilon}(\zeta_{\varepsilon}^{ex})}\rightharpoonup \theta_1u_1(\Phi_1)& \text{weakly* in } L^{\infty} \left(0, T;L^2(\Omega)\right), \\ \widetilde{u_{2\varepsilon}(\zeta_{\varepsilon}^{ex})}\rightharpoonup \theta_{2} u_{1}(\Phi_1)& \text{weakly* in } L^{\infty} \left(0, T;L^2(\Omega)\right), \end{array} \right. \end{equation} $ | (4.45) |
$ \begin{equation} \left\{ \begin{array}{@{}ll} P_1^\varepsilon {u_{1\varepsilon}'}(\zeta_{\varepsilon}^{ex})\rightharpoonup u'_1(\Phi_1) & \text{weakly* in } {L^{\infty}\left(0, T;L^2 (\Omega)\right) }, \\ \widetilde{u_{1\varepsilon}'(\zeta_{\varepsilon}^{ex})}\rightharpoonup \theta_1 u'_1(\Phi_1) & \text{weakly* in }{L^{\infty} \left(0, T;L^2 (\Omega)\right) }, \\ \widetilde{u_{2\varepsilon}'(\zeta_{\varepsilon}^{ex})}\rightharpoonup \theta_{2} u'_{1}(\Phi_1)& \text{weakly* in }{L^{\infty} \left(0, T;L^2 (\Omega)\right) }, \end{array} \right. \end{equation} $ | (4.46) |
where
$ \begin{equation} \left\{\begin{array}{@{}ll} u''_1 - {\rm div}\; \left(A_{\gamma}^0\nabla u_1\right) = -\Phi_1& \text{in } { \Omega \times ]0, T[}, \\ u_1 = 0 & \text{on }\partial \Omega\times ]0, T[, \\ u_1(0) = U^0_1+ U^0_2 & \text{in }\Omega, \\ u'_1(0) = U^1_1+U^1_2 & \text{in } \Omega. \end{array} \right. \end{equation} $ | (4.47) |
On the other hand, by (4.42) and Theorem 4.5, we can pass to the limit in the backward problem (4.33) with
$ \begin{equation} \left\{ \begin{array}{@{}ll} P_1^\varepsilon \Psi_{1\varepsilon}(\Phi_\varepsilon) \rightharpoonup \Psi_{1}(\Phi_1)& \text{weakly* in } {L^{\infty} \left(0, T;H_0^1(\Omega)\right) }, \\ \widetilde{\Psi_{1\varepsilon}(\Phi_\varepsilon)}\rightharpoonup \theta_1\psi_1(\Phi_1) & \text{weakly* in } L^{\infty} \left(0, T;L^2(\Omega)\right), \\ \widetilde{\Psi_{2\varepsilon}(\Phi_\varepsilon)}\rightharpoonup \theta_2\psi_1(\Phi_1) & \text{weakly* in } L^{\infty} \left(0, T;L^2(\Omega)\right), \end{array} \right. \end{equation} $ | (4.48) |
$ \begin{equation} \left\{ \begin{array}{@{}ll} P_1^\varepsilon {\Psi_{1\varepsilon}'}(\Phi_\varepsilon)\rightharpoonup \psi'_1(\Phi_1) & \text{weakly* in } {L^{\infty}\left(0, T;L^2 (\Omega)\right) }, \\ \widetilde{\Psi_{1\varepsilon}'(\Phi_\varepsilon)}\rightharpoonup \theta_1 \psi'_1(\Phi_1) & \text{weakly* in }{L^{\infty} \left(0, T;L^2 (\Omega)\right) }, \\ \widetilde{\Psi_{2\varepsilon}'(\Phi_\varepsilon)}\rightharpoonup \theta_2\psi'_1(\Phi_1) & \text{weakly* in }{L^{\infty} \left(0, T;L^2 (\Omega)\right) }, \end{array} \right. \end{equation} $ | (4.49) |
where
$ \begin{equation} \left\{ \begin{array}{@{}ll} \Psi_{1}'' - {div} (A^{0}_{\gamma} \nabla \Psi_{1} ) = -\Phi_{1} & \text{in } \Omega\times ]0, T[, \\ \Psi_{1} = 0 & \text{on } \partial \Omega \times ]0, T[, \\ \Psi_{1}(T) = \Psi'_{1}(T) = 0 & \text{in } \Omega. \end{array} \right. \end{equation} $ | (4.50) |
By (4.39), (4.45) and (4.48), we get
$ \begin{equation} \Psi_1 = u_1 \end{equation} $ | (4.51) |
and, since both
$ \begin{equation} u_1(T) = u'_1(T) = 0. \end{equation} $ | (4.52) |
Therefore
$ \begin{equation} \zeta_1^{ex}: = -\Phi_1 \end{equation} $ | (4.53) |
is an exact control for problem (4.47). On the other hand, if we apply HUM method directly to problem (4.47), in view of classical arguments about exact controllability of hyperbolic problem in fixed domains, (see [44,45]), by considering problems (4.43) and (4.50), we construct an isomorphism
$ \begin{equation*} \label{HUM} {\mathcal L}\left(\Phi^{0}_{1}+\Phi^{0}_{2}, \Phi^{*}\right) = \left(\Psi_1(0), -\Psi_1'(0)\right). \end{equation*} $ |
By (4.51) we get
$ \left(\Phi^{0}_{1}+\Phi^{0}_{2}, \Phi^{*}\right) = {\mathcal L}^{-1}\left(U^{1}_{1}+U^{1}_{2}, -(U^{0}_{1}+U^{0}_{2})\right). $ |
This identifies
Theorem 4.3 is now completely proved.
The authors warmly thank Patrizia Donato for helpful suggestions and comments.
[1] |
Macroscopic modelling of heat transfer in composites with interfacial thermal barrier. Internat. J. Heat Mass Transfer (1994) 37: 2885-2892. ![]() |
[2] | A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978. |
[3] | Homogenization of diffusion in composite media with interfacial barrier. Rev. Roumaine Math. Pures Appl. (1999) 44: 23-36. |
[4] | Estimates in homogenization of degenerate elliptic equations by spectral method. Asymptot. Anal. (2013) 81: 189-209. |
[5] | (1947) Conduction of Heat in Solids. Oxford: At the Clarendon Press. |
[6] |
D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585–1620. doi: 10.1137/080713148
![]() |
[7] |
The periodic unfolding method in domains with holes. SIAM J. Math. Anal. (2012) 44: 718-760. ![]() |
[8] | Exact internal controllability in perforated domains. J. Math. Pures. Appl (1989) 68: 185-213. |
[9] | (1999) An Introduction to Homogenization. New York: Oxford Lecture Ser. Math., Appl. 17, Oxford University Press. |
[10] | The periodic unfolding method in perforated domains. Portugaliae Mathematica (2006) 63: 467-496. |
[11] | Exact boundary controllability for the wave equation in domains with small holes. J. Math. Pures. Appl. (1992) 71: 343-377. |
[12] |
Homogenization in open sets with holes. J. Math. Anal. Appl. (1979) 71: 590-607. ![]() |
[13] |
Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains. Ann. I. H. Poincaré (2004) 21: 445-486. ![]() |
[14] |
Optimal control for a parabolic problem in a domain with higly oscillating boundary. Appl. Anal. (2004) 83: 1245-1264. ![]() |
[15] |
Optimal control problem for an anisotropic parabolic problem in a domain with very rough boundary. Ric. Mat. (2014) 63: 307-328. ![]() |
[16] |
Optimal control for a second-order linear evolution problem in a domain with oscillating boundary. Complex Var. Elliptic Equ. (2015) 6: 1392-1410. ![]() |
[17] | Exact internal controllability for a hyperbolic problem in a domain with highly oscillating boundary. Asymptot. Anal. (2013) 83: 189-206. |
[18] |
Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evol. Equ. Control Theory (2015) 4: 325-346. ![]() |
[19] | Some corrector results for composites with imperfect interface. Rend. Mat. Ser. Ⅶ (2006) 26: 189-209. |
[20] |
P. Donato, Homogenization of a class of imperfect transmission problems, in Multiscale Problems: Theory, Numerical Approximation and Applications doi: 10.1142/9789814366892_0001
![]() |
[21] |
Homogenization of the wave equation in composites with imperfect interface: A memory effect. J. Math. Pures Appl. (2007) 87: 119-143. ![]() |
[22] |
Correctors for the homogenization of a class of hyperbolic equations with imperfect interfaces. SIAM J. Math. Anal. (2009) 40: 1952-1978. ![]() |
[23] |
Corrector results for a parabolic problem with a memory effect. ESAIM: Math. Model. Numer. Anal. (2010) 44: 421-454. ![]() |
[24] |
Asymptotic behavior of the approximate controls for parabolic equations with interfacial contact resistance. ESAIM Control Optim. Calc. Var. (2015) 21: 138-164. ![]() |
[25] | Approximate controllability of a parabolic system with imperfect interfaces. Philipp. J. Sci. (2015) 144: 187-196. |
[26] |
The periodic unfolding method for a class of imperfect trasmission problems. J. Math. Sci. (2011) 176: 891-927. ![]() |
[27] |
Homogenization of diffusion problems with a nonlinear interfacial resistance. Nonlinear Differ. Equ. Appl. (2015) 22: 1345-1380. ![]() |
[28] |
Homogenization of two heat conductors with interfacial contact resistance. Anal. Appl. (2004) 2: 247-273. ![]() |
[29] |
Homogenization of a class of singular elliptic problems in perforated domains. Nonlinear Anal. (2018) 173: 180-208. ![]() |
[30] |
Approximate controllability of linear parabolic equations in perforated domains. ESAIM Control Optim. Calc. Var. (2001) 6: 21-38. ![]() |
[31] |
Homogenization and behaviour of optimal controls for the wave equation in domains with oscillating boudary. Nonlinear Differ. Equ. Appl. (2007) 14: 455-489. ![]() |
[32] |
Asymptotic analysis of an optimal control problem involving a thick two-level junction with alternate type of controls. J. Optim. Th. and Appl. (2010) 144: 205-225. ![]() |
[33] |
Homogenization of quasilinear optimal control problems involving a thick multilevel junction of type 3:2:1. ESAIM Control Optim. Calc. Var. (2012) 18: 583-610. ![]() |
[34] |
L. Faella and S. Monsurrò, Memory effects arising in the homogenization of composites with inclusions, in Topics on Mathematics for Smart System doi: 10.1142/9789812706874_0008
![]() |
[35] | Homogenization of imperfect transmission problems: The case of weakly converging data. Differential Integral Equations (2018) 31: 595-620. |
[36] |
Exact controllability for an imperfect transmission problem. J. Math. Pures Appl. (2019) 122: 235-271. ![]() |
[37] |
L. Faella and C. Perugia, Homogenization of a Ginzburg-Landau problem in a perforated domain with mixed boundary conditions, Bound. Value Probl., 2014 (2014), 28pp. doi: 10.1186/s13661-014-0223-2
![]() |
[38] |
L. Faella and C. Perugia, Optimal control for evolutionary imperfect transmission problems, Bound. Value Probl., 2015 (2015), 16pp. doi: 10.1186/s13661-015-0310-z
![]() |
[39] |
Optimal control for a hyperbolic problem in composites with imperfect interface: A memory effect. Evol. Equ. Control Theory (2017) 6: 187-217. ![]() |
[40] |
Null controllability of the semilinear heat equation. ESAIM Control Optim. Calc. Var. (1997) 2: 87-103. ![]() |
[41] |
Homogenization for heat transfer in polycristals with interfacial resistances. Appl. Anal. (2000) 75: 403-424. ![]() |
[42] |
A. M. Khludnev, L. Faella and C. Perugia, Optimal control of rigidity parameters of thin inclusions in composite materials, Z. Angew. Math. Phys., 68 (2017), Art. 47, 12 pp. doi: 10.1007/s00033-017-0792-x
![]() |
[43] |
Exact controllability for semilinear wave equations. J. Math. Anal. Appl. (2000) 250: 589-597. ![]() |
[44] | Contrôlabilité Exacte et Homogénéisation, I. Asymptotic Anal. (1988) 1: 3-11. |
[45] | J. L. Lions, Contrôlabilité Exacte, Stabilization at Perturbations De Systéms Distributé, Tomes 1, 2, Massonn, RMA, 829, 1988. |
[46] | J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol I, Springer-Verlag Berlin Heidelberg, New York, 1972. |
[47] |
Heat conduction in fine scale mixtures with interfacial contact resistance. SIAM J. Appl. Math. (1998) 58: 55-72. ![]() |
[48] |
Composite with imperfect interface. Proc. R. Soc. Lond. Ser. A (1996) 452: 329-358. ![]() |
[49] | Homogenization of a two-component composite with interfacial thermal barrier. Adv. Math. Sci. Appl. (2003) 13: 43-63. |
[50] | Erratum for the paper "Homogenization of a two-component composite with interfacial thermal barrier". Adv. Math. Sci. Appl. (2004) 14: 375-377. |
[51] | S. Monsurrò, Homogenization of a composite with very small inclusions and imperfect interface, in Multiscale problems and asymptotic analysis, GAKUTO Internat. Ser. Math. Sci. Appl., 24, Gakkotosho, Tokyo, (2006), 217–232. |
[52] |
Homogenization of low-cost control problems on perforated domains. J. Math. Anal. Appl. (2009) 351: 29-42. ![]() |
[53] |
Asymptotic analysis of Neumann periodic optimal boundary control problem. Math. Methods Appl. Sci. (2016) 39: 4354-4374. ![]() |
[54] |
Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method. Commun. Pure Appl. Anal. (2014) 13: 249-272. ![]() |
[55] |
The periodic unfolding method for a class of parabolic problems with imperfect interfaces. ESAIM Math. Model. Numer. Anal. (2014) 48: 1279-1302. ![]() |
[56] | E. Zuazua, Exact boundary controllability for the semilinear wave equation, in Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vol. X (Paris, 1987–1988), Pitman Res. Notes Math. Ser., 220, Longman Sci. Tech., Harlow, 1991, 357–391. |
[57] | Approximate controllability for linear parabolic equations with rapidly oscillating coefficients. Control Cybernet. (1994) 23: 793-801. |
[58] |
Controllability of partial differential equations and its semi-discrete approximations. Discrete Contin. Dyn. Syst. (2002) 8: 469-513. ![]() |
1. | S. Monsurrò, A. K. Nandakumaran, C. Perugia, A note on the exact boundary controllability for an imperfect transmission problem, 2021, 0035-5038, 10.1007/s11587-021-00625-w | |
2. | S. Monsurrò, A. K. Nandakumaran, C. Perugia, Exact Internal Controllability for a Problem with Imperfect Interface, 2022, 85, 0095-4616, 10.1007/s00245-022-09843-6 | |
3. | Carmen Perugia, 2023, 2849, 0094-243X, 410001, 10.1063/5.0162223 | |
4. | Sara Monsurrò, 2023, 2849, 0094-243X, 410002, 10.1063/5.0163438 |