Processing math: 71%

Homogenization and exact controllability for problems with imperfect interface

  • Received: 01 November 2018
  • 35B27, 35J25, 35Q93, 82B24, 93B05

  • The first aim of this paper is to study, by means of the periodic unfolding method, the homogenization of elliptic problems with source terms converging in a space of functions less regular than the usual $ L^2 $, in an $ \varepsilon $-periodic two component composite with an imperfect transmission condition on the interface. Then we exploit this result to describe the asymptotic behaviour of the exact controls and the corresponding states of hyperbolic problems set in composites with the same structure and presenting the same condition on the interface. The exact controllability is developed by applying the Hilbert Uniqueness Method, introduced by J. -L. Lions, which leads us to the construction of the exact controls as solutions of suitable transposed problem.

    Citation: Sara Monsurrò, Carmen Perugia. Homogenization and exact controllability for problems with imperfect interface[J]. Networks and Heterogeneous Media, 2019, 14(2): 411-444. doi: 10.3934/nhm.2019017

    Related Papers:

    [1] Sara Monsurrò, Carmen Perugia . Homogenization and exact controllability for problems with imperfect interface. Networks and Heterogeneous Media, 2019, 14(2): 411-444. doi: 10.3934/nhm.2019017
    [2] Renata Bunoiu, Claudia Timofte . Homogenization of a thermal problem with flux jump. Networks and Heterogeneous Media, 2016, 11(4): 545-562. doi: 10.3934/nhm.2016009
    [3] Antonio DeSimone, Martin Kružík . Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks and Heterogeneous Media, 2013, 8(2): 481-499. doi: 10.3934/nhm.2013.8.481
    [4] Tom Freudenberg, Michael Eden . Homogenization and simulation of heat transfer through a thin grain layer. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025
    [5] Shi Jin, Min Tang, Houde Han . A uniformly second order numerical method for the one-dimensional discrete-ordinate transport equation and its diffusion limit with interface. Networks and Heterogeneous Media, 2009, 4(1): 35-65. doi: 10.3934/nhm.2009.4.35
    [6] Xavier Blanc, Claude Le Bris . Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5(1): 1-29. doi: 10.3934/nhm.2010.5.1
    [7] Hakima Bessaih, Yalchin Efendiev, Florin Maris . Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10(2): 343-367. doi: 10.3934/nhm.2015.10.343
    [8] Patrizia Donato, Florian Gaveau . Homogenization and correctors for the wave equation in non periodic perforated domains. Networks and Heterogeneous Media, 2008, 3(1): 97-124. doi: 10.3934/nhm.2008.3.97
    [9] Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111
    [10] Serge Nicaise, Cristina Pignotti . Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3(4): 787-813. doi: 10.3934/nhm.2008.3.787
  • The first aim of this paper is to study, by means of the periodic unfolding method, the homogenization of elliptic problems with source terms converging in a space of functions less regular than the usual $ L^2 $, in an $ \varepsilon $-periodic two component composite with an imperfect transmission condition on the interface. Then we exploit this result to describe the asymptotic behaviour of the exact controls and the corresponding states of hyperbolic problems set in composites with the same structure and presenting the same condition on the interface. The exact controllability is developed by applying the Hilbert Uniqueness Method, introduced by J. -L. Lions, which leads us to the construction of the exact controls as solutions of suitable transposed problem.



    Let $ \Omega $ be a domain of $ \mathbb{R}^n $, $ n\geq2 $, made up of a connected set $ \Omega_{1}^{ \varepsilon} $ and a disconnected one, $ \Omega_{2}^{\varepsilon} $, consisting of $ \varepsilon $-periodic connected inclusions of size $ \varepsilon $. Let $ \Gamma^{\varepsilon} = \partial \Omega_{2}^{\varepsilon} $ denote the interface separating the two sub-domains of $ \Omega $ and suppose that $ \partial\Omega\cap \Gamma_\varepsilon = \emptyset $ (see Figure 1).

    Figure 1.  The two-component domain $ \Omega $.

    In the first part of the paper, we consider the stationary heat equation in the two component composite modelized by $ \Omega $, assuming that on the interface $ \Gamma^{\varepsilon} $ the heat flux is proportional to the jump of the temperature field, by means of a function of order $ \varepsilon^\gamma $ (see Section 3, problem (3.1)). The order of magnitude of the parameter $ \gamma $, with respect to the period $ \varepsilon $, determines the influence of the thermal resistance in the heat exchange between the two materials (see [5] for the physical justification of the model). As observed by H.C. Hummel in [41], it is natural to suppose $ \gamma\leq 1 $, otherwise one cannot expect to have boundedness of the solutions.

    This interface problem was studied in [28,49,50] in the case of fixed source term in $ L^2 $ by the classical method of oscillating test functions due to L. Tartar (see also [9], Section 8.5). The authors proved that, as long as the interfacial resistance increases, one gets, at the limit, a composite where the two components become more and more isolated. More precisely, asymptotically, the composite behaves as in presence of just one temperature field. However, the effective thermal conductivity of the homogenized material changes according to $ \gamma $. Indeed,

    - for $ \gamma<-1 $, it is the one obtained in the case of a classical composite without barrier resistance;

    - for $ \gamma = -1 $, it also takes into account the contact barrier;

    - for $ -1<\gamma<1 $, it is the one obtained in the case of a perforated composite with no material occupying the inclusions;

    - for $ \gamma = 1 $, it is the same of the previous case, but an additional term depending on the interface resistance appears in the limit behaviour of the solution. This means that the heat exchange is not sufficient to spread out the interfacial contribution and the heat source inside the inclusions.

    Later on, in [26], the above results were recovered and completed by specifying the convergences of the flux by means of the periodic unfolding method, introduced for the first time by D. Cioranescu, A. Damlamian and G. Griso in [6].

    In [35], with the further assumption of symmetry of the coefficients' matrix, these results were extended, only for $ -1<\gamma\leq1 $, to the case of source terms converging in a space of functions less regular than the usual $ L^2 $, by using the classical method of oscillating test functions due to L. Tartar (see also [9], Section 8.5). Some difficulties arose when considering the remaining values of $ \gamma $.

    In this paper, our first aim is to overcome these difficulties by means of the periodic unfolding method and to conclude the asymptotic analysis started in [35] by considering the remaining cases $ \gamma < -1 $ and $ \gamma = -1 $.

    More precisely, in Theorems 3.14 and 3.18 (see also Corollaries 3.15 and 3.19), we prove that also in this framework, at the limit one gets the same effective thermal conductivities of [26,49]. Nevertheless, due to the less regularity of the source terms, a relevant difference appears. Indeed, here the heat source in the limit problem depends on subsequences of the heat sources at $ \varepsilon $-level (see Remarks 3.16 and 3.20). We remark that, if fixed right-hand members are considered, the homogenization results of this paper exacltly recover the ones of [26,49]. Moreover, we point out that the arguments used in this work can be easily adapted to the cases $ -1<\gamma<1 $ and $ \gamma = 1 $. In fact we improve the results of [35] since we don't require the coefficients' matrix to be symmetric anymore.

    Physically speaking, the weak data may model two different wiry heat sources positioned in the two components of the material, for $ n = 2 $, or two heat sources that can be represented as $ n-1 $-dimensional varieties, for $ n\geq 3 $.

    The above mentioned homogenization results with less regular source terms, interesting in itself, have as relevant application the study of the exact controllability of hyperbolic problems set in composites with the same structure and presenting the same jump condition on the interface, that cannot be performed at all using the results of [26,49].

    For an evolution problem, given a time interval $ [0, T] $, the exact controllability issue consists in asking if it is possible to act on the solutions, by means of a suitable control, in order to drive the system to a desired state at time $ T $, for all initial data. When homogenization processes are involved, a further interesting question arises: provided the exact controllabilities of the $ \varepsilon $-problems and of the homogenized one, do the exact controls and the corresponding states at $ \varepsilon $-level converge to the ones of the homogenized problem? Having in mind this question, the second aim of this paper is to study the asymptotic behaviour of the exact controls and the corresponding states of the wave equation in a medium made up of two components with very different coefficients of propagation, giving rise to the jump condition on the interface depending on $ \gamma $ (see Section 4, problem (4.1)). Taking into account the homogenization results of Section 3, in Theorem 4.3 we give a positive answer to the above question, for $ \gamma\leq -1 $. For the remaining cases of $ \gamma $ we refer the reader to [36].

    The plan of the paper is the following one. In Section 2, we describe in details the two component domain $ \Omega $. In Section 3, at first, we recall the definitions and the properties of specific functional spaces, suitable for the solutions of these kinds of interface problems, introduced in [21,23,28,49]. Then, we remind the definitions and the main properties of two unfolding operators for the two component domain $ \Omega $, defined for the first time in [7,26]. Finally, we develop the homogenization of the stationary imperfect transmission problem with less regular source term, by means of the periodic unfolding method. Section 4, is devoted to the study of the exact controllability of the hyperbolic imperfect transmission problem. Here we use a constructive method, known as Hilbert Uniqueness Method, introduced for the first time by Lions in [44,45]. The idea is to build the exact controls as the solutions of transposed problems associated to suitable initial conditions obtained by calculating at zero time the solutions of related backward problems. These controls, obtained by HUM, are also energy minimizing controls. More precisely, in Theorem 4.3, we describe the asymptotic behavior of the $ \varepsilon $-controllability problem. To this aim, at first, we recall the homogenization results of [21] for the wave equation in the same two component domain $ \Omega $ (cf. Theorem 4.5). Then, having in mind the transposed problem at $ \varepsilon $-level given by HUM method, we prove a homogenization result for the wave equation but with less regular initial data and zero right-hand member (cf. Theorem 4.7). This requires the asymptotic analysis of a stationary $ \varepsilon $-problem, with right-hand member converging in a space of functions less regular than the usual $ L^2 $, which is possible thanks to the results of Section 3. Finally we prove that the exact control of the problem at $ \varepsilon $-level and the corresponding state, converge, as $ \varepsilon\rightarrow 0 $, to the exact control and to the solution of the homogenized problem respectively.

    Similar elliptic homogenization problems and corrector results can be found in [1,3,19,20,28,41,47,48,49,50,51]. Different homogenization results for stationary problems in $ \varepsilon $-periodic perforated domains have been studied in [4,29,37]. For previous homogenization results in the case of weakly converging data, we quote Tartar (see [9], Proposition 8.17, Remark 8.18 and Theorem 8.19) and [13,52]. As regards evolution problems in domains with imperfect interface, we refer to [21,22,23,54,55].

    The exact controllability of hyperbolic problems with oscillating coefficients in fixed domains is treated in [44] and, in the case of perforated domains, in [8,11]. In [14]$ \div $[18], [31]$ \div $[33] and [53], the authors study the optimal control and exact controllability problems in domains with highly oscillating boundary. We refer the reader to [38,39] for the optimal control of hyperbolic problems in composites with imperfect interface and to [42] for the optimal control of rigidity parameters of thin inclusions in composite materials. We quote [23]$ \div $[25] and [34] for the correctors and the approximate control for a class of parabolic equations with interfacial contact resistance. In [30], the approximate controllability of linear parabolic equations in perforated domains is considered. In [57,58], the author treats the approximate controllability of a parabolic problem with highly oscillating coefficients in a fixed domain. Null controllability results for semilinear heat equations in a fixed domain can be found in [40], while the exact internal controllability and exact boundary controllability for semilinear wave equations are considered in [43] and [56], respectively.

    Let $ Y: = \prod_{i = 1}^n ]0, l_i[ $, $ n\geq 2 $, be the reference cell, where $ l_i $, for $ i = 1, \ldots, n $, are positive real numbers. Then, let $ Y_1 $ and $ Y_2 $ be two nonempty open and disjoint subsets of $ Y $ such that

    $ ¯Y2YY:=Y1¯Y2. $

    Moreover we suppose that $ Y_{1} $ is connected and $ \Gamma: = \partial {Y_{2}} $ is Lipschitz continuous.

    For any $ k \in \mathbb{Z}^{n} $, we denote by $ Y^{k}_{i} $ and $ \Gamma_{k} $ the following translated sets

    $ Y^{k}_{i}: = \ k_{l}+Y_{i}, i = 1, 2, \qquad \Gamma_{k}: = \ k_{l}+\Gamma, $

    where $ k_{l} = (k_1l_1, \ldots, k_nl_n) $. Moreover, for any given $ \varepsilon $, we set

    $ K^{\varepsilon}: = \ \{k\in \mathbb{Z}^{n}| \; \varepsilon \Gamma_{k}\cap\Omega\neq\emptyset\}, $

    where $ \varepsilon $ is a sequence of positive real numbers converging to zero.

    Let $ \Omega $ be a connected open bounded subset of $ \mathbb{R}^n $, we define

    $ \Omega_{i }^{\varepsilon}: = \ \Omega\cap\left\{\bigcup\limits_{k \in K^{\varepsilon} }\varepsilon Y^{k}_{i}\right\}, \; i = 1, 2, \quad \quad \Gamma^{\varepsilon}: = \partial \Omega_{2}^{\varepsilon} $

    and assume that

    $ Ω(kZn(εΓk))=. $ (2.1)

    We explicitly observe that, by construction, the set $ \Omega $ is decomposed into two components $ \Omega = \Omega_{1}^{ \varepsilon}\cup \overline{\Omega_{2}^{\varepsilon}} $ with $ \Omega_{1}^{ \varepsilon} $ connected and $ \Omega_{2}^{\varepsilon} $ a disconnected union of $ \varepsilon $-periodic disjoint translated sets of $ \varepsilon Y_2 $. In view of (2.1), the interface separating the two components, $ \Gamma^{\varepsilon} $, is such that $ \partial \Omega \cap \Gamma^{\varepsilon} = \emptyset $ (see Figure 1).

    Throughout the paper we denote by

    $ \widetilde{u} $: the zero extension to the whole $ \Omega $ of a function $ u $ defined on $ \Omega _{1}^{\varepsilon } $ or $ \Omega _{2}^{\varepsilon } $,

    $ \mathcal{\chi }_{E} $: the characteristic function of any measurable set $ E\subseteq\mathbb{R}^n $,

    $ \mathcal{M}_{E }\left( f\right) : = \dfrac{1}{\left\vert E \right\vert }\mathop{ \int}\nolimits_{E}f\; \; dx $, the average on E of any function $ f\in L^{1}\left(E\right) $.

    Let us recall (see for istance [9]) that, as $ \varepsilon\longrightarrow 0 $,

    $ χΩεiθi:=|Yi||Y|weakly inL2(Ω), for i=1,2, $ (2.2)

    $ \theta_{i} $ being the proportion of the material occupying $ \Omega_{i}^{ \varepsilon} $.

    Our first goal is to describe, for $ \gamma \leq -1 $, the asymptotic behavior, as $ \varepsilon \rightarrow 0 $, of the following stationary problem

    $ {div(Aεu1ε)=f1ε inΩε1,div(Aεu2ε)=f2ε in Ωε2,Aεu1εn1ε=Aεu2εn2ε on Γε,Aεu1εn1ε=εγhε(u1εu2ε) on Γε,u1ε=0 on Ω, $ (3.1)

    where $ n_{i\varepsilon} $ is the unitary outward normal to $ \Omega _{i}^{\varepsilon } $, i = 1, 2.

    We suppose that

    $ AM(α,β,Y) $ (3.2)

    for some $ \alpha, \beta \in \mathbb{R} $, $ 0<\alpha <\beta $, where $ M\left( \alpha, \beta, Y\right) $ is the set of the $ n\times n\; Y- $ periodic matrix-valued functions with bounded coefficients such that, for any $ \lambda \in \mathbb{R}^{n} $,

    $ {(Aλ,λ)α|λ|2a.e. in Y,|Aλ|β|λ|a.e. in Y. $ (3.3)

    We assume that

    $ {h is a Yperiodic function in L(Γ) andh0Rsuch that 0<h0<h(y) a.e. in Γ. $ (3.4)

    Moreover, for any fixed $ \varepsilon $, $ A^{\varepsilon }, h^{\varepsilon } $ are given by

    $ Aε(x)=A(xε)a.e. in Ω, $ (3.5)
    $ hε(x)=h(xε)a.e. on Γε. $ (3.6)

    In this subsection, we recall the definition and some useful properties of a class of functional spaces introduced for the first time in [49], and successively in [28], when studying the analogous stationary problem but with regular data (see also [19,23]). These spaces take into account the geometry of the domain where the material is confined as well as the boundary and interfacial conditions, hence they are suitable for the solutions of this particular kind of interface problems.

    Definition 3.01. [[49]] For every $ \gamma \in \mathbb{R} $, the Banach space $ H_{\gamma }^{\varepsilon } $ is defined by

    $ Hεγ:={u=(u1,u2)|u1Vε,u2H1(Ωε2)} $ (3.7)

    equipped with the norm

    $ u2Hεγ=u12L2(Ωε1)+u22L2(Ωε2)+εγu1u22L2(Γε) $ (3.8)

    where

    $ V^{\varepsilon }: = \left\{ \left. v\in H^{1}\left( \Omega _{1}^{\varepsilon }\right) \right\vert \; v = 0 \text{ on }\partial \Omega \right\} $

    is a Banach space endowed with the norm

    $ vVε=vL2(Ωε1), $ (3.9)

    see [12].

    The condition on $ \partial \Omega $ in the definition of $ V^{\varepsilon} $ has to be understood in a density sense, since we don't require any regularity on $ \partial \Omega $. Namely, $ V^{\varepsilon} $ is the closure, with respect to the $ H^{1}( \Omega_{1}^{ \varepsilon}) $-norm, of the set of the functions in $ C^{\infty}(\Omega _{1}^{\varepsilon }) $ with a compact support contained in $ \Omega $. This can be done in view of (2.1).

    Proposition 3.2 ([23,26]). There exists a positive constant $ C_1 $, independent of $ \varepsilon $, such that

    $ u2HεγC1(1+εγ1)u2Vε×H1(Ωε2)γR,uHεγ. $ (3.10)

    If $ \gamma\leq 1 $, then there exists another positive constant $ C_2 $, independent of $ \varepsilon $, such that

    $ C2u2Vε×H1(Ωε2)u2HεγC1(1+εγ1)u2Vε×H1(Ωε2)uHεγ. $ (3.11)

    Corollary 3.3 ([26]). Let $ u_{\varepsilon } = \left( u_{1\varepsilon}, u_{2\varepsilon}\right) $ be a bounded sequence of $ H_{\gamma}^{\varepsilon } $. Then, if $ \gamma \leq 1 $, there exists a positive constant $ C $, independent of $ \varepsilon $, such that

    $ u2εH1(Ωε2)C. $ (3.12)

    We denote by $ (H^{\varepsilon}_{\gamma})' $ the dual of $ H^{\varepsilon}_{\gamma} $. As proved in [23], for any fixed $ \varepsilon $, the norms of $ (H^{\varepsilon}_{\gamma})' $ and $ (V^{\varepsilon})'\times (H^1(\Omega_{2}^{\varepsilon}))' $ are equivalent. Moreover, if $ v = (v_1, v_2)\in (V^{\varepsilon})'\times (H^1(\Omega_{2}^{\varepsilon}))' $ and $ u = (u_1, u_2)\in V^{\varepsilon}\times H^1(\Omega_{2}^{\varepsilon}) $, then

    $ v,u(Hεγ),Hεγ=v1,u1(Vε),Vε+v2,u2(H1(Ωε2)),H1(Ωε2). $ (3.13)

    For sake of simplicity, throughout this paper, we denote by $ L^{2}_{\varepsilon}(\Omega): = L^{2}\left(\Omega_{1}^{\varepsilon}\right)\times L^{2}\left(\Omega_{2}^{\varepsilon}\right) $. The space $ L^{2}_{\varepsilon}(\Omega) $ will be equipped with the usual product norm, that is,

    $ \|\left(w_{1}, w_{2}\right)\|^2_{L^{2}_{\varepsilon}(\Omega)} = \|w_{1}\|^{2}_{L^{2}\left(\Omega_{1}^{\varepsilon}\right)}+\|w_{2}\|^{2}_{L^{2}\left(\Omega_{2}^{\varepsilon}\right)}\, \, \, \, \, \forall \left(w_{1}, w_{2}\right)\in L^{2}_{\varepsilon}(\Omega). $

    Since the homogenization results proved in this section will be applied to study the exact controllability of the wave equation in composites with the same structure, we need to recall some further properties of the space $ H^{\varepsilon}_{\gamma} $.

    Remark 3.4. We point out that $ H^{\varepsilon}_{\gamma} $ is a separable and reflexive Hilbert space dense in $ L^{2}_{\varepsilon}(\Omega) $. Furthermore, $ H^{\varepsilon}_\gamma \subseteq L^{2}_{\varepsilon}(\Omega) $ with continuous imbedding. On the other hand, one has that $ L^{2}_{\varepsilon}(\Omega)\subseteq\left(H^{\varepsilon}_{\gamma}\right)' $, where $ L^{2}_{\varepsilon}(\Omega) $ is a separable Hilbert space. This means that the triple $ (H^{\varepsilon}_\gamma, L^{2}_{\varepsilon}(\Omega), \left(H^{\varepsilon}_{\gamma}\right)') $ is an evolution triple. We refer the reader to [21,22] for an in-depth analysis on this aspect.

    In this subsection, we recall the definitions and the main properties of two unfolding operators. The first one, $ \mathcal{T}_{1}^{\varepsilon } $, concerning functions defined in $ \Omega _{1}^{\varepsilon } $, is exactly that introduced in [7] for perforated domains. The second one, $ \mathcal{T }_{2}^{\varepsilon } $, acts on functions defined in $ \Omega _{2}^{\varepsilon } $ and was defined for the first time in [26]. These operators map functions defined on the oscillating domains $ \Omega _{1}^{\varepsilon } $, $ \Omega _{2}^{\varepsilon } $ into functions defined on the fixed domains $ \Omega \times Y_{1} $ and $ \Omega \times Y_{2} $, respectively. Consequently, there is no need to introduce extension operators to pass to the limit in the problem.

    Using the notations of Section 2, let us introduce the following sets (see Figure 2)

    Figure 2.  The sets $ \widehat{\Omega }^{\varepsilon } $ and $ \Lambda^\varepsilon $.

    $ \widehat{K}^{\varepsilon } = \left\{ \left. k\in\mathbb{Z}^{n}\right\vert \; \varepsilon Y ^{k}\subset \Omega \right\} $

    $ \widehat{\Omega }^{\varepsilon } = int\bigcup\limits_{k\in \widehat{K} _{\varepsilon }}\varepsilon \left( k_{l}+\overline{Y}\right), \qquad\Lambda ^{\varepsilon } = \Omega \backslash \widehat{\Omega }^{\varepsilon }, $

    $ \widehat{\Omega }_{i}^{\varepsilon } = \bigcup\limits_{k\in \widehat{K} ^{\varepsilon }}\varepsilon Y_{i}^{k}, \qquad \Lambda _{i}^{\varepsilon } = \Omega _{i}^{\varepsilon }\backslash \widehat{ \Omega }_{i}^{\varepsilon }, \quad i = 1, 2, \qquad \widehat{\Gamma }^{\varepsilon } = \partial \widehat{\Omega }_{2}^{\varepsilon } . $

    In the sequel, for $ z\in \mathbb{R}^{n} $, we use $ \left[ z\right] _{Y} $ to denote its integer part $ k_l $, such that $ z-\left[ z\right] _{Y}\in Y $ and set

    $ {z}Y=z[z]YY    a.e. in Rn. $

    Then, for a.e. $ x\in \mathbb{R}^n $, one has

    $ x=ε([xε]Y+{xε}Y). $

    Definition 3.5. [[7,26]] For any Lebesgue-measurable function $ \phi $ on $ \Omega _{i}^{\varepsilon } $, $ i = 1, 2 $, the periodic unfolding operator $ \mathcal{T}_{i}^{\varepsilon } $ is defined by

    $ \mathcal{T}_{i}^{\varepsilon }\left( \phi \right) \left( x, y\right) = \left\{ ϕ(ε[xε]Y+εy)a.e. (x,y)ˆΩε×Yi0a.e. (x,y)Λε×Yi. \right. $

    Remark 3.6. In order to simplify the presentation, in the sequel if $ \Phi $ is a function defined in $ \Omega $, we simply denote $ \mathcal{T}_{i}^{\varepsilon} \left( \left. \Phi \right\vert _{\Omega _{i}^{\varepsilon }}\right) $ by $ \mathcal{T}_{i}^{\varepsilon }\left( \Phi \right) $, for $ i = 1, 2 $.

    Let us collect the following results which are proved in [7,10,26].

    Proposition 3.7 ([7,10,26]). Let $ p\in \lbrack 1, +\infty \lbrack $ and $ i = 1, 2 $. The operators $ \mathcal{T}_{i}^{\varepsilon } $ are linear and continuous from $ L^{p}\left( \Omega _{i}^{\varepsilon }\right) $ to $ L^{p}\left( \Omega \times Y_i\right) $. Moreover,

    i) $ \mathcal{T}_{i}^{\varepsilon }\left( \varphi \psi \right) = \mathcal{T}_{i}^{\varepsilon }\left( \varphi \right) \mathcal{T} _{i}^{\varepsilon }\left( \psi \right) $, $ \; $for every $ \varphi, \psi \; $ Lebesgue-measurable on $ \Omega _{i}^{\varepsilon } $.

    ii) For every $ \varphi \in L^{1}\left( \Omega _{i}^{\varepsilon}\right) $, one has

    $ 1|Y|Ω×YiTεi(φ)(x,y)dxdy=ˆΩεiφ(x)dx=Ωεiφ(x)dxΛεiφ(x)dx. $

    iii) For every $ \varphi \in L^{p}\left( \Omega _{i}^{\varepsilon}\right) $, one has

    $ Tεi(φ)Lp(Ω×Yi)|Y|1/pφLp(Ωεi). $

    iv) For every $ \varphi \in L^{p}\left( \Omega \right) $, one has

    $ Tεi(φ)φ strongly in Lp(Ω×Yi). $

    v) Let $ \varphi _{\varepsilon } $ be a sequence in $ L^{p}\left( \Omega \right) $ such that $ \varphi _{\varepsilon}\longrightarrow \varphi $ strongly in $ L^{p}\left( \Omega \right) $. Then,

    $ Tεi(φε)φ strongly in Lp(Ω×Yi). $

    vi) Let $ \varphi \in L^p(Y_i) $ be a $ Y $-periodic function and set $ \varphi^\varepsilon(x) = \varphi(\frac{x}{\varepsilon}) $. Then

    $ \mathcal{T}^\varepsilon_i(\varphi^\varepsilon)(x, y) = \varphi(y) \quad { a.e. in }~\widehat{\Omega}^\varepsilon \times Y_i. $

    vii) Let $ \varphi \in W^{1, p}\left( \Omega _{i}^{\varepsilon}\right) $. Then

    $ \nabla _{y}\left[ \mathcal{T}_{i}^{\varepsilon }\left(\varphi \right) \right] = \varepsilon \mathcal{T}_{i}^{\varepsilon }\left(\nabla \varphi \right) ~{ and }~\mathcal{T}_{i}^{\varepsilon }\left(\varphi\right) \in L^{2}\left( \Omega, W^{1, p}\left( Y_{i}\right) \right) . $

    The following convergence result holds:

    Proposition 3.8 ([6,7,10,26]). Let $ p\in \rbrack 1, +\infty \lbrack $ and $ i = 1, 2 $.

    If $ \varphi _{\varepsilon }\in L^{p}\left( \Omega_{i}^{\varepsilon }\right) $ satisfies $ \left\Vert \varphi _{\varepsilon}\right\Vert _{L^{p}\left( \Omega _{i}^{\varepsilon }\right) }\leq C $ and $ \mathcal{T}_{i}^{\varepsilon }\left( \varphi _{\varepsilon }\right) \rightharpoonup \widehat{\varphi } $ weakly in $ L^{p}\left( \Omega \times Y_{i}\right) $, then

    $ ˜φεθiMYi(ˆφ)  weakly in Lp(Ω) $

    where $ \theta_i $ is given in (2.2).

    We now give a result concerning the jump on the interface proved in [26].

    Lemma 3.9 ([26]). Let $ \varphi \in \mathcal{D}\left( \Omega \right) $, $ h $ satisfy (3.4) and $ u_{\varepsilon } = \left( u_{1\varepsilon}, u_{2\varepsilon}\right) \in H_{\gamma }^{\varepsilon } $. Then, for $ \varepsilon $ small enough, we have

    $ εΓεhε(u1εu2ε)φdσx=1|Y|Ω×Γh(y)(Tε1(u1ε)Tε2(u2ε))Tε1(φ)dxdσy $

    with $ h^{\varepsilon } $ given by (3.6)

    Let us finally recall a known result about the convergences of the unfolding operators, previously introduced, applied to bounded sequences in $ H_{\gamma }^{\varepsilon } $. We restrict our attention to the case we are interested in, $ \gamma \leq -1 $.

    Theorem 3.10 ([26,27]). Let $ \gamma \leq - 1 $ and $ u_{\varepsilon } = \left( u_{1\varepsilon}, u_{2\varepsilon}\right) $ be a bounded sequence in $ H_{\gamma }^{\varepsilon } $, then there exist a subsequence, still denoted $ \varepsilon $, $ u\in H_{0}^{1}\left( \Omega \right) $, $ \widehat{u} _{1}\in L^{2}\left( \Omega, H_{per}^{1}\left( Y_{1}\right) \right) $ with $ \mathcal{M}_{\Gamma }\left( \widehat{u}_{1}\right) = 0 $ a.e. in $ \Omega $ and $ \widehat{u}_2 \in L^2(\Omega, H^1(Y_2)) $ such that

    $ {Tε1(u1ε)ustrongly inL2(Ω,H1(Y1)),Tε1(u1ε)u+yˆu1weakly inL2(Ω×Y1), $ (3.14)
    $ {Tε2(u2ε)uweakly inL2(Ω,H1(Y2))Tε2(u2ε)u+yˆu2weakly inL2(Ω×Y2). $ (3.15)

    Furthermore,

    i) if $ \gamma <-1 $, we have

    $ ˆu1=ˆu2+ξΓ on Ω×Γ $

    for some function $ \xi_\Gamma\in L^2(\Omega) $;

    ii) if $ \gamma = -1 $, the following convergence holds

    $ Tε1(u1ε)Tε2(u2ε)εˆu1ˆu2    weakly in L2(Ω×Γ). $

    Let $ f_\varepsilon \in (H_\gamma^\varepsilon)' $, by (3.13), the variational formulation of problem $ \left( 3.1\right) $ is the following

    $ {Find (u1ε,u2ε)Hεγ s. t. Ωε1Aεu1εv1dx+Ωε2Aεu2εv2dx+εγΓεhε(u1εu2ε)(v1v2)dσx=f1ε,v1(Vε),Vε+f2ε,v2(H1(Ωε2)),H1(Ωε2)   (v1,v2)Hεγ. $ (3.16)

    The existence and uniqueness of a solution $ u_{\varepsilon }: = \left( u_{1\varepsilon}, u_{2\varepsilon}\right) $ of (3.1), for every fixed $ \varepsilon $, is a result of the Lax-Milgram theorem, together with Proposition 3.2.

    In order to describe the asymptotic behaviour, as $ \varepsilon $ tends to zero, of the solution $ u_{\varepsilon } $ of problem $ \left( 3.1\right) $, we suppose that there exists a positive constant $ C $, independent of $ \varepsilon $, such that

    $ fε(Hεγ)C. $ (3.17)

    Remark 3.11. Let us observe that, if $ (u_1, u_2)\in H^1_0(\Omega)\times H^1(\Omega) $, then the couple $ (u_{1_{| \Omega_{1}^{ \varepsilon}}}, u_{2_{| \Omega_{2}^{\varepsilon}})} \in V^{\varepsilon} \times H^1(\Omega_{2}^{\varepsilon}) $. Then it is easily seen that the functionals

    $ \overline{f}_{1\varepsilon}: H^1_{0}(\Omega) \to \mathbb{R}, $
    $ \overline{f}_{2\varepsilon}: H^{1}(\Omega) \to \mathbb{R} $

    defined as

    $ ¯f1ε(u1)=f1ε,u1|Ωε1(Vε),Vε $ (3.18)
    $ ¯f2ε(u2)=f2ε,u2|Ωε2(H1(Ωε2)),H1(Ωε2), $ (3.19)

    are linear and continuous. Therefore (3.18) and (3.19) can be rewritten as

    $ ¯f1ε,u1H1(Ω),H10(Ω)=f1ε,u1|Ωε1(Vε),Vε $ (3.20)
    $ ¯f2ε,u2(H1(Ω)),H1(Ω)=f2ε,u2|Ωε2(H1(Ωε2)),H1(Ωε2). $ (3.21)

    Moreover, due to (3.17), one has

    $ ¯f1εf1 in H1(Ω),¯f2εf2 in (H1(Ω)), $ (3.22)

    up to a subsequence, still denoted $ \varepsilon $.

    In the sequel, for sake of simplicity and where no ambiguity arises, in view of (3.20) and (3.21) we will still denote by $ {f}_{1\varepsilon} $ and $ {f}_{2\varepsilon} $ the functionals $ \overline{f}_{1\varepsilon} $ and $ \overline{f}_{2\varepsilon} $ respectively.

    Let us first recall an a priori estimate proved in [28,49] in the case of fixed datum in $ L^2(\Omega) $ and extended in [35] to the case of weakly converging ones.

    Proposition 3.12. Let $ u_{\varepsilon } $ be the solution of problem $ \left( 3.1 \right) $. Then, under assumptions (3.2)$ \div $ (3.6) and (3.17), $ u_{\varepsilon } $ is a bounded sequence in $ H_{\gamma }^{\varepsilon } $.

    We describe the homogenized problems for every $ \gamma\leq -1 $ by treating separately the two cases $ \gamma <-1 $, $ \gamma = -1 $. In the case $ \gamma = -1 $, when passing to the limit in problem $ \left( 3.16\right) $, we meet an additional difficulty to treat the integral over the interface. In order to overcome that, we use Theorem 3.10 $ ii) $.

    Now, let us consider an auxiliary problem related to problem (3.1), already introduced in [35], i.e.

    $ {Δρ1ε=f1ε inΩε1,Δρ2ε=f2ε inΩε2,ρ1εn1ε=ρ2εn2ε on Γε,ρ1εn1ε=εγhε(ρ1ερ2ε) on Γε,ρ1ε=0 on Ω, $ (3.23)

    where $ f_\varepsilon $, $ h^\varepsilon $ and $ n_{i\varepsilon} $, $ i = 1, 2 $, are the same of problem (3.1). The variational formulation of (3.23) is

    $ {Find (ρ1ε,ρ2ε)Hεγ s. t. Ωε1ρ1εv1dx+Ωε2ρ2εv2dx+εγΓεhε(ρ1ερ2ε)(v1v2)dσx=f1ε,v1(Vε),Vε+f2ε,v2(H1(Ωε2)),H1(Ωε2)   (v1,v2)Hεγ. $ (3.24)

    Observe that, clearly, also for the solution $ \rho_{\varepsilon}: = \left(\rho_{1\varepsilon}, \rho_{2\varepsilon}\right) $ of problem (3.23), under assumptions (3.4), (3.6) and (3.17), the same result as in Proposition 3.12 hold as well as those in Theorem 3.10.

    Let us start by using the unfolding method to prove a preliminary convergence result for a subsequence of the solutions of problem (3.23).

    Lemma 3.13. Let $ \gamma< -1 $ and $ \rho_{\varepsilon } $ be the solution of problem (3.23). Then, under the assumptions (3.4), (3.6) and (3.17), there exist a subsequence, still denoted $ \varepsilon $, $ \rho\in H_{0}^{1}\left( \Omega \right) $ and $ \widehat{\rho}\in L^2(\Omega; H^1_{per} (Y)) $ with $ \mathcal{M}_{\Gamma }\left( \widehat{\rho}\right) = 0 $ a.e. in $ \Omega $ such that

    $ {Tε1(ρ1ε)ρstrongly inL2(Ω,H1(Y1)),Tε1(ρ1ε)ρ+yˆρ|Ω×Y1weakly inL2(Ω×Y1),Tε2(ρ2ε)ρweakly inL2(Ω,H1(Y2))Tε2(ρ2ε)ρ+yˆρ|Ω×Y2weakly inL2(Ω×Y2) $ (3.25)

    and

    $ 1|Y|Ω×Y(ρ+yˆρ)yΦdxdy=limn+(limε0(f1ε,εωnψεnH1(Ω),H10(Ω)+f2ε,εωnψεn(H1(Ω)),H1(Ω)), $ (3.26)

    for every $ \Phi \in L^{2}\left( \Omega , H_{per}^{1}\left( Y\right) \right) $ and where $ w_n\in {\mathcal{D}}(\Omega) $ and $ \psi_n^\varepsilon(x) = \psi_n(x/\varepsilon) $, with $ \psi_n\in H^1_{per}(Y) $, for any $ n\in\mathbb{N} $, are such that

    $ wnψnΦ strongly in L2(Ω,H1per(Y)). $ (3.27)

    Proof. From Theorem 3.10 and Proposition 3.12 we deduce there exist a subsequence, still denoted $ \varepsilon $, $ \rho\in H_{0}^{1}\left( \Omega \right) $, $ \widehat{\rho}_1\in L^2(\Omega, H^1_{per}(Y_1)) $ with $ \mathcal{M}_{\Gamma}(\widehat{\rho}_1) = 0 $ a.e. in $ \Omega $ and $ \widehat{\rho}_2\in L^2(\Omega, H^1(Y_2)) $ such that the convergences $ \left( 3.25\right) _{1, 3} $ hold and

    $ {Tε1(ρ1ε)ρ+yˆρ1weakly inL2(Ω×Y1),Tε2(ρ2ε)ρ+yˆρ2weakly inL2(Ω×Y2). $ (3.28)

    Let us take $ v_{1} = v_{2} = v_\varepsilon = \varepsilon \omega \psi ^{\varepsilon } $ as test functions in $ \left( 3.24\right) $, where $ \omega \in \mathcal{D}\left( \Omega \right) $, $ \psi \in H_{per}^{1}\left( Y\right) $ and $ \psi ^{\varepsilon }\left( x\right) = \psi \left( \dfrac{x}{\varepsilon }\right) $.

    The term concerning the interface vanishes and, in view of Remark 3.11, we get

    $ Ωε1ρ1εvεdx+Ωε2ρ2εvεdx=f1ε,vεH1(Ω),H10(Ω)+f2ε,vε(H1(Ω)),H1(Ω). $ (3.29)

    In view of the definitions of $ \Lambda^\varepsilon_i $, $ i = 1, 2 $, and $ v_\varepsilon $, by Proposition 3.7 $ ii) $, via unfolding, we get that, for $ \varepsilon $ sufficiently small, (3.29) can be rewritten as

    $ 1|Y|Ω×Y1Tε1(ρ1ε)Tε1(vε)dxdy+1|Y|Ω×Y2Tε2(ρ2ε)Tε2(vε)dxdy=f1ε,vεH1(Ω),H10(Ω)+f2ε,vε(H1(Ω)),H1(Ω), $ (3.30)

    where we also used Proposition 3.7 $ i) $.

    Since $ \nabla v_\varepsilon\left( x\right) = \varepsilon \psi\left( \dfrac{x}{\varepsilon }\right) \nabla \omega\left( x\right) +\omega \left( x\right) \nabla _{y}\psi\left( \dfrac{x}{\varepsilon } \right), $ by Proposition 3.7 $ i) $, $ iv) $ and $ vi) $, it is easily seen that, for $ i = 1, 2 $,

    $ Tεi(vε)=ε ψTεi(ω)+yψTεi(ω)y(ωψ) strongly in L2(Ω×Yi). $ (3.31)

    From $ \left( 3.28\right) $ and $ \left( 3.31\right) $, passing to the limit as $ \varepsilon \rightarrow 0 $ in (3.30) we obtain, up to a subsequence, still denoted $ \varepsilon $,

    $ 1|Y|Ω×Y1(ρ+yˆρ1)y(ωψ)dxdy+1|Y|Ω×Y2(ρ+yˆρ2)y(ωψ)dxdy=limε0(f1ε,εωψεH1(Ω),H10(Ω)+f2ε,εωψε(H1(Ω)),H1(Ω). $ (3.32)

    According to Theorem 3.10 $ i) $ we have $ \widehat{\rho}_{1} = \widehat{\rho}_{2}+\xi_{\Gamma } $ on $ \Omega \times \Gamma $ for some function $ \xi_\Gamma\in L^2(\Omega) $.

    Thus, if we set

    $ ˆρ(,y)={ˆρ1(,y)yY1ˆρ2(,y)+ξΓyY2 $

    a.e. in $ \Omega $, and extend this function by periodicity to a function still denoted by $ \widehat{\rho} $, we get that

    $ ˆρL2(Ω,H1per(Y)) $

    and $ m_{\Gamma}(\widehat{\rho}) = 0 $ for a.e. $ x\in \Omega $. Also note that

    $ {yˆρ|Ω×Y1=yˆρ1yˆρ|Ω×Y2=yˆρ2. $ (3.33)

    Therefore $ (3.28) $ and (3.33) give us $ (3.25)_{2, 4} $ and (3.32) can be rewritten as

    $ 1|Y|Ω×Y(ρ+yˆρ)y(ωψ)dxdy=limε0(f1ε,εωψεH1(Ω),H10(Ω)+f2ε,εωψε(H1(Ω)),H1(Ω). $ (3.34)

    Now let us take $ \Phi \in L^{2}\left( \Omega, H_{per}^{1}\left( Y\right) \right) $. By density there exist $ w_n\in {\mathcal{D}}(\Omega) $ and $ \psi_n\in H^1_{per}(Y) $, for any $ n\in\mathbb{N} $, such that

    $ wnψnΦ strongly in L2(Ω,H1per(Y)). $

    Hence, (3.34) gives, for any fixed $ n\in \mathbb{N} $,

    $ 1|Y|Ω×Y(ρ+yˆρ)y(ωnψn)dxdy=limε0(f1ε,εωnψεnH1(Ω),H10(Ω)+f2ε,εωnψεn(H1(Ω)),H1(Ω), $

    where $ \psi_n^\varepsilon(x) = \psi_n(x/\varepsilon) $, for any $ n\in\mathbb{N} $. Passing to the limit as $ n\to +\infty $, we get (3.26).

    Now we are able to prove the homogenization result for problem (3.1) when $ \gamma<-1 $.

    Theorem 3.14. Let $ \gamma <-1 $ and $ u_{\varepsilon } $ be the solution of problem $ \left( 3.1 \right) $. Then, under the assumptions (3.2)$ \div $ (3.6) and (3.17), there exist a subsequence, still denoted $ \varepsilon $, $ u\in H_{0}^{1}\left( \Omega \right) $ and $ \widehat{u}\in L^{2}\left( \Omega , H_{per}^{1}\left( Y\right) \right) $, with $ \mathcal{M}_{\Gamma }\left( \widehat{u}\right) = 0 $ a.e. in $ \Omega $, such that

    $ {˜uiεθiuweakly inL2(Ω)i=1,2,Tε1(u1ε)ustrongly inL2(Ω,H1(Y1))Tε1(u1ε)u+yˆu|Ω×Y1weakly inL2(Ω×Y1)Tε2(u2ε)uweakly inL2(Ω,H1(Y2))Tε2(u2ε)u+yˆu|Ω×Y2weakly inL2(Ω×Y2) $ (3.35)

    where the pair $ \left( u, \widehat{u}\right) $ is the unique solution of the following problem

    $ {Find uH10(Ω)ˆuL2(Ω,H1per(Y)),withMΓ(ˆu)=0 a.e. xΩ, s.t. 1|Y|Ω×YA(y)(u+yˆu)(φ+yΦ)dxdy=f1,φH1(Ω),H10(Ω)+f2,φ(H1(Ω)),H1(Ω)+1|Y|Ω×Y(ρ+yˆρ)yΦdxdyφH10(Ω), ΦL2(Ω,H1per(Y)), $ (3.36)

    where $ \rho $ and $ \widehat{\rho} $ are as in Lemma 3.13, hence the term $ \mathop{ \int}\nolimits_{\Omega \times Y}(\nabla \rho + \nabla_y \widehat{\rho}) \nabla _{y}\Phi \; dx\, dy $ depends only on a subsequence of $ f_\varepsilon $.

    Proof. Arguing as in the proof of Lemma 3.13, we get that there exist a subsequence, still denoted $ \varepsilon $, $ u\in H_{0}^{1}\left( \Omega \right) $, $ \widehat{u}_1\in L^2(\Omega, H^1_{per}(Y_1)) $ with $ \mathcal{M}_{\Gamma}(\widehat{u}_1) = 0 $ a.e. in $ \Omega $ and $ \widehat{u}_2\in L^2(\Omega, H^1(Y_2)) $ such that the convergences $ (3.35)_{2, 4} $ hold and

    $ {Tε1(u1ε)u+yˆu1weakly inL2(Ω×Y1),Tε2(u2ε)u+yˆu2weakly inL2(Ω×Y2). $ (3.37)

    Then, from (3.12) of Corollary 3.3, $ \left( 3.35\right) _{2, 4} $ and Proposition 3.8 we obtain that, for $ i = 1, 2 $,

    $ ˜uiεθiMYi(u) weakly in L2(Ω) $

    and, since $ u $ is constant with respect to $ y $, we deduce $ \left( 3.35\right) _{1} $.

    In order to get the limit problem, let $ v_\varepsilon = \varepsilon\omega\psi^\varepsilon $ as in the proof of Lemma 3.13 and $ \varphi \in \mathcal{D}\left( \Omega \right) $. If we take $ v_{1} = v_{2} = \varphi+v_\varepsilon $ as test functions in $ \left( 3.16\right) $, in view of Remark 3.11, we get

    $ Ωε1Aεu1ε(φ+vε)dx+Ωε2Aεu2ε(φ+vε)dx=f1ε,φH1(Ω),H10(Ω)+f2ε,φ(H1(Ω)),H1(Ω)+f1ε,vεH1(Ω),H10(Ω)+f2ε,vε(H1(Ω)),H1(Ω). $ (3.38)

    Then if we take $ v_1 = v_2 = v_\varepsilon $ as test functions in (3.24), (3.38) can be rewritten as

    $ Ωε1Aεu1ε(φ+vε)dx+Ωε2Aεu2ε(φ+vε)dx=f1ε,φH1(Ω),H10(Ω)+f2ε,φ(H1(Ω)),H1(Ω)+Ωε1ρ1εvεdx+Ωε2ρ2εvεdx. $ (3.39)

    In view of the definitions of $ \Lambda^\varepsilon_i $, $ i = 1, 2 $, and $ v_\varepsilon $, by Proposition 3.7 $ ii) $, via unfolding, we get that, for $ \varepsilon $ sufficiently small, (3.39) can be rewritten as

    $ 1|Y|Ω×Y1A(y)Tε1(u1ε)Tε1(φ+vε)dxdy+1|Y|Ω×Y2A(y)Tε2(u2ε)Tε2(φ+vε)dxdy=f1ε,φH1(Ω),H10(Ω)+f2ε,φ(H1(Ω)),H1(Ω)+1|Y|Ω×Y1Tε1(ρ1ε)Tε1(vε)dxdy+1|Y|Ω×Y2Tε2(ρ2ε)Tε2(vε)dxdy, $ (3.40)

    where we also used Proposition 3.7 $ i) $ and $ vi) $.

    From (3.22), $ \left( 3.25\right)_{2, 4} $, $ \left( 3.31\right) $ and $ \left( 3.37\right) $, passing to the limit as $ \varepsilon \rightarrow 0 $ in the previous identity we obtain, up to a subsequence,

    $ 1|Y|Ω×Y1A(y)(u+yˆu1)(φ+y(ωψ))dxdy+1|Y|Ω×Y2A(y)(u+yˆu2)(φ+y(ωψ))dxdy=f1,φH1(Ω),H10(Ω)+f2,φ(H1(Ω)),H1(Ω)+1|Y|Ω×Y(ρ+yˆρ)y(ωψ)dxdy. $ (3.41)

    Arguing as in Lemma 3.13, by Theorem 3.10 $ i) $, if we set

    $ ˆu(,y)={ˆu1(,y)yY1ˆu2(,y)+ζΓyY2 $ (3.42)

    where $ \zeta_{\Gamma }\in L^2(\Omega) $, and extend it by periodicity to a function still denoted by $ \widehat{u} $, we get

    $ ˆuL2(Ω,H1per(Y)) $

    and $ m_{\Gamma}(\widehat{u}) = 0 $ a.e. in $ \Omega $. Moreover,

    $ {yˆu|Ω×Y1=yˆu1yˆu|Ω×Y2=yˆu2. $ (3.43)

    Therefore, $ \left( 3.37\right) $ and (3.43) give us $ \left( 3.35\right)_{3, 5} $ and (3.41) can be rewritten as

    $ 1|Y|Ω×YA(y)(u+yˆu)(φ+y(ωψ))dxdy=f1,φH1(Ω),H10(Ω)+f2,φ(H1(Ω)),H1(Ω)+1|Y|Ω×Y(ρ+yˆρ)y(ωψ)dxdy, $ (3.44)

    for every $ \varphi, \omega \in \mathcal{D}\left( \Omega \right) $ and $ \psi \in H_{per}^{1}\left( Y\right) $.

    Finally, by density we get (3.36).

    In the following result we point out that the limit problem (3.36) is equivalent to an elliptic problem set in the fixed domain $ \Omega $ whose homogenized matrix is the same obtained in [49] for $ \gamma<-1 $, i.e. that of the classical elliptic homogenization in the fixed domain $ \Omega $ (see [2]).

    Corollary 3.15. Let $ \gamma <-1 $ and $ u_{\varepsilon } $ be the solution of problem $ \left( 3.1 \right) $. Then, under the assumptions (3.2)$ \div $ (3.6) and (3.17), there exist a subsequence, still denoted $ \varepsilon $, and $ u\in H_{0}^{1}\left( \Omega \right) $ such that

    $ {˜uiεθiu weakly in L2(Ω),i=1,2Aε~u1εA1γu+θ1MYl(Ayˆχ|Y1) weakly in L2(Ω)Aε~u2εA2γu+θ2MY2(Ayˆχ|Y2) weakly in L2(Ω). $ (3.45)

    In (3.45) the constant matrices $ A_{\gamma }^{l} = \left( a_{ij}^{l}\right) _{n\times n} $, $ l = 1, 2 $, are defined by

    $ alij=θlMYl(aijnk=1aikχjyk), $ (3.46)

    where the functions $ {\chi }^{j}, $$ j = 1, ..., n $, are the unique solutions of the cell problems

    $ {div(A(χjyj))=0    in YχjYperiodic, MY(χj)=0 $ (3.47)

    and the function $ \widehat{\chi} $, for a.e. $ x\in \Omega $, is the unique solution of the following problem

    $ {FindˆχL2(Ω;H1per(Y))s. t.YA(y)yˆχyψdy=Y(ρ+yˆρ)yψdyψH1per(Y), $ (3.48)

    where $ \rho $ and $ \widehat{\rho} $ are the same functions as in Lemma 3.13.

    Moreover the limit function $ u $ is the unique solution of the problem

    $ {div(A0γu)=f1+f2+div(MY(A(y)yˆχ))in Ωu=0on Ω $ (3.49)

    where the homogenized matrix is given by

    $ A0γ:=A1γ+A2γ. $ (3.50)

    Proof. Choosing $ \varphi = 0 $ in (3.36), we get

    $ 1|Y|Ω×YA(y)(u+yˆu)yΦdxdy=1|Y|Ω×Y(ρ+yˆρ)yΦdxdy, $

    for all $ \Phi \in L^{2}\left( \Omega, H_{per}^{1}\left( Y\right) \right). $

    By following some classical arguments as in the two-scale method (see [9], ch. 9), this gives

    $ ˆu(x,y)=ˆχ(x,y)nj=1uxj(x)χj(y) $ (3.51)

    where $ {\chi }^{j} $, $ j = 1, ..., n $ are the solutions of the cell problems (3.47) and $ \widehat{\chi } $ satisfies (3.48).

    We now choose $ \Phi = 0 $ in (3.36), obtaining

    $ 1|Y|Ω×YA(y)(u+yˆu)φdxdy=f1,φH1(Ω),H10(Ω)+f2,φ(H1(Ω)),H1(Ω), $

    for all $ \varphi \in H_{0}^{1}\left( \Omega \right) $.

    Replacing $ \widehat{u} $, given by (3.51), in the previous equality we obtain

    $ Ωni=1nj=1(1|Y|Y(aij(y)nk=1aik(y)χjyk(y))dy)uxjφxidx =f1,φH1(Ω),H10(Ω)+f2,φ(H1(Ω)),H1(Ω)Ωni=1nj=1(1|Y|Yaij(y)ˆχyj(y)dy)φxidx, $

    for all $ \varphi \in H_{0}^{1}\left( \Omega \right) $ which means that $ u $ satisfies the following problem

    $ {ni=1xinj=1(1|Y|Y(aij(y)nk=1aik(y)χjyk(y))dy)uxj=f1+f2+ni=1xinj=1(1|Y|Yaij(y)ˆχyj(y)dy) in Ωu=0 on Ω. $

    This implies that $ u $ is the unique solution of problem $ \left( 3.49\right) $ where $ A_{\gamma }^{0} $ is the matrix defined by $ \left( 3.50\right) $.

    From (3.42) and (3.51), we have

    $ {ˆu1=ˆu|Ω×Y1=ˆχ|Ω×Y1nj=1uxjχj|Y1ˆu2=ˆu|Ω×Y2ζΓ=ˆχ|Ω×Y2nj=1uxjχj|Y2ζΓ $ (3.52)

    where $ \zeta_{\Gamma } $ is a function in $ L^2(\Omega) $. On the other hand, from Proposition 3.7 $ i) $ and $ vi) $ and convergences (3.37), we have

    $ {Tε1(Aεu1ε)A(y)(u+yˆu1)weakly inL2(Ω×Y1),Tε2(Aεu2ε)A(y)(u+yˆu2)weakly inL2(Ω×Y2). $

    Then, using Proposition 3.8, we deduce that

    $ {Aε~u1εθ1MY1[A(y)(u+yˆu1)]weakly in L2(Ω),Aε~u2εθ2MY2[A(y)(u+yˆu2)]weakly in L2(Ω). $ (3.53)

    After some computations, by using (3.52), convergences (3.53) give (3.45)$ _{2, 3} $.

    Remark 3.16. Let us observe that in problem (3.49) the right-hand side of the limit equation is not exactly the sum of the weak limits of $ f_{1\varepsilon} $ and $ f_{2\varepsilon} $ as in the case of more regular data, but it is a more complicated function depending on a subsequence of $ f_{i\varepsilon} $, $ i = 1, 2 $ (see Lemma 3.13 and (3.48) of Corollary 3.15).

    As in the previous case, let us start by using the unfolding method to prove a preliminary convergence result for a subsequence of the solutions of problem (3.23).

    Lemma 3.17. Let $ \gamma = -1 $ and $ \rho^{\varepsilon } $ be the solution of problem (3.23). Then, under the assumptions (3.4), (3.6) and (3.17), there exist a subsequence, still denoted $ \varepsilon $, $ \rho\in H_{0}^{1}\left( \Omega \right) $, $ \widehat{\rho_1}\in L^2(\Omega; H^1_{per} (Y_1)) $, with $ \mathcal{M}_{\Gamma }\left( \widehat{\rho_1}\right) = 0 $ a.e. in $ \Omega $, $ \widehat{\rho_2}\in L^2(\Omega; H^1(Y_2)) $ such that

    $ {Tε1(ρ1ε)ρstrongly inL2(Ω,H1(Y1)),Tε1(ρ1ε)ρ+yˆρ1weakly inL2(Ω×Y1),Tε2(ρ2ε)ρweakly inL2(Ω,H1(Y2))Tε2(ρ2ε)ρ+yˆρ2weakly inL2(Ω×Y2), $ (3.54)

    and

    $ 1|Y|Ω×Y1(ρ+yˆρ1)yΦ1dxdy+1|Y|Ω×Y2(ρ+yˆρ2)yΦ2dxdy +1|Y|Ω×Γh(y)(ˆρ1ˆρ2)(Φ1Φ2)dx dσy=limn+(limε0(f1ε,εω1nψε1nH1(Ω),H10(Ω)+f2ε,εω2nψε2n(H1(Ω)),H1(Ω)), $ (3.55)

    for every $ \Phi_1 \in L^{2}\left( \Omega , H_{per}^{1}\left( Y_1\right) \right), \Phi_2 \in L^{2}\left( \Omega , H^{1}\left( Y_2\right) \right) $ and where, for $ i = 1, 2 $, $ w_{in}\in {\mathcal{D}}(\Omega) $, $ \psi_{1n}^\varepsilon(x) = \psi_{1n}(x/\varepsilon) $, with $ \psi_{1n}\in H^1_{per}(Y_1) $ and $ \psi_{2n}^\varepsilon(x) = \psi_{2n}(x/\varepsilon) $, with $ \psi_{2n}\in H^1(Y_2) $, for any $ n\in\mathbb{N} $, are such that

    $ w1nψ1nΦ1 strongly in L2(Ω,H1per(Y1)), $
    $ w2nψ2nΦ2 strongly in L2(Ω,H1(Y2)). $

    Proof. Arguing as in Lemma 3.13, we deduce there exist a subsequence, still denoted $ \varepsilon $, $ \rho\in H_{0}^{1}\left( \Omega \right) $, $ \widehat{\rho}_1\in L^2(\Omega, H^1_{per}(Y_1)) $ with $ \mathcal{M}_{\Gamma}(\widehat{\rho}_1) = 0 $ a.e. in $ \Omega $ and $ \widehat{\rho}_2\in L^2(\Omega, H^1(Y_2)) $ such that the convergences $ \left( 3.54\right) $ hold.

    For $ i = 1, 2 $, let us take $ v_{i} = v_{i\varepsilon} = \varepsilon \omega_i \psi_i ^{\varepsilon } $ as test functions in $ \left( 3.24\right) $, where $ \omega_i \in \mathcal{D}\left( \Omega \right) $, $ \psi_1 \in H_{per}^{1}\left( Y_1\right) $, $ \psi_1 ^{\varepsilon }\left( x\right) = \psi_1 \left( \dfrac{x}{\varepsilon }\right) $, $ \psi_2 \in H^{1}\left( Y_2\right) $ and $ \psi_2^{\varepsilon }\left( x\right) = \psi_2 \left( \dfrac{x}{\varepsilon }\right) $.

    In view of Remark 3.11, we get

    $ Ωε1ρ1εv1εdx+Ωε2ρ2εv2εdx+ε1Γεhε(ρ1ερ2ε)(v1εv2ε)dσx=f1ε,v1εH1(Ω),H10(Ω)+f2ε,v2ε(H1(Ω)),H1(Ω). $ (3.56)

    Following the same argument as in Lemma 3.13, we have that, for $ i = 1, 2 $,

    $ Tεi(viε)y(ωiψi) strongly in L2(Ω×Yi). $ (3.57)

    In view of the definitions of $ \Lambda^\varepsilon_i $ and $ v_{i\varepsilon} $, $ i = 1, 2 $, by Proposition 3.7 $ ii) $, via unfolding, we get that, for $ \varepsilon $ sufficiently small, (3.56) can be rewritten as

    $ 1|Y|Ω×Y1Tε1(ρ1ε)Tε1(v1ε)dxdy+1|Y|Ω×Y2Tε2(ρ2ε)Tε2(v2ε)dxdy+1ε|Y|Ω×Γh(y)(Tε1(ρ1ε)Tε2(ρ2ε))(ψ1(y)Tε1(ω1)ψ2(y)Tε2(ω2))dxdσy=f1ε,εω1ψε1H1(Ω),H10(Ω)+f2ε,εω2ψε2(H1(Ω)),H1(Ω), $ (3.58)

    where we also used Proposition 3.7 $ i) $, $ vi) $ and Lemma 3.9.

    From $ \left( 3.54\right)_{2, 4} $, $ \left( 3.57\right) $, Proposition 3.7 $ iv) $ and Theorem 3.10 $ ii) $ passing to the limit as $ \varepsilon \rightarrow 0 $ in the previous identity we obtain, up to as subsequence, still denoted $ \varepsilon $,

    $ 1|Y|Ω×Y1(ρ+yˆρ1)y(ω1ψ1)dxdy+1|Y|Ω×Y2(ρ+yˆρ2)y(ω2ψ2)dxdy+1|Y|Ω×Γh(y)(ˆρ1ˆρ2)(ω1ψ1ω2ψ2)dx dσy=limε0(f1ε,εω1ψε1H1(Ω),H10(Ω)+f2ε,εω2ψε2(H1(Ω)),H1(Ω). $ (3.59)

    Now let us take $ \Phi_1 \in L^{2}\left( \Omega , H_{per}^{1}\left( Y_1\right) \right), \Phi_2 \in L^{2}\left( \Omega , H^{1}\left( Y_2\right) \right) $. By density there exist, for $ i = 1, 2 $, $ w_{in}\in {\mathcal{D}}(\Omega) $, $ \psi_{1n}\in H^1_{per}(Y_1) $, $ \psi_{2n}\in H^1(Y_2) $, for any $ n\in\mathbb{N} $, such that

    $ w1nψ1nΦ1 strongly in L2(Ω,H1per(Y1)), $
    $ w2nψ2nΦ2 strongly in L2(Ω,H1(Y2)). $

    Hence, (3.59) gives, for any fixed $ n\in \mathbb{N} $,

    $ 1|Y|Ω×Y1(ρ+yˆρ1)y(w1nψ1n)dxdy+1|Y|Ω×Y2(ρ+yˆρ2)y(w2nψ2n)dxdy+1|Y|Ω×Γh(y)(ˆρ1ˆρ2)(w1nψ1nw2nψ2n)dx dσy=limε0(f1ε,εω1nψε1nH1(Ω),H10(Ω)+f2ε,εω2nψε2n(H1(Ω)),H1(Ω) $ (3.60)

    where, for $ i = 1, 2 $, $ \psi_{in}^\varepsilon(x) = \psi_{in}(x/\varepsilon) $.

    Passing to the limit as $ n\to +\infty $ in (3.60) we get (3.55).

    Now we are able to prove the homogenization result for problem (3.1) when $ \gamma = -1 $.

    Theorem 3.18. Let $ \gamma = -1 $ and $ u_{\varepsilon } $ be the solution of problem $ \left( 3.1 \right) $. Then, under the assumptions (3.2)$ \div $ (3.6) and (3.17), there exist a subsequence, still denoted $ \varepsilon $, $ u\in H_{0}^{1}\left( \Omega \right) $, $ \widehat{u}_{1}\in L^{2}\left( \Omega , W_{per}\left( Y_{1}\right) \right) $ and $ \widehat{u}_{2}\in L^{2}\left( \Omega, H^{1}\left( Y_{2}\right) \right) $ such that

    $ {˜uiεθiuweakly inL2(Ω)i=1,2,Tε1(u1ε)ustrongly inL2(Ω,H1(Y1))Tε1(u1ε)u+yˆu1weakly inL2(Ω×Y1)Tε2(u2ε)uweakly inL2(Ω,H1(Y2))Tε2(u2ε)u+yˆu2weakly inL2(Ω×Y2) $ (3.61)

    where $ \left( u, \widehat{u}_{1}, \widehat{u} _{2}\right) $ is the unique solution of the following problem

    $ {FinduH10(Ω),ˆu1L2(Ω,H1per(Y1))withMΓ(^u1)=0a.e.xΩ,ˆu2L2(Ω,H1(Y2)), s. t.1|Y|Ω×Y1A(y)(u+yˆu1)(φ+yΦ1)dxdy +1|Y|Ω×Y2A(y)(u+yˆu2)(φ+yΦ2)dxdy+1|Y|Ω×Γh(y)(ˆu1ˆu2)(Φ1Φ2)dx dσy=f1,φH1(Ω),H10(Ω)+f2,φ(H1(Ω)),H1(Ω)+1|Y|Ω×Y1(ρ+yˆρ1)yΦ1dxdy+1|Y|Ω×Y2(ρ+yˆρ2)yΦ2dxdy+1|Y|Ω×Γh(y)(ˆρ1ˆρ2)(Φ1Φ2)dx dσy,φH10(Ω),Φ1L2(Ω,H1per(Y1)),Φ2L2(Ω,H1(Y2)), $ (3.62)

    where the functions $ \rho $, $ \widehat{\rho_1} $ and $ \widehat{\rho_2} $ are as in Lemma 3.17, hence the term

    $ Ω×Y1(ρ+yˆρ1)yΦ1dxdy+Ω×Y2(ρ+yˆρ2)yΦ2dxdy+Ω×Γh(y)(ˆρ1ˆρ2)(Φ1Φ2)dx dσy $

    depends only on a subsequence of $ f_\varepsilon $.

    Proof. Convergences $ \left( 3.61\right) $ hold as in the proof of Theorem 3.14.

    In order to get the limit problem satisfied by $ \left( u, \widehat{u}_{1}, \widehat{u} _{2}\right) $, for $ i = 1, 2 $, let $ v_{i\varepsilon} = \varepsilon \omega_i \psi_i ^{\varepsilon } $ be as in the proof of Lemma 3.17 and $ \varphi \in \mathcal{D}\left( \Omega \right) $. If we take $ v_{i} = \varphi+v_{i\varepsilon} $ as test functions in (3.16), in view of Remark 3.11, we get

    $ Ωε1Aεu1ε(φ+v1ε)dx+Ωε2Aεu2ε(φ+v2ε)dx+ε1Γεhε(u1εu2ε)(v1εv2ε)dσx=f1ε,φH1(Ω),H10(Ω)+f2ε,φ(H1(Ω)),H1(Ω)+f1ε,v1εH1(Ω),H10(Ω)+f2ε,v2ε(H1(Ω)),H1(Ω). $ (3.63)

    Then if we take $ v_i = v_{i\varepsilon} $, $ i = 1, 2 $, as test functions in (3.24), (3.63) can be rewritten as

    $ Ωε1Aεu1ε(φ+v1ε)dx+Ωε2Aεu2ε(φ+v2ε)dx+ε1Γεhε(u1εu2ε)(v1εv2ε)dσx=f1ε,φH1(Ω),H10(Ω)+f2ε,φ(H1(Ω)),H1(Ω)+Ωε1ρ1εv1εdx+Ωε2ρ2εv2εdx+ε1Γεhε(ρ1ερ2ε)(v1εv2ε)dσx. $ (3.64)

    In view of the definitions of $ \Lambda^\varepsilon_i $ and $ v_{i\varepsilon} $, $ i = 1, 2 $, by Proposition 3.7 $ ii) $, via unfolding, we get that, for $ \varepsilon $ sufficiently small, (3.64) can be rewritten as

    $ 1|Y|Ω×Y1A(y)Tε1(u1ε)Tε1(φ+v1ε)dxdy+1|Y|Ω×Y2A(y)Tε2(u2ε)Tε2(φ+v2ε)dxdy+1ε|Y|Ω×Γh(y)(Tε1(u1ε)Tε2(u2ε))(ψ1(y)Tε1(ω1)ψ2(y)Tε2(ω2))dxdσy=f1ε,φH1(Ω),H10(Ω)+f2ε,φ(H1(Ω)),H1(Ω)+1|Y|Ω×Y1Tε1(ρ1ε)Tε1(v1ε)dxdy+1|Y|Ω×Y2Tε2(ρ2ε)Tε2(v2ε)dxdy+1ε|Y|Ω×Γh(y)(Tε1(ρ1ε)Tε2(ρ2ε))(ψ1(y)Tε1(ω1)ψ2(y)Tε2(ω2))dxdσy. $ (3.65)

    where we also used Proposition $ 3.7 $ $ i), vi) $ and Lemma 3.9.

    From (3.22), $ \left( 3.61\right) _{3, 5} $, $ \left( 3.54\right)_{2, 4} $, $ \left( 3.57\right) $, Proposition 3.7 $ iv) $ and Theorem 3.10 $ ii) $, passing to the limit as $ \varepsilon \rightarrow 0 $ in (3.65), we obtain

    $ 1|Y|Ω×Y1A(y)(u+yˆu1)(φ+y(ω1ψ1))dxdy+1|Y|Ω×Y2A(y)(u+yˆu2)(φ+y(ω2ψ2))dxdy+1|Y|Ω×Γh(y)(ˆu1ˆu2)(ω1ψ1ω2ψ2)dx dσy=f1,φH1(Ω),H10(Ω)+f2,φ(H1(Ω)),H1(Ω)+1|Y|Ω×Y1(ρ+yˆρ1)y(ω1ψ1)dxdy+Ω×Y2(ρ+yˆρ2)y(ω2ψ2)dxdy+1|Y|Ω×Γh(y)(ˆρ1ˆρ2)(ω1ψ1ω2ψ2)dx dσy. $

    Then, by density we get the limit problem (3.62).

    Let us finally show that $ \left( 3.62\right) $ admits a unique solution $ \left( u, \widehat{u}_{1}, \widehat{u}_{2}\right) \in H_{0}^{1}\left( \Omega \right) \times L^{2}\left( \Omega, W_{per}\left( Y_{1}\right) \right) \times L^{2}\left( \Omega, H^{1}\left( Y_{2}\right) \right) $.

    To this aim, let

    $ {\mathcal B}: = H_{0}^{1}\left( \Omega \right) \times L^{2}\left( \Omega, W_{per}\left( Y_{1}\right) \right) \times L^{2}\left( \Omega, H^{1}\left( Y_{2}\right) \right), $

    where the space $ W_{per}\left( Y_{1}\right) $ is defined by

    $ Wper(Y1):={gH1per(Y1)|MΓ(g)=0}. $

    For $ V = (v_1, v_2, v_3)\in {\mathcal B} $, we define

    $ V2B:=Ω×Y1|v1+yv2|2dxdy+Ω×Y2|v1+yv3|2dxdy+Ω×Γ|v2v3|2dxdσy. $

    As proved in [27], this last application is a norm on $ {\mathcal B} $.

    Now, for any $ V = \left( v_1, v_2, v_3 \right) $, $ W = \left( w_1, w_2, w_3 \right) \in {\mathcal B} $, consider the bilinear form on $ {\mathcal B} $ defined by

    $ a(V,W)=1|Y|Ω×Y1A(y)(v1+yv2)(w1+yw2)dxdy+1|Y|Ω×Y2A(y)(v1+yv3)(w1+yw3)dxdy+1|Y|Ω×Γh(y)(v2v3)(w2w3)dx dσy $

    and the map

    $ F:V=(v1,v2,v3)Bf1,v1H1(Ω),H10(Ω)+f2,v1(H1(Ω)),H1(Ω)+Ω×Y1(ρ+yˆρ1)yv2dxdy+Ω×Y2(ρ+yˆρ2)yv3dxdy+Ω×Γh(y)(ˆρ1ˆρ2)(v2v3)dx dσy. $

    It is easily seen that $ a $ is continuous and coercive, and $ F $ is linear and continuous on $ {\mathcal B} $. Hence, applying the Lax-Milgram theorem, we obtain that problem $ \left( 3.62\right) $ has a unique solution.

    As for the previous case, in the following result we point out that the limit problem (3.62) is equivalent to an elliptic problem set in the fixed domain $ \Omega $ whose homogenized matrix is the same obtained in [49] for $ \gamma = -1 $.

    Corollary 3.19. Let $ \gamma = -1 $ and $ u_{\varepsilon } $ be the solution of problem $ \left( 3.1 \right) $. Then, under the assumptions (3.2)$ \div $ (3.6) and (3.17), there exist a subsequence, still denoted $ \varepsilon $, and $ u\in H_{0}^{1}\left( \Omega \right) $ such that

    $ {˜uiεθiu    weakly in L2(Ω)i=1,2Aε~u1εA1γu+θ1MY1(Ayˆχ1) weakly in L2(Ω)Aε~u2εA2γu+θ2MY2(Ayˆχ2) weakly in L2(Ω). $ (3.66)

    In (3.66), the constant matrices $ A_{\gamma }^{l} = \left( a_{ij}^{l}\right) _{n\times n} $, $ l = 1, 2 $, are defined by

    $ {a1ij=θ1MY1(aijnk=1aikχj1yk),a2ij=θ2MY2(aijnk=1aikχj2yk), $ (3.67)

    where the couples $ \left( \chi _1^j, \chi _2^j\right) $, $ j = 1, ..., n $, are the unique solutions of the cell problems,

    $ {div(A(χj1yj))=0in Y1div(A(χj2yj))=0in Y2A(χj1yj)n1=A(χj2yj)n2on ΓA(χj1yj)n1=h(χj1χj2)on Γχj1Yperiodic,MY1(χj1)=0. $ (3.68)

    The couple $ (\widehat{\chi}_{1}, \widehat{\chi}_{2}) $, for a.e. $ x\in \Omega $, is the unique solution of the following problem

    $ {Find(ˆχ1,ˆχ2)L2(Ω,H1per(Y1)×H1(Y2))s. t.Y1A(y)yˆχ1yψ1dy+Y2A(y)yˆχ2yψ2dy+Γh(y)(ˆχ1ˆχ2)(ψ1ψ2)dσy=Y1(ρ+yˆρ1)yψ1dy+Y2(ρ+yˆρ2)yψ2dy+Γh(y)(ˆρ1ˆρ2)(ψ1ψ2)dσy(ψ1,ψ2)H1per(Y1)×H1(Y2), $ (3.69)

    where $ \rho $ and $ \widehat{\rho}_{i} $, $ i = 1, 2 $, are the same functions as in Lemma 3.17.

    Moreover, the limit function $ u $ is the unique solution of the problem

    $ {div(A0γu)=f1+f2+θ1div(MY1(Ayˆχ1))+θ2div(MY2(Ayˆχ2))in Ωu=0on Ω $ (3.70)

    where the homogenized matrix is defined by

    $ A0γ:=A1γ+A2γ. $ (3.71)

    Proof. Choosing $ \varphi \equiv 0 $ in $ \left( 3.62\right) $ yields

    $ Ω×Y1A(y)(u+yˆu1)yΦ1dxdy+Ω×Y2A(y)(u+yˆu2)yΦ2dxdy+Ω×Γh(y)(ˆu1ˆu2)(Φ1Φ2)dxdσy=Ω×Y1(ρ+yˆρ1)yΦ1dxdy+Ω×Y2(ρ+yˆρ2)yΦ2dxdy+Ω×Γh(y)(ˆρ1ˆρ2)(Φ1Φ2)dxdσy $

    for all $ \Phi_1\in L^2(\Omega, H^1_{per}(Y_1)) $, $ \Phi_2 \in L^2(\Omega, H^1(Y_2)) $.

    By standard arguments, as in the two scale method (see [9], ch. 9), this gives

    $ {ˆu1(x,y)=ˆχ1(x,y)nj=1uxj(x)χj1(y)ˆu2(x,y)=ˆχ2(x,y)nj=1uxj(x)χj2(y) $ (3.72)

    where $ \chi _{1}^{j}, \ \chi _{2}^{j} $, $ j = 1, ..., n $, are the solutions of the cell problems $ \left( 3.68\right) $ and $ \widehat{\chi}_{1} $, $ \widehat{\chi}_{2} $ satisfy (3.69).

    We now choose $ \Phi _{1} = \Phi _{2}\equiv 0 $ in $ \left( 3.62\right) $ obtaining

    $ 1|Y|Ω×Y1A(y)(u+yˆu1)φdxdy+1|Y|Ω×Y2A(y)(u+yˆu2)φdxdy=f1,φH1(Ω),H10(Ω)+f2,φ(H1(Ω)),H1(Ω) $ (3.73)

    for all $ \varphi\in H_0^1(\Omega) $.

    Replacing $ \left( 3.72\right) $ in $ \left( 3.73\right) $, we easily deduce, after some computations,

    $ Ωni=1nj=1(1|Y|Y1(aij(y)nk=1aik(y)χj1yk(y))dy)uxjφxidx+Ωni=1nj=1(1|Y|Y2(aij(y)nk=1aik(y)χj2yk(y))dy)uxjφxidx=f1,φH1(Ω),H10(Ω)+f2,φ(H1(Ω)),H1(Ω)Ωni=1nj=1(1|Y|Y1aij(y)ˆχ1yj(y)dy)φxidxΩni=1nj=1(1|Y|Y2aij(y)ˆχ2yj(y)dy)φxidx, $

    for all $ \varphi \in H_{0}^{1}\left( \Omega \right) $ which means that $ u $ satisfies the following problem

    $ {ni=1xinj=1(1|Y|Y1(aij(y)nk=1aik(y)χj1yk(y))dy)uxjni=1xinj=1(1|Y|Y2(aij(y)nk=1aik(y)χj2yk(y))dy)uxj=f1+f2+ni=1xinj=1(1|Y|Y1aij(y)ˆχ1yj(y)dy)+ni=1xinj=1(1|Y|Y2aij(y)ˆχ2yj(y)dy) in Ωu=0 on Ω. $

    This implies that $ u $ is the unique solution of problem $ \left( 3.70\right) $ where $ A_{\gamma }^{0} $ is the matrix defined by $ \left( 3.71\right) $.

    Arguing as in the last part of the proof of Corollary 3.15, when proving (3.53), but taking into account that in this case $ \widehat{u}_1 $ and $ \widehat{u}_2 $ are given by (3.72), we get (3.66)$ _{2, 3} $.

    Remark 3.20. As in the previous case, in problem (3.70) the right-hand side of the limit equation is not exactly the sum of the weak limits of $ f_{1\varepsilon} $ and $ f_{2\varepsilon} $ as in the case of more regular data, but it is a more complicated function depending on a subsequence of $ f_{i\varepsilon} $, $ i = 1, 2 $ (see Lemma 3.17 and (3.69) of Corollary 3.19).

    The second issue we deal with concerns the study of the exact controllability of a hyperbolic imperfect transmission problem posed in the domain $ \Omega $ described in Section 2. More precisely, let $ \zeta_{\varepsilon}: = \left(\zeta_{1\varepsilon}, \zeta_{1\varepsilon}\right)\in L^{2}\left(0, T;L^{2}_{\varepsilon}(\Omega) \right) $ be a control. For any fixed $ T>0 $ and $ \gamma \leq -1 $, let us consider the following problem

    $ {u1εdiv(Aεu1ε)=ζ1εin Ωε1×]0,T[,u2εdiv(Aεu2ε)=ζ2εin Ωε2×]0,T[,Aεu1εn1ε=Aεu2εn2εon Γε×]0,T[,Aεu1εn1ε=εγhε(u1εu2ε)on Γε×]0,T[,u1ε=0on Ω×]0,T[,u1ε(0)=U01ε,u1ε(0)=U11εin Ωε1,u2ε(0)=U02ε,u2ε(0)=U12εin Ωε2, $ (4.1)

    where $ n_{i \varepsilon} $ is the unitary outward normal to $ \Omega_{i \varepsilon}, \; i = 1, 2 $, and

    $ {i) U0ε:=(U01ε,U02ε)Hεγ,ii) U1ε:=(U11ε,U12ε)L2ε(Ω). $ (4.2)

    Moreover $ A^\varepsilon $ and $ h^\varepsilon $ are as in (3.2)$ \div $ (3.6) but, as usual when dealing with hyperbolic problems, in this section we require the additional symmetry assumption on $ A $

    $ aij=aji,i,j=1,...n. $ (4.3)

    For clearness sake, throughout the paper, we denote by $ u_{\varepsilon}\left(\zeta_{\varepsilon}\right): = \left(u_{1 \varepsilon }\left(\zeta_{\varepsilon}\right), u_{2 \varepsilon}\left(\zeta_{\varepsilon}\right)\right) $ the solution of problem (4.1) and where no ambiguity arises, we omit the explicit dependence on the control.

    Definition 4.1. System (4.1) is exactly controllable at time $ T>0 $, if for every $ \left(U_{\varepsilon}^{0}, U_{\varepsilon}^{1}\right) , $ $ \left(\overline{U}_{\varepsilon}^{0}, \overline{U}_{\varepsilon}^{1}\right) $ in $ H^{\varepsilon}_{\gamma} \times L^{2}_{\varepsilon}(\Omega) $, there exists a control $ \zeta_{\varepsilon}^{ex}: = \left(\zeta_{1\varepsilon}^{ex}, \zeta_{2\varepsilon}^{ex}\right) $ belonging to $ L^{2}\left(0, T;L^{2}_{\varepsilon}(\Omega)\right) $ such that the corresponding solution $ u_\varepsilon $ of problem (4.1) satisfies

    $ u_{\varepsilon}(T) = \overline{U}^{0}_{\varepsilon}, \, \, \, u'_{\varepsilon}(T) = \overline{U}^{1}_{\varepsilon}. $

    Remark 4.2. It is well known that for a linear system, driving it to any state is equivalent to driving it to the null state and this is known as null controllability. Hence, in the sequel we study the null controllability of the considered systems, namely we take $ \left(\overline{U}_{\varepsilon}^{0}, \overline{U}_{\varepsilon}^{1}\right) = (0, 0) $.

    We will prove that the system (4.1) is null controllable. We use a constructive method known as the Hilbert Uniqueness Method introduced by Lions (see [44,45]). The idea is to build a control as the solution of a transposed problem associated to some suitable initial conditions. These initial conditions are obtained by calculating at zero time the solution of a backward problem. Let us underline that the control obtained by HUM is unique being the one minimizing the norm in $ L^2(0, T;L^2_\varepsilon(\Omega)) $. In [21], the asymptotic behaviour, as $ \varepsilon \to 0 $, of the solutions of problem (4.1) has already been studied. Whence, a natural question arises: provided the exact controllability of the homogenized problem, do the exact control and its corresponding solution converge, as $ \varepsilon $ goes to zero, to the exact control of the homogenized problem and to the corresponding solution, respectively?

    We give a positive answer to this question by proving the following main result:

    Theorem 4.3. Let $ T>0 $, $ \gamma\leq -1 $ and $ (U^{0}_{\varepsilon}, U^{1}_{\varepsilon})\in H^{\varepsilon}_{\gamma}\times L^{2}_{\varepsilon}(\Omega) $ satisfy

    $ {i)~U0εU0:=(U01,U02) weakly in [L2(Ω)]2, with U02H10(Ω),ii)~U1εU1:=(U11,U12) weakly in [L2(Ω)]2,iii)U0εHεγC, $ (4.4)

    with $ C $ positive constant independent of $ \varepsilon $. Further, assume that $ (3.2)\div(3.6) $ and (4.3) hold.

    Let $ \zeta_{\varepsilon}^{ex} = (\zeta_{1\varepsilon}^{ex}, \zeta_{2\varepsilon}^{ex})\in L^2(0, T;L_{\varepsilon}^2(\Omega)) $ be the exact control of problem (4.1) minimizing the norm in $ L^2(0, T;L^2_\varepsilon(\Omega)) $. Then

    $ {~ζex1εθ1ζex1weakly in L2(0,T;L2(Ω)),~ζex2εθ2ζex1weakly in L2(0,T;L2(Ω)), $ (4.5)

    where $ \theta_i $, $ i = 1, 2 $, is given in (2.2) and $ \zeta_1^{ex} $ is the exact control, minimizing the norm in $ L^2(0, T;L^2(\Omega)) $, of the homogenized system

    $ {u1div(A0γu1)=ζex1in Ω×]0,T[,u1=0on Ω×]0,T[,u1(0)=U01+U02in Ω,u1(0)=U11+U12in Ω. $ (4.6)

    The homogenized matrix $ A_{\gamma}^0 $ is given by (3.46) and (3.50), for $ \gamma<-1 $, while, for $ \gamma = -1 $, is given by (3.67) and (3.71).

    Moreover denoted by $ u_1: = u_{1}(\zeta_1^{ex})\in L^2(0, T;H^1_0(\Omega)) $, with $ u'_1: = u'_{1}(\zeta_1^{ex})\in L^{2}\left(0, T;L^{2}(\Omega)\right) $ the unique solution of problem (4.6), there exists an extension operator

    $ P_1^\varepsilon \in {\mathcal L} (L^{\infty} (0, T;H^k(\Omega _{1}^{\varepsilon })); L^{\infty} (0, T;H^k (\Omega))), $

    for $ k = 1, 2 $, such that

    $ {Pε1u1ε(ζexε)u1(ζex1)weakly in L(0,T;H10(Ω)),~u1ε(ζexε)θ1u1(ζex1)weakly in L(0,T;L2(Ω)),~u2ε(ζexε)θ2u1(ζex1)weakly in L(0,T;L2(Ω)), $ (4.7)

    and

    $ {Pε1u1ε(ζexε)u1(ζex1)weakly in L(0,T;L2(Ω)),~u1ε(ζexε)θ1u1(ζex1)weakly in L(0,T;L2(Ω)),~u2ε(ζexε)θ2u1(ζex1)weakly in L(0,T;L2(Ω)). $ (4.8)

    Let us observe that by (4.4), $ U_{1}^0 $ is in fact in $ H_{0}^1(\Omega) $ (see [21], Remark 2.7 for details).

    In this subsection, for reader's convenience, we start by recalling some properties of the solution of the evolution imperfect transmission problem already studied in [21]. Although these results hold for $ \gamma\leq 1 $, we restrict our attention to the case we are interested in.

    Hence, for $ T>0 $ and $ \gamma\leq -1 $, let $ z_{\varepsilon}: = \left(z_{1\varepsilon}, z_{2\varepsilon}\right) $ satisfy

    $ {z1εdiv(Aεz1ε)=g1εin Ωε1×]0,T[,z2εdiv(Aεz2ε)=g2εin Ωε2×]0,T[,Aεz1εn1ε=Aεz2εn2εon Γε×]0,T[,Aεz1εn1ε=εγhε(z1εz2ε)on Γε×]0,T[,z1ε=0on Ω×]0,T[,z1ε(0)=Z01ε,z1ε(0)=Z11εin Ωε1,z2ε(0)=Z02ε,z2ε(0)=Z12εin Ωε2, $ (4.9)

    where $ n_{i \varepsilon} $ is the unitary outward normal to $ \Omega_{i}^{ \varepsilon}, \; i = 1, 2 $ and

    $ {i) gε:=(g1ε,g2ε)L2(0,T;L2ε(Ω)),ii) Z0ε:=(Z01ε,Z02ε)Hεγ,iii) Z1ε:=(Z11ε,Z12ε)L2ε(Ω). $ (4.10)

    For any $ \varepsilon>0 $, we set

    $ Wε:={v=(v1,v2)L2(0,T;Hεγ)s.t.v=(v1,v2)L2(0,T;L2ε(Ω))}, $ (4.11)

    which is a Hilbert space if equipped with the norm

    $ vWε=v1L2(0,T;Vε)+v2L2(0,T;H1(Ωε2))+v1L2(0,T;L2(Ωε1))+v2L2(0,T;L2(Ωε2)), $

    (see [21]).

    Thanks to Remark 3.4, by using an approach to evolutionary problems based on evolution triples, we assume as variational formulation of the formal problem $ \left( 4.9\right) $ the following one

    $ {Findzε=(z1ε,z2ε)Wε s. t. z1ε,v1(Vε),Vε+z2ε,v2(H1(Ωε2)),H1(Ωε2)+Ωε1Aεz1εv1dx+Ωε2Aεz2εv2dx+εγΓεhε(z1εz2ε)(v1v2)dσx=Ωε1g1εv1dx+Ωε2g2εv2dx,(v1,v2)Hεγ in D(0,T),z1ε(0)=Z01ε,z1ε(0)=Z11εin Ωε1,z2ε(0)=Z02ε,z2ε(0)=Z22εin Ωε2. $ (4.12)

    As observed in [21], an abstract Galerkin's method provides the existence and uniqueness result for the solution of problem (4.9) and also some a priori estimates for any $ \varepsilon>0 $.

    Theorem 4.4 ([21]). Under the assumptions $ (3.2)\div (3.6) $, (4.3) and $ \left( 4.10\right) $, problem $ (4.9) $ admits a unique weak solution $ z_{\varepsilon}\in W_{\varepsilon} $. Moreover, there exists a positive constant $ C $, independent of $ \varepsilon $, such that

    $ \begin{equation*} \label{3.1+} \left\Vert z_{\varepsilon}\right\Vert _{L^{\infty}(0, T;H^{\varepsilon}_{\gamma})}+\left\Vert z_{\varepsilon}'\right\Vert _{L^{\infty}(0, T;L^{2}_{\varepsilon}\left( \Omega\right))}\leq C\left( \left\Vert Z_{\varepsilon}^{0}\right\Vert _{H^{\varepsilon}_{\gamma} }+\left\Vert Z_{\varepsilon}^{1}\right\Vert _{L^{2}_{\varepsilon}\left( \Omega\right) }+\left\Vert g_{\varepsilon}\right\Vert _{L^{2}\left( 0, T;L^{2}_{\varepsilon}\left( \Omega\right) \right) }\right). \end{equation*} $

    Let us point out that, for any fixed $ \varepsilon $, the solution of problem (4.9) has some further regularity properties (see [46], Chapter 3, Theorem 8.2). In fact, under the same hypotheses of Theorem $ 4.4 $, the unique solution $ z_{\varepsilon} $ of problem (4.9) is such that

    $ \begin{equation*} z_{\varepsilon}\in C\left( \left[ 0, T\right] ;H^{\varepsilon}_{\gamma}\right), \, z_{\varepsilon}'\in C\left( \left[ 0, T\right] ;L^{2}_{\varepsilon}(\Omega) \right). \end{equation*} $

    Now, let us recall the homogenization result for problem (4.9), proved in [21].

    Theorem 4.5 ([21]). Let $ \left(Z^{0}_{\varepsilon}, Z^{1}_{\varepsilon}\right)\in H_{\gamma}^{\varepsilon}\times L_{\varepsilon}^{2}(\Omega) $ satisfy

    $ \begin{equation} \left\{ \begin{array}{ll} {\mbox{i) }} \widetilde{Z^0_{\varepsilon}} \rightharpoonup Z^{0}: = (Z^0_1, Z^0_2) { ~weakly ~in ~} {\left[L^{2}(\Omega)\right]^{2}}, { ~with ~} Z^0_2 \in H_0^1(\Omega), \\ {\mbox{ii) }} \widetilde{Z^1_{\varepsilon}} \rightharpoonup Z^{1}: = (Z^1_1, Z^1_2) { ~weakly~ in~ } {\left[L^{2}(\Omega)\right]^{2}}, \\ {\mbox{iii) }} \| Z^0_\varepsilon \|_{H^\varepsilon_{\gamma}} \leq C, \end{array} \right. \end{equation} $ (4.13)

    with $ C $ positive constant independent of $ \varepsilon $, and $ g_\varepsilon \in L^{2}\left(0, T;L^{2}_{\varepsilon} \left(\Omega\right)\right) $ be such that

    $ \begin{equation} \left(\widetilde{g_{1\varepsilon}}, \widetilde{g_{2\varepsilon}}\right)\rightharpoonup (g_1, g_2) \, \, {weakly~ in} \, L^{2}\left(0, T;\left[L^{2}\left(\Omega\right)\right]^2\right). \end{equation} $ (4.14)

    Under the assumptions $ (3.2)\div(3.6) $ and (4.3), there exists an extension operator

    $ P_1^\varepsilon \in {\mathcal L} (L^{\infty} (0, T;H^k(\Omega _{1}^{\varepsilon })); L^{\infty} (0, T;H^k (\Omega))), $

    for $ k = 1, 2 $, such that the solution $ z_{\varepsilon} $ of problem (4.9) satisfies the following convergences

    $ \begin{equation*} \label{convp} \left\{ \begin{array}{@{}ll} P_1^\varepsilon z_{1\varepsilon} \rightharpoonup z_{1}& ~weakly*~ in~ {L^{\infty} \left(0, T;H_0^1(\Omega)\right) }, \\ \widetilde{z_{1\varepsilon}}\rightharpoonup \theta_1z_1&~weakly*~ in~ L^{\infty} \left(0, T;L^2(\Omega)\right), \\ \widetilde{z_{2\varepsilon}}\rightharpoonup \theta_2z_1&~weakly*~ in~ L^{\infty} \left(0, T;L^2(\Omega)\right), \end{array} \right. \end{equation*} $
    $ \begin{equation*} \label{convp'} \left\{ \begin{array}{@{}ll} P_1^\varepsilon {z_{1\varepsilon}'}\rightharpoonup z'_1 &weakly*~ in~ {L^{\infty}\left(0, T;L^2 (\Omega)\right) }, \\ \widetilde{z_{1\varepsilon}'}\rightharpoonup \theta_1z'_1 &weakly*~ in~{L^{\infty} \left(0, T;L^2 (\Omega)\right) }, \\ \widetilde{z_{2\varepsilon}'}\rightharpoonup \theta_2z'_1&weakly*~ in~{L^{\infty} \left(0, T;L^2 (\Omega)\right) } \end{array} \right. \end{equation*} $

    where $ \theta_i $, i = 1, 2, is given in $ (2.2) $ and $ z_{1}\in L^2(0, T;H^1_0(\Omega)) $, with $ z'_{1}\in L^{2} \left(0, T;L^{2}(\Omega)\right) $, is the unique solution of the following homogenized problem

    $ \begin{equation*} \label{eq2.17} \left\{\begin{array}{@{}ll} z''_1 - {\rm div}\; \left(A_{\gamma}^0\nabla z_1\right) = g_1 + g_2 &in~ {\Omega \times ]0, T[}, \\ z_1 = 0 & on~\partial \Omega\times ]0, T[, \\ z_1(0) = Z^0_1+ Z^0_2 & in~\Omega, \\ z'_1(0) = Z^1_1+Z^1_2 & in~ \Omega. \end{array} \right. \end{equation*} $

    Moreover

    $ \begin{equation*} \label{eq2.1666} A^\varepsilon \widetilde{\nabla z_{1\varepsilon}}+A^\varepsilon \widetilde{\nabla z_{2\varepsilon}}\rightharpoonup A_{\gamma}^0 \nabla z_{1}\quad weakly* ~in~ {L^{\infty} \left(0, T;L^2(\Omega)\right)}. \end{equation*} $

    The homogenized matrix $ A_{\gamma}^0 $ is given by (3.46) and (3.50), for $ \gamma<-1 $, while, for $ \gamma = -1 $, is given by (3.67) and (3.71).

    Remark 4.6. Let us observe that (see for instance [9]) $ A_{\gamma}^0 $ is a symmetric constant matrix such that

    $ \begin{equation} A_{\gamma}^0\in M\left(\alpha, \beta, \Omega\right), \end{equation} $ (4.15)

    where $ \alpha $ and $ \beta $ are defined in (3.3).

    In order to prove Theorem 4.3, we need to study the homogenization of another evolution imperfect transmission problem with less regular initial data (see Subsection 4.2).

    More precisely, for $ T>0 $ and $ \gamma\leq -1 $, let $ \varphi_\varepsilon\ : = \left(\varphi_{1\varepsilon}, \varphi_{2\varepsilon}\right) $ be the solution of the following problem

    $ \begin{equation} \left\{ \begin{array}{@{}ll} \varphi_{1\varepsilon}'' - \text{div} (A^{\varepsilon} \nabla \varphi_{1\varepsilon} ) = 0 & \text{in } \Omega_{1}^{ \varepsilon} \times ]0, T[, \\ \varphi_{2\varepsilon}'' - {div} (A^{\varepsilon} \nabla \varphi_{2\varepsilon} ) = 0 & \text{in } \Omega_{2}^{\varepsilon} \times ]0, T[, \\ A^{\varepsilon} \nabla \varphi_{1\varepsilon} \cdot n_{1 \varepsilon} = -A^{\varepsilon} \nabla \varphi_{2\varepsilon} \cdot n_{2 \varepsilon} & \text{on } \Gamma^{\varepsilon}\times ]0, T[, \\ A^{\varepsilon} \nabla \varphi_{1\varepsilon} \cdot n_{1 \varepsilon} = -\varepsilon^{\gamma}h^{\varepsilon}(\varphi_{1\varepsilon}-\varphi_{2\varepsilon}) & \text{on } \Gamma^{\varepsilon}\times ]0, T[, \\ \varphi_{1\varepsilon} = 0 & \text{on } \partial \Omega \times ]0, T[, \\ \varphi_{1\varepsilon}(0) = \varphi_{1 \varepsilon}^0, \quad \varphi'_{1\varepsilon}(0) = \varphi_{1 \varepsilon}^1 & \text{in } \Omega _{1}^{\varepsilon }, \\ \varphi_{2\varepsilon}(0) = \varphi^0_{2\varepsilon}, \quad \varphi'_{2\varepsilon}(0) = \varphi_{2 \varepsilon}^1 & \text{in } \Omega_{2}^{\varepsilon}, \end{array} \right. \end{equation} $ (4.16)

    where $ n_{i \varepsilon} $ is the unitary outward normal to $ \Omega_{i}^{ \varepsilon}, \; i = 1, 2 $ and

    $ \begin{equation} \left\{ \begin{array}{@{}ll} \mbox{i) } \varphi^{0}_{\varepsilon}: = \left( \varphi^0_{ 1 \varepsilon}, \varphi^0_{ 2 \varepsilon}\right)\in L_{\varepsilon}^{2}(\Omega), \\ \mbox{ii) } \varphi^{1}_{\varepsilon}: = \left( \varphi^1_{ 1 \varepsilon}, \varphi^1_{ 2 \varepsilon}\right)\in (H_{\gamma}^{\varepsilon})'. \end{array}\right. \end{equation} $ (4.17)

    Since the initial data are in a weak space, in order to give an appropriate definition of weak solution of problem (4.16), one needs to apply the so called transposition method (see [46], Chapter 3, Section 9, Theorems 9.3 and 9.4) to obtain a unique solution $ \varphi_\varepsilon\ \in C\left([0, T];L^{2}_\varepsilon(\Omega)\right)\cap C^{1}\left([0, T];\left(H^{\varepsilon}_{\gamma}\right)'\right) $ satisfying the estimate

    $ \begin{equation} \|\varphi_\varepsilon\|_{L^\infty(0, T; L^2_\varepsilon(\Omega))}+ \|\varphi'_\varepsilon\|_{L^\infty(0, T; (H_{\gamma}^{\varepsilon})') }\leq C( \|\varphi^0_\varepsilon\|_{L^2_\varepsilon(\Omega)}+ \|\varphi^1_\varepsilon\|_{(H_{\gamma}^{\varepsilon})' }), \end{equation} $ (4.18)

    with $ C $ positive constant independent of $ \varepsilon $.

    Assume that the initial data satisfy

    $ \begin{equation} \left\{ \begin{array}{@{}ll} \mbox{i) } \widetilde{\varphi^{0}_{\varepsilon}}\rightharpoonup \varphi^{0}: = \left(\varphi_1^{0}, \varphi_2^{0}\right)\, \, \text{weakly in}\, (L^{2}(\Omega))^{2}, \\ \mbox{ii) }\| \varphi^{1}_{\varepsilon}\|_{(H^\varepsilon_{\gamma})'} \leq C, \end{array} \right. \end{equation} $ (4.19)

    with $ C $ positive constant independent of $ \varepsilon $.

    The results of Theorem 4.5 can't be applied directly to problem (4.16), hypotheses (4.17) and (4.19) being too weak, but, thanks to the homogenization results of Section 3, we overcome the difficulty and prove the following new result.

    Theorem 4.7. Let $ \left(\varphi^{0}_{\varepsilon}, \varphi^{1}_{\varepsilon}\right)\in L_{\varepsilon}^{2}(\Omega)\times (H_{\gamma}^{\varepsilon})' $ satisfy (4.19). Under the assumptions $ (3.2)\div(3.6) $ and (4.3), there exist a subsequence, still denoted $ \varepsilon $, and a function $ \varphi^*\in H^{-1}(\Omega) $ such that for the solution $ \varphi_\varepsilon $ of problem (4.16) it holds

    $ \begin{equation} \begin{array}{c} \widetilde{\varphi_{1\varepsilon}}\rightharpoonup \theta_1\varphi_{1}\, \, \, \mathit{\text{in}}\, L^{2}\left(0, T;L^{2}(\Omega)\right)\\ \widetilde{\varphi_{2\varepsilon}}\rightharpoonup \theta_2\varphi_{1} \, \, \, \mathit{\text{in}}\, L^{2}\left(0, T;L^{2}(\Omega)\right), \end{array} \end{equation} $ (4.20)

    where $ \theta_i $, i = 1, 2, is given in $ (2.2) $ and the function $ \varphi_1\in L^2(0, T;L^2(\Omega)) $, with $ \varphi_1'\in L^2(0, T;L^2(\Omega)) $, is the unique solution of the following homogenized problem

    $ \begin{equation} \left\{\begin{array}{@{}ll} \varphi_1'' - {\rm div}\; \left(A_{\gamma}^0\nabla \varphi_1\right) = 0 &in~ {\Omega \times ]0, T[}, \\ \varphi_1 = 0 & on~\partial \Omega\times ]0, T[, \\ \varphi_1(0) = \varphi^0_1+ \varphi^0_2 & in~\Omega, \\ \varphi_1'(0) = \varphi^* & in~ \Omega. \end{array} \right. \end{equation} $ (4.21)

    The homogenized matrix $ A_{\gamma}^0 $ is given by (3.46) and (3.50), for $ \gamma<-1 $, while, for $ \gamma = -1 $, is given by (3.67) and (3.71).

    Proof. Estimate (4.18) and hypothesis (4.19) provide the existence of two functions $ \bar{\varphi}\in L^{2}\left(0, T;L^{2}(\Omega)\right) $ and $ \varphi_2\in L^{2}\left(0, T;L^{2}(\Omega)\right) $ such that in particular, up to a subsequence,

    $ \begin{equation} \begin{array}{c} \widetilde{\varphi_{1\varepsilon}}\rightharpoonup \bar{\varphi}\, \, \, \text{in}\, L^{2}\left(0, T;L^{2}(\Omega)\right), \\ \widetilde{\varphi_{2\varepsilon}}\rightharpoonup \varphi_{2} \, \, \, \text{in}\, L^{2}\left(0, T;L^{2}(\Omega)\right). \end{array} \end{equation} $ (4.22)

    Let $ \xi_\varepsilon: = (\xi_{1\varepsilon}, \xi_{2\varepsilon}) $ be the unique solution of the following system

    $ \begin{equation} \left\{ \begin{array}{@{}ll} - \text{div} (A^{\varepsilon} \nabla \xi_{1\varepsilon} ) = -\varphi^{1}_{1\varepsilon} & \text{in } \Omega_{1}^{ \varepsilon} , \\ - {div} (A^{\varepsilon}\nabla \xi_{2\varepsilon} ) = -\varphi^{1}_{2\varepsilon} & \text{in } \Omega_{2}^{\varepsilon} , \\ A^{\varepsilon} \nabla \xi_{1\varepsilon} \cdot n_{1 \varepsilon} = -A^{\varepsilon} \nabla \xi_{2\varepsilon} \cdot n_{2 \varepsilon} & \text{on } \Gamma^{\varepsilon}, \\ A^{\varepsilon} \nabla \xi_{1\varepsilon} \cdot n_{1 \varepsilon} = -\varepsilon^{\gamma}h^{\varepsilon}(\xi_{1\varepsilon}-\xi_{2\varepsilon}) & \text{on } \Gamma^{\varepsilon}, \\ \xi_{1\varepsilon} = 0 & \text{on } \partial \Omega . \end{array} \right. \end{equation} $ (4.23)

    By hypotheses (3.2)$ \div $ (3.6) and estimate (4.19) ⅱ) the results of Corollary 3.15 and Corollary 3.19 apply obtaining that there exists a function $ \varphi^*\in H^{-1}(\Omega) $ sucht that, up to a subsequence, still denoted $ \varepsilon $,

    $ \begin{equation} \left\{ \begin{array}{@{}ll} \mbox{i) } \widetilde{\xi_{1\varepsilon}}\rightharpoonup \theta_1\xi_1& \text{weakly in } L^2(\Omega), \\] \mbox{ii) } \widetilde{\xi_{2\varepsilon}}\rightharpoonup \theta_2\xi_1 & \text{weakly in } L^2(\Omega), \end{array} \right. \end{equation} $ (4.24)

    with $ \theta_i $ i = 1, 2 given in $ (2.2) $ and $ \xi_1\in H^1_0(\Omega) $ unique solution of

    $ \begin{equation} \left\{\begin{array}{@{}ll} - {\rm div}\; \left(A_{\gamma}^0\nabla \xi_1\right) = -\varphi^* & \text{in } {\Omega}, \\ \xi_1 = 0 & \text{on }\partial \Omega, \end{array} \right. \end{equation} $ (4.25)

    where $ A_{\gamma}^0 $ is the matrix defined in (3.46) and (3.50) if $ \gamma <-1 $ or (3.67) and (3.71) if $ \gamma = -1 $. Denote

    $ \begin{equation} \sigma_{i\varepsilon}(x, t): = \int_{0}^{t}\varphi_{i\varepsilon}(x, s)ds + \xi_{i\varepsilon}(x), \, \, \, \, \, i = 1, 2. \end{equation} $ (4.26)

    We do observe that this transformation leads to a system whose initial data are more regular than $ \left(\varphi^{0}_{\varepsilon}, \varphi^{1}_{\varepsilon}\right) $. Indeed, $ \sigma_\varepsilon: = \left(\sigma_{1\varepsilon}, \sigma_{2\varepsilon}\right) $ satisfies

    $ \begin{equation} \left\{ \begin{array}{@{}ll} \sigma_{1\varepsilon}'' - \text{div} (A^{\varepsilon} \nabla \sigma_{1\varepsilon} ) = 0 & \text{in } \Omega_{1}^{ \varepsilon} \times ]0, T[, \\ \sigma_{2\varepsilon}'' - \text{div} (A^{\varepsilon} \nabla \sigma_{2\varepsilon} ) = 0 & \text{in } \Omega_{2}^{\varepsilon} \times ]0, T[, \\ A^{\varepsilon} \nabla \sigma_{1\varepsilon} \cdot n_{1 \varepsilon} = -A^{\varepsilon} \nabla \sigma_{2\varepsilon} \cdot n_{2 \varepsilon} & \text{on } \Gamma^{\varepsilon}\times ]0, T[, \\ A^{\varepsilon} \nabla \sigma_{1\varepsilon} \cdot n_{1 \varepsilon} = -\varepsilon^{\gamma}h^{\varepsilon}(\sigma_{1\varepsilon}-\sigma_{2\varepsilon}) & \text{on } \Gamma^{\varepsilon}\times ]0, T[, \\ \sigma_{1\varepsilon} = 0 & \text{on } \partial \Omega \times ]0, T[, \\ \sigma_{1\varepsilon}(0) = \xi_{1\varepsilon}, \quad \sigma'_{1\varepsilon}(0) = \varphi_{1 \varepsilon}^0 & \text{in } \Omega _{1}^{\varepsilon }, \\ \sigma_{2\varepsilon}(0) = \xi_{2\varepsilon}, \quad \sigma'_{2\varepsilon}(0) = \varphi_{2 \varepsilon}^0 & \text{in } \Omega_{2}^{\varepsilon}. \end{array} \right. \end{equation} $ (4.27)

    Since $ \varphi_{\varepsilon}^1\in ( H^{\varepsilon}_{\gamma})' $, one has $ \xi_{\varepsilon}\in H^{\varepsilon}_{\gamma} $, hence the initial data $ \left(\xi_{\varepsilon}, \varphi_{\varepsilon}^0\right)\in H^{\varepsilon}_{\gamma}\times L^2_{\varepsilon}(\Omega) $. Moreover, by (4.19) ⅱ) and (4.23) we get

    $ \begin{equation} \|\xi_\varepsilon\|_{H^{\varepsilon}_{\gamma}}\leq C \end{equation} $ (4.28)

    with $ C $ positive constant independent of $ \varepsilon $.

    By (4.19) i), (4.24) and (4.28) we can apply Theorem 4.5 to system (4.27) obtaining in particular

    $ \begin{equation} \left\{ \begin{array}{@{}ll} \mbox{i) } \widetilde{\sigma_{1\varepsilon}}\rightharpoonup \theta_1\sigma_1& \text{weakly in } L^2(0, T; L^2(\Omega)), \\ \mbox{ii) } \widetilde{\sigma'_{1\varepsilon}}\rightharpoonup \theta_1\sigma'_1 & \text{weakly in } L^2(0, T; L^2(\Omega)), \\ \mbox{iii) } \widetilde{\sigma_{2\varepsilon}}\rightharpoonup \theta_2\sigma_1& \text{weakly in } L^2(0, T; L^2(\Omega)), \\ \mbox{iv) } \widetilde{\sigma'_{2\varepsilon}}\rightharpoonup \theta_2\sigma'_1 & \text{weakly in } L^2(0, T; L^2(\Omega)), \end{array} \right. \end{equation} $ (4.29)

    where $ \sigma_1 $ is the unique solution of the homogenized system

    $ \begin{equation} \left\{\begin{array}{@{}ll} \sigma''_1 - {\rm div}\; \left(A_{\gamma}^0\nabla \sigma_1\right) = 0 & \text{in } {\Omega \times ]0, T[}, \\ \sigma_1 = 0 & \text{on }\partial \Omega\times ]0, T[, \\ \sigma_1(0) = \xi_1 & \text{in }\Omega, \\ \sigma'_1(0) = \varphi^0_1+\varphi^0_2 & \text{in } \Omega. \end{array} \right. \end{equation} $ (4.30)

    By (4.26) it results

    $ \begin{equation} \widetilde{\sigma'_{i\varepsilon}} = \widetilde{\varphi_{i\varepsilon}}, \, \, \, \, \, i = 1, 2. \end{equation} $ (4.31)

    Hence (4.22), (4.29) ⅱ) and (4.29) ⅳ), by passing to the limit in (4.31), provide $ \bar{\varphi} = \theta_1\sigma'_1 $ and $ \varphi_2 = \theta_2\sigma'_1 $.

    By classical regularity results for hyperbolic equations we have

    $ \sigma_{1}\in C\left([0, T];H^{1}_{0}(\Omega)\right)\cap C^{1}\left([0, T];L^{2}(\Omega)\right)\cap C^{2}\left([0, T];H^{-1}(\Omega)\right). $

    Hence, by (4.25) and (4.30)

    $ \begin{equation*} \sigma_{1}''(0) = {\rm div}\; \left(A_{\gamma}^0\nabla \sigma_1(0)\right) = {\rm div}\; \left(A_{\gamma}^0\nabla \xi_1\right) = \varphi^*. \end{equation*} $

    Therefore, the function $ \varphi_1: = \sigma_{1}' = \dfrac{\bar{\varphi}}{\theta_1} $ is the unique solution in the sense of transposition of system (4.21) and $ \varphi_2 = \theta_2\varphi_1 $.

    Now the proof is complete.

    The proof of the main result of this section developes into two steps. At first we prove the null controllability (or equivalently the exact controllability, see Remark 4.2) of problem (4.1), by using HUM (Hilbert Uniqueness Method), a constructive method introduced by Lions in [44,45]. As already observed, the idea is to build a control as the solution of a transposed problem associated to some suitable initial conditions. These initial conditions are obtained by calculating at zero time the solution of a backward problem. The crucial point is constructing an isomorphism between $ L^{2}_\varepsilon(\Omega) \times (H^{\varepsilon}_{\gamma})' $ and its dual with constants independent of $ \varepsilon $. This result was already proved in [36], Theorem 3.1, for the case $ -1<\gamma \leq 1. $ The proof for the case $ \gamma\leq -1 $ is exactly the same, hence here, for the reader's convenience, we detail only the noteworthy points.

    In the second step, having in mind the homogenization result of the previous subsection (see Theorem 4.5), we show that the exact control of the problem at $ \varepsilon $-level, found in the first step, and the corresponding state, converge, as $ \varepsilon\rightarrow 0 $, to the exact control and to the solution of the homogenized problem, respectively. To this aim, we need to apply the homogenization result stated in Theorem 4.7 to the transposed problem at $ \varepsilon $-level.

    Step1. Let us start by proving that there exists a control $ \zeta_{\varepsilon}^{ex}\in L^{2}\left(0, T;L_{\varepsilon}^{2}\left(\Omega\right)\right) $ driving the corresponding solution of problem (4.1) to the null state, i.e.

    $ \begin{equation} u_{\varepsilon}(T) = u'_{\varepsilon}(T) = 0, \end{equation} $ (4.32)

    see Definition 4.1 and Remark 4.2. To this aim, let $ \left(\varphi^{0}_{\varepsilon}, \varphi^{1}_{\varepsilon}\right)\in L^{2}_{\varepsilon}(\Omega)\times \left(H_{\gamma}^{\varepsilon}\right)' $ and let $ \varphi_\varepsilon\in C\left([0, T];L^{2}_\varepsilon(\Omega)\right)\cap C^{1}\left([0, T];\left(H^{\varepsilon}_{\gamma}\right)'\right) $ be the unique solution in the sense of transposition of problem (4.16). Consider the backward problem

    $ \begin{equation} \left\{ \begin{array}{@{}ll} \psi_{2\varepsilon}'' - \text{div} (A^{\varepsilon} \nabla \psi_{1\varepsilon} ) = - \varphi_{1\varepsilon} & \text{in } \Omega_{1}^{ \varepsilon} \times ]0, T[, \\ \psi_{2\varepsilon}'' - \text{div} (A^{\varepsilon} \nabla \psi_{2\varepsilon} ) = - \varphi_{2\varepsilon} & \text{in } \Omega_{2}^{\varepsilon}\times ]0, T[, \\ A^{\varepsilon} \nabla \psi_{1\varepsilon} \cdot n_{1 \varepsilon} = -A^{\varepsilon} \nabla \psi_{2\varepsilon} \cdot n_{2 \varepsilon} & \text{on } \Gamma^{\varepsilon}\times ]0, T[, \\ A^{\varepsilon} \nabla \psi_{1\varepsilon} \cdot n_{1 \varepsilon} = -\varepsilon^{\gamma}h^{\varepsilon}(\psi_{1\varepsilon}-\psi_{2\varepsilon}) & \text{on } \Gamma^{\varepsilon}\times ]0, T[, \\ \psi_{1\varepsilon} = 0 & \text{on } \partial \Omega \times ]0, T[, \\ \psi_{1\varepsilon}(T) = \psi'_{1\varepsilon}(T) = 0 & \text{in } \Omega_{1}^{ \varepsilon}, \\ \psi_{2\varepsilon}(T) = \psi'_{2\varepsilon}(T) = 0 & \text{in } \Omega_{2}^{\varepsilon}, \end{array} \right. \end{equation} $ (4.33)

    where $ n_{i \varepsilon} $ is the unitary outward normal to $ \Omega_{i}^{ \varepsilon}, \; i = 1, 2 $.

    As previously, for clearness sake, we denote by

    $ \psi_\varepsilon(\varphi_\varepsilon): = (\psi_{1\varepsilon}(\varphi_\varepsilon), \psi_{2\varepsilon}(\varphi_\varepsilon))\in C\left([0, T];H^{\varepsilon}_{\gamma}\right)\cap C^{1}\left([0, T];L^{2}_\varepsilon(\Omega)\right) $

    the unique solution of problem (4.33) and, where no ambiguity arises, we omit the explicit dependence on the right hand member. Then we introduce the linear operator

    $ \begin{equation} {\mathcal L}_\varepsilon :L^{2}_\varepsilon(\Omega) \times \left(H^{\varepsilon}_{\gamma}\right)'\rightarrow L^{2}_\varepsilon(\Omega) \times H^{\varepsilon}_{\gamma} \end{equation} $ (4.34)

    by setting for all $ \left(\varphi^{0}_{\varepsilon}, \varphi^{1}_{\varepsilon}\right)\in L^{2}_{\varepsilon}(\Omega)\times \left(H_{\gamma}^{\varepsilon}\right)' $,

    $ \begin{equation} {\mathcal L}_\varepsilon \left(\varphi^{0}_{\varepsilon}, \varphi^{1}_{\varepsilon}\right) = \left(\psi_\varepsilon'(0), -\psi_\varepsilon(0)\right). \end{equation} $ (4.35)

    Following exactly the same argument as in [36] for the case $ -1<\gamma\leq 1 $, the operator $ {\mathcal L}_\varepsilon $ is an isomorphism with constants independent of $ \varepsilon $ and its inverse operator $ {\mathcal L}_\varepsilon^{-1} $ satisfies the following uniform estimate

    $ \begin{equation} \left\|{\mathcal L}^{-1}_\varepsilon\right\|_{\mathcal{L}\left(L^{2}_\varepsilon(\Omega)\times H^{\varepsilon}_{\gamma};L^{2}_\varepsilon(\Omega)\times (H^{\varepsilon}_{\gamma})'\right)}\leq C, \end{equation} $ (4.36)

    with $ C $ positive constant independent of $ \varepsilon $.

    Let now $ \left(U^{0}_\varepsilon, U^{1}_\varepsilon\right)\in H^{\varepsilon}_{\gamma}\times L^{2}_\varepsilon(\Omega) $ be the initial conditions of problem (4.1) and $ \left(\Phi^{0}_{\varepsilon}, \Phi^{1}_{\varepsilon}\right)\in L^{2}_\varepsilon(\Omega) \times \left(H^{\varepsilon}_{\gamma}\right)' $ the unique couple satisfying the equation

    $ \begin{equation} \left(\Phi^{0}_{\varepsilon}, \Phi^{1}_{\varepsilon}\right) = {\mathcal L}^{-1}_\varepsilon\left(U^{1}_\varepsilon, -U^{0}_\varepsilon\right). \end{equation} $ (4.37)

    Denote

    $ \begin{equation} \zeta_{\varepsilon}^{ex}: = -\Phi_\varepsilon, \end{equation} $ (4.38)

    where $ \Phi_\varepsilon $ is the unique solution of problem (4.16) with initial data $ \left(\Phi^{0}_{\varepsilon}, \Phi^{1}_{\varepsilon}\right) $ given by (4.37). If $ \Psi_\varepsilon $ is the solution of problem (4.33) with the choice $ \varphi_\varepsilon = \Phi_\varepsilon $, by (4.35) and (4.37), we get $ \left(\Psi_\varepsilon'(0), -\Psi_\varepsilon(0)\right) = \left(U^{1}_\varepsilon, -U^{0}_\varepsilon\right) $ and by uniqueness it results

    $ \begin{equation} u_\varepsilon(\zeta_{\varepsilon}^{ex}) = \Psi_\varepsilon, \end{equation} $ (4.39)

    which implies (4.32). Hence $ \zeta_{\varepsilon}^{ex} $ is the null (or equivalently exact) control at time $ T $ for system (4.1). Moreover, this control, deriving from HUM method, minimizes the norm in $ L^2(0, T;L^2_\varepsilon(\Omega)) $.

    Step2. Let now $ \varepsilon $ tend to zero. As a consequence of (4.4) ⅱ), (4.4) ⅲ), (4.36) and (4.37), we get

    $ \begin{equation} \|(\Phi^{0}_{\varepsilon}, \Phi^{1}_{\varepsilon})\|_{L^{2}_{\varepsilon}(\Omega)\times \left(H_{\gamma}^{\varepsilon}\right)'}\leq C, \end{equation} $ (4.40)

    with $ C $ positive constant independent of $ \varepsilon $, hence we deduce the existence of $ \Phi^{0}: = \left(\Phi_1^{0}, \Phi_2^{0}\right) \in [L^{2}(\Omega)]^{2} $ such that, up to a subsequence, still denoted $ \varepsilon $,

    $ \begin{equation} \widetilde{\Phi^{0}_{\varepsilon}}\rightharpoonup \Phi^{0}\, \, \text{weakly in}\, [L^{2}(\Omega)]^{2}. \end{equation} $ (4.41)

    Now we can apply Theorem 4.7 to system (4.16) for the choice $ \varphi_{\varepsilon}^0 = \Phi_{\varepsilon}^0 $, $ \varphi_{\varepsilon}^1 = \Phi_{\varepsilon}^1 $, $ \varphi^0 = \Phi^0 $, and get that there exist a subsequence, still denoted $ \varepsilon $, and a function $ \Phi^*\in H^{-1}(\Omega) $ such that

    $ \begin{equation} \begin{array}{c} \widetilde{\Phi_{1\varepsilon}}\rightharpoonup \theta_1\Phi_{1}\, \, \, \text{in}\, L^{2}\left(0, T;L^{2}(\Omega)\right)\\ \widetilde{\Phi_{2\varepsilon}}\rightharpoonup \theta_2\Phi_{1} \, \, \, \text{in}\, L^{2}\left(0, T;L^{2}(\Omega)\right), \end{array} \end{equation} $ (4.42)

    where $ \theta_i $, i = 1, 2, is given in $ (2.2) $ and the function $ \Phi_1\in L^2(0, T;L^2(\Omega)) $, with $ \Phi_1'\in L^2(0, T;L^2(\Omega)) $, is the unique solution of the following homogenized problem

    $ \begin{equation} \left\{\begin{array}{@{}ll} \Phi_1'' - {\rm div}\; \left(A_{\gamma}^0\nabla \Phi_1\right) = 0 & \text{in } {\Omega \times ]0, T[}, \\ \Phi_1 = 0 & \text{on }\partial \Omega\times ]0, T[, \\ \Phi_1(0) = \Phi^0_1+ \Phi^0_2 & \text{in }\Omega, \\ \Phi_1'(0) = \Phi^* & \text{in } \Omega. \end{array} \right. \end{equation} $ (4.43)

    The homogenized matrix $ A_{\gamma}^0 $ is still given by (3.46) and (3.50) for $ \gamma<-1 $, while, for $ \gamma = -1 $, is given by (3.67) and (3.71).

    Observe that, as a result of (4.38) and (4.42), we get, up to a subsequence, still denoted $ \varepsilon $,

    $ \begin{equation} \left\lbrace \begin{array}{@{}ll} \widetilde{\zeta_{1\varepsilon}^{ex}}\rightharpoonup -\theta_1\Phi_1& \text{weakly in }L^{2}(0, T;L^{2}(\Omega)), \\ \widetilde{\zeta_{2\varepsilon}^{ex}}\rightharpoonup -\theta_2\Phi_1& \text{weakly in }L^{2}(0, T;L^{2}(\Omega)). \end{array} \right. \end{equation} $ (4.44)

    Let now pass to the limit, as $ \varepsilon $ tends to zero, in system (4.1) with $ \zeta^ {ex}_\varepsilon $ in place of $ \zeta_\varepsilon $. In view of (4.4) and (4.44), Theorem 4.5 applies to problem (4.1), for the choice $ Z_{\varepsilon}^0 = U_{\varepsilon}^0 $, $ Z_{\varepsilon}^1 = U_{\varepsilon}^1 $, $ Z^0 = U^0 $, $ Z^1 = U^1 $ and $ g_{\varepsilon} = \zeta^{ex}_{\varepsilon} $ giving the following convergences,

    $ \begin{equation} \left\{ \begin{array}{@{}ll} P_1^\varepsilon u_{1\varepsilon}(\zeta_{\varepsilon}^{ex}) \rightharpoonup u_{1}(\Phi_1)& \text{weakly* in } {L^{\infty} \left(0, T;H_0^1(\Omega)\right) }, \\ \widetilde{u_{1\varepsilon}(\zeta_{\varepsilon}^{ex})}\rightharpoonup \theta_1u_1(\Phi_1)& \text{weakly* in } L^{\infty} \left(0, T;L^2(\Omega)\right), \\ \widetilde{u_{2\varepsilon}(\zeta_{\varepsilon}^{ex})}\rightharpoonup \theta_{2} u_{1}(\Phi_1)& \text{weakly* in } L^{\infty} \left(0, T;L^2(\Omega)\right), \end{array} \right. \end{equation} $ (4.45)
    $ \begin{equation} \left\{ \begin{array}{@{}ll} P_1^\varepsilon {u_{1\varepsilon}'}(\zeta_{\varepsilon}^{ex})\rightharpoonup u'_1(\Phi_1) & \text{weakly* in } {L^{\infty}\left(0, T;L^2 (\Omega)\right) }, \\ \widetilde{u_{1\varepsilon}'(\zeta_{\varepsilon}^{ex})}\rightharpoonup \theta_1 u'_1(\Phi_1) & \text{weakly* in }{L^{\infty} \left(0, T;L^2 (\Omega)\right) }, \\ \widetilde{u_{2\varepsilon}'(\zeta_{\varepsilon}^{ex})}\rightharpoonup \theta_{2} u'_{1}(\Phi_1)& \text{weakly* in }{L^{\infty} \left(0, T;L^2 (\Omega)\right) }, \end{array} \right. \end{equation} $ (4.46)

    where $ u_{1}: = u_1(\Phi_1)\in L^2(0, T;H^1_0(\Omega)) $, with $ u_{1}': = u'_1(\Phi_1)\in L^{2}\left(0, T;L^{2}(\Omega)\right) $, is the unique solution of the homogenized problem

    $ \begin{equation} \left\{\begin{array}{@{}ll} u''_1 - {\rm div}\; \left(A_{\gamma}^0\nabla u_1\right) = -\Phi_1& \text{in } { \Omega \times ]0, T[}, \\ u_1 = 0 & \text{on }\partial \Omega\times ]0, T[, \\ u_1(0) = U^0_1+ U^0_2 & \text{in }\Omega, \\ u'_1(0) = U^1_1+U^1_2 & \text{in } \Omega. \end{array} \right. \end{equation} $ (4.47)

    On the other hand, by (4.42) and Theorem 4.5, we can pass to the limit in the backward problem (4.33) with $ \varphi_{\varepsilon} = \Phi_{\varepsilon} $, and obtain the following convergences

    $ \begin{equation} \left\{ \begin{array}{@{}ll} P_1^\varepsilon \Psi_{1\varepsilon}(\Phi_\varepsilon) \rightharpoonup \Psi_{1}(\Phi_1)& \text{weakly* in } {L^{\infty} \left(0, T;H_0^1(\Omega)\right) }, \\ \widetilde{\Psi_{1\varepsilon}(\Phi_\varepsilon)}\rightharpoonup \theta_1\psi_1(\Phi_1) & \text{weakly* in } L^{\infty} \left(0, T;L^2(\Omega)\right), \\ \widetilde{\Psi_{2\varepsilon}(\Phi_\varepsilon)}\rightharpoonup \theta_2\psi_1(\Phi_1) & \text{weakly* in } L^{\infty} \left(0, T;L^2(\Omega)\right), \end{array} \right. \end{equation} $ (4.48)
    $ \begin{equation} \left\{ \begin{array}{@{}ll} P_1^\varepsilon {\Psi_{1\varepsilon}'}(\Phi_\varepsilon)\rightharpoonup \psi'_1(\Phi_1) & \text{weakly* in } {L^{\infty}\left(0, T;L^2 (\Omega)\right) }, \\ \widetilde{\Psi_{1\varepsilon}'(\Phi_\varepsilon)}\rightharpoonup \theta_1 \psi'_1(\Phi_1) & \text{weakly* in }{L^{\infty} \left(0, T;L^2 (\Omega)\right) }, \\ \widetilde{\Psi_{2\varepsilon}'(\Phi_\varepsilon)}\rightharpoonup \theta_2\psi'_1(\Phi_1) & \text{weakly* in }{L^{\infty} \left(0, T;L^2 (\Omega)\right) }, \end{array} \right. \end{equation} $ (4.49)

    where $ \Psi_{1}: = \Psi_{1}(\Phi_1)\in L^2(0, T;H^1_0(\Omega)) $, with $ \Psi_{1}': = \Psi_{1}'(\Phi_1)\in L^{2}\left(0, T;L^{2}(\Omega)\right) $, is the unique solution of the homogenized backward problem

    $ \begin{equation} \left\{ \begin{array}{@{}ll} \Psi_{1}'' - {div} (A^{0}_{\gamma} \nabla \Psi_{1} ) = -\Phi_{1} & \text{in } \Omega\times ]0, T[, \\ \Psi_{1} = 0 & \text{on } \partial \Omega \times ]0, T[, \\ \Psi_{1}(T) = \Psi'_{1}(T) = 0 & \text{in } \Omega. \end{array} \right. \end{equation} $ (4.50)

    By (4.39), (4.45) and (4.48), we get

    $ \begin{equation} \Psi_1 = u_1 \end{equation} $ (4.51)

    and, since both $ \Psi_1 $ and $ u_1 $ belong to $ C([0, T];H^1_0(\Omega))\cap C^{1}([0, T];L^{2}(\Omega))) $ (see [46], Chapter 3, Theorem 8.2), it holds

    $ \begin{equation} u_1(T) = u'_1(T) = 0. \end{equation} $ (4.52)

    Therefore

    $ \begin{equation} \zeta_1^{ex}: = -\Phi_1 \end{equation} $ (4.53)

    is an exact control for problem (4.47). On the other hand, if we apply HUM method directly to problem (4.47), in view of classical arguments about exact controllability of hyperbolic problem in fixed domains, (see [44,45]), by considering problems (4.43) and (4.50), we construct an isomorphism $ {\mathcal L} $ between $ L^{2}(\Omega) \times H^{-1}(\Omega) $ and its dual such that

    $ \begin{equation*} \label{HUM} {\mathcal L}\left(\Phi^{0}_{1}+\Phi^{0}_{2}, \Phi^{*}\right) = \left(\Psi_1(0), -\Psi_1'(0)\right). \end{equation*} $

    By (4.51) we get

    $ \left(\Phi^{0}_{1}+\Phi^{0}_{2}, \Phi^{*}\right) = {\mathcal L}^{-1}\left(U^{1}_{1}+U^{1}_{2}, -(U^{0}_{1}+U^{0}_{2})\right). $

    This identifies $ \zeta_1^{ex} $ in a unique way as the energy minimizing control of problem (4.47). Hence convergences (4.44), (4.45) and (4.46) hold for the whole sequences and by (4.53), we get (4.5), (4.7) and (4.8).

    Theorem 4.3 is now completely proved.

    The authors warmly thank Patrizia Donato for helpful suggestions and comments.



    [1] Macroscopic modelling of heat transfer in composites with interfacial thermal barrier. Internat. J. Heat Mass Transfer (1994) 37: 2885-2892.
    [2] A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978.
    [3] Homogenization of diffusion in composite media with interfacial barrier. Rev. Roumaine Math. Pures Appl. (1999) 44: 23-36.
    [4] Estimates in homogenization of degenerate elliptic equations by spectral method. Asymptot. Anal. (2013) 81: 189-209.
    [5] (1947) Conduction of Heat in Solids. Oxford: At the Clarendon Press.
    [6] D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585–1620. doi: 10.1137/080713148
    [7] The periodic unfolding method in domains with holes. SIAM J. Math. Anal. (2012) 44: 718-760.
    [8] Exact internal controllability in perforated domains. J. Math. Pures. Appl (1989) 68: 185-213.
    [9] (1999) An Introduction to Homogenization. New York: Oxford Lecture Ser. Math., Appl. 17, Oxford University Press.
    [10] The periodic unfolding method in perforated domains. Portugaliae Mathematica (2006) 63: 467-496.
    [11] Exact boundary controllability for the wave equation in domains with small holes. J. Math. Pures. Appl. (1992) 71: 343-377.
    [12] Homogenization in open sets with holes. J. Math. Anal. Appl. (1979) 71: 590-607.
    [13] Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains. Ann. I. H. Poincaré (2004) 21: 445-486.
    [14] Optimal control for a parabolic problem in a domain with higly oscillating boundary. Appl. Anal. (2004) 83: 1245-1264.
    [15] Optimal control problem for an anisotropic parabolic problem in a domain with very rough boundary. Ric. Mat. (2014) 63: 307-328.
    [16] Optimal control for a second-order linear evolution problem in a domain with oscillating boundary. Complex Var. Elliptic Equ. (2015) 6: 1392-1410.
    [17] Exact internal controllability for a hyperbolic problem in a domain with highly oscillating boundary. Asymptot. Anal. (2013) 83: 189-206.
    [18] Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evol. Equ. Control Theory (2015) 4: 325-346.
    [19] Some corrector results for composites with imperfect interface. Rend. Mat. Ser. Ⅶ (2006) 26: 189-209.
    [20] P. Donato, Homogenization of a class of imperfect transmission problems, in Multiscale Problems: Theory, Numerical Approximation and Applications doi: 10.1142/9789814366892_0001
    [21] Homogenization of the wave equation in composites with imperfect interface: A memory effect. J. Math. Pures Appl. (2007) 87: 119-143.
    [22] Correctors for the homogenization of a class of hyperbolic equations with imperfect interfaces. SIAM J. Math. Anal. (2009) 40: 1952-1978.
    [23] Corrector results for a parabolic problem with a memory effect. ESAIM: Math. Model. Numer. Anal. (2010) 44: 421-454.
    [24] Asymptotic behavior of the approximate controls for parabolic equations with interfacial contact resistance. ESAIM Control Optim. Calc. Var. (2015) 21: 138-164.
    [25] Approximate controllability of a parabolic system with imperfect interfaces. Philipp. J. Sci. (2015) 144: 187-196.
    [26] The periodic unfolding method for a class of imperfect trasmission problems. J. Math. Sci. (2011) 176: 891-927.
    [27] Homogenization of diffusion problems with a nonlinear interfacial resistance. Nonlinear Differ. Equ. Appl. (2015) 22: 1345-1380.
    [28] Homogenization of two heat conductors with interfacial contact resistance. Anal. Appl. (2004) 2: 247-273.
    [29] Homogenization of a class of singular elliptic problems in perforated domains. Nonlinear Anal. (2018) 173: 180-208.
    [30] Approximate controllability of linear parabolic equations in perforated domains. ESAIM Control Optim. Calc. Var. (2001) 6: 21-38.
    [31] Homogenization and behaviour of optimal controls for the wave equation in domains with oscillating boudary. Nonlinear Differ. Equ. Appl. (2007) 14: 455-489.
    [32] Asymptotic analysis of an optimal control problem involving a thick two-level junction with alternate type of controls. J. Optim. Th. and Appl. (2010) 144: 205-225.
    [33] Homogenization of quasilinear optimal control problems involving a thick multilevel junction of type 3:2:1. ESAIM Control Optim. Calc. Var. (2012) 18: 583-610.
    [34] L. Faella and S. Monsurrò, Memory effects arising in the homogenization of composites with inclusions, in Topics on Mathematics for Smart System doi: 10.1142/9789812706874_0008
    [35] Homogenization of imperfect transmission problems: The case of weakly converging data. Differential Integral Equations (2018) 31: 595-620.
    [36] Exact controllability for an imperfect transmission problem. J. Math. Pures Appl. (2019) 122: 235-271.
    [37] L. Faella and C. Perugia, Homogenization of a Ginzburg-Landau problem in a perforated domain with mixed boundary conditions, Bound. Value Probl., 2014 (2014), 28pp. doi: 10.1186/s13661-014-0223-2
    [38] L. Faella and C. Perugia, Optimal control for evolutionary imperfect transmission problems, Bound. Value Probl., 2015 (2015), 16pp. doi: 10.1186/s13661-015-0310-z
    [39] Optimal control for a hyperbolic problem in composites with imperfect interface: A memory effect. Evol. Equ. Control Theory (2017) 6: 187-217.
    [40] Null controllability of the semilinear heat equation. ESAIM Control Optim. Calc. Var. (1997) 2: 87-103.
    [41] Homogenization for heat transfer in polycristals with interfacial resistances. Appl. Anal. (2000) 75: 403-424.
    [42] A. M. Khludnev, L. Faella and C. Perugia, Optimal control of rigidity parameters of thin inclusions in composite materials, Z. Angew. Math. Phys., 68 (2017), Art. 47, 12 pp. doi: 10.1007/s00033-017-0792-x
    [43] Exact controllability for semilinear wave equations. J. Math. Anal. Appl. (2000) 250: 589-597.
    [44] Contrôlabilité Exacte et Homogénéisation, I. Asymptotic Anal. (1988) 1: 3-11.
    [45] J. L. Lions, Contrôlabilité Exacte, Stabilization at Perturbations De Systéms Distributé, Tomes 1, 2, Massonn, RMA, 829, 1988.
    [46] J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol I, Springer-Verlag Berlin Heidelberg, New York, 1972.
    [47] Heat conduction in fine scale mixtures with interfacial contact resistance. SIAM J. Appl. Math. (1998) 58: 55-72.
    [48] Composite with imperfect interface. Proc. R. Soc. Lond. Ser. A (1996) 452: 329-358.
    [49] Homogenization of a two-component composite with interfacial thermal barrier. Adv. Math. Sci. Appl. (2003) 13: 43-63.
    [50] Erratum for the paper "Homogenization of a two-component composite with interfacial thermal barrier". Adv. Math. Sci. Appl. (2004) 14: 375-377.
    [51] S. Monsurrò, Homogenization of a composite with very small inclusions and imperfect interface, in Multiscale problems and asymptotic analysis, GAKUTO Internat. Ser. Math. Sci. Appl., 24, Gakkotosho, Tokyo, (2006), 217–232.
    [52] Homogenization of low-cost control problems on perforated domains. J. Math. Anal. Appl. (2009) 351: 29-42.
    [53] Asymptotic analysis of Neumann periodic optimal boundary control problem. Math. Methods Appl. Sci. (2016) 39: 4354-4374.
    [54] Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method. Commun. Pure Appl. Anal. (2014) 13: 249-272.
    [55] The periodic unfolding method for a class of parabolic problems with imperfect interfaces. ESAIM Math. Model. Numer. Anal. (2014) 48: 1279-1302.
    [56] E. Zuazua, Exact boundary controllability for the semilinear wave equation, in Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vol. X (Paris, 1987–1988), Pitman Res. Notes Math. Ser., 220, Longman Sci. Tech., Harlow, 1991, 357–391.
    [57] Approximate controllability for linear parabolic equations with rapidly oscillating coefficients. Control Cybernet. (1994) 23: 793-801.
    [58] Controllability of partial differential equations and its semi-discrete approximations. Discrete Contin. Dyn. Syst. (2002) 8: 469-513.
  • This article has been cited by:

    1. S. Monsurrò, A. K. Nandakumaran, C. Perugia, A note on the exact boundary controllability for an imperfect transmission problem, 2021, 0035-5038, 10.1007/s11587-021-00625-w
    2. S. Monsurrò, A. K. Nandakumaran, C. Perugia, Exact Internal Controllability for a Problem with Imperfect Interface, 2022, 85, 0095-4616, 10.1007/s00245-022-09843-6
    3. Carmen Perugia, 2023, 2849, 0094-243X, 410001, 10.1063/5.0162223
    4. Sara Monsurrò, 2023, 2849, 0094-243X, 410002, 10.1063/5.0163438
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3161) PDF downloads(371) Cited by(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog