A sufficient condition for classified networks to possess complex network features

  • Received: 01 March 2011 Revised: 01 December 2011
  • Primary: 60D05, 90B15; Secondary: 60J20.

  • We investigate network features for complex networks. A sufficient condition for the limiting random variable to possess the scale free property and the high clustering property is given. The uniqueness and existence of the limit of a sequence of degree distributions for the process is proved. The limiting degree distribution and a lower bound of the limiting clustering coefficient of the graph-valued Markov process are obtained as well.

    Citation: Xianmin Geng, Shengli Zhou, Jiashan Tang, Cong Yang. A sufficient condition for classified networks to possess complex network features[J]. Networks and Heterogeneous Media, 2012, 7(1): 59-69. doi: 10.3934/nhm.2012.7.59

    Related Papers:

    [1] Xianmin Geng, Shengli Zhou, Jiashan Tang, Cong Yang . A sufficient condition for classified networks to possess complex network features. Networks and Heterogeneous Media, 2012, 7(1): 59-69. doi: 10.3934/nhm.2012.7.59
    [2] Simone Göttlich, Stephan Martin, Thorsten Sickenberger . Time-continuous production networks with random breakdowns. Networks and Heterogeneous Media, 2011, 6(4): 695-714. doi: 10.3934/nhm.2011.6.695
    [3] Wenlian Lu, Fatihcan M. Atay, Jürgen Jost . Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks and Heterogeneous Media, 2011, 6(2): 329-349. doi: 10.3934/nhm.2011.6.329
    [4] Alessia Marigo, Benedetto Piccoli . A model for biological dynamic networks. Networks and Heterogeneous Media, 2011, 6(4): 647-663. doi: 10.3934/nhm.2011.6.647
    [5] Mirela Domijan, Markus Kirkilionis . Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3(2): 295-322. doi: 10.3934/nhm.2008.3.295
    [6] M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer . On algebraic graph theory and the dynamics of innovation networks. Networks and Heterogeneous Media, 2008, 3(2): 201-219. doi: 10.3934/nhm.2008.3.201
    [7] Michael Damron, C. L. Winter . A non-Markovian model of rill erosion. Networks and Heterogeneous Media, 2009, 4(4): 731-753. doi: 10.3934/nhm.2009.4.731
    [8] Regino Criado, Julio Flores, Alejandro J. García del Amo, Miguel Romance . Structural properties of the line-graphs associated to directed networks. Networks and Heterogeneous Media, 2012, 7(3): 373-384. doi: 10.3934/nhm.2012.7.373
    [9] Roberto Serra, Marco Villani, Alex Graudenzi, Annamaria Colacci, Stuart A. Kauffman . The simulation of gene knock-out in scale-free random Boolean models of genetic networks. Networks and Heterogeneous Media, 2008, 3(2): 333-343. doi: 10.3934/nhm.2008.3.333
    [10] Martin Gugat, Rüdiger Schultz, Michael Schuster . Convexity and starshapedness of feasible sets in stationary flow networks. Networks and Heterogeneous Media, 2020, 15(2): 171-195. doi: 10.3934/nhm.2020008
  • We investigate network features for complex networks. A sufficient condition for the limiting random variable to possess the scale free property and the high clustering property is given. The uniqueness and existence of the limit of a sequence of degree distributions for the process is proved. The limiting degree distribution and a lower bound of the limiting clustering coefficient of the graph-valued Markov process are obtained as well.


    [1] R. Albert and A.-L. Barabási, Emergence of scaling in random networks, Science, 286 (1999), 509-512. doi: 10.1126/science.286.5439.509
    [2] R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, Reviews of Mordern Physics, 74 (2002), 47-97. doi: 10.1103/RevModPhys.74.47
    [3] D. J. Aldous, A tractable complex network model based on the stochastic mean-field model of distance, in "Complex Networks," Lecture Notes in Physics, 650, Springer, Berlin, (2004), 51-87.
    [4] D. J. Aldous and W. S. Kendall, Short-length routes in low-cost networks via Poisson line patterns, Advances in Applied Probability, 40 (2008), 1-21. doi: 10.1239/aap/1208358883
    [5] H. G. Bartel, H. J. Mucha and J. Dolata, On a modified graph-theoretic partitioning method of cluster analysis, Match-Communications in Mathematical and in Computer Chemistry, 48 (2003), 209-233.
    [6] B. Bollobás, S. Janson and O. Riordan, The phase transition in inhomogeneous random graphs, Random Structures and Algorithms, 31 (2007), 3-122. doi: 10.1002/rsa.20168
    [7] A. Diaz-Guilera, Complex networks: Statics and dynamics, Advanced Summer School in Physics 2006, 885 (2007), 107-128.
    [8] Z. P. Fan, G. R. Chen and Y. N. Zhang, A comprehensive multi-local-world model for complex networks, Physics Letters A, 373 (2009), 1601-1605. doi: 10.1016/j.physleta.2009.02.072
    [9] A. Ganesh and F. Xue, On the connectivity and diameter of small-world networks, Advances in Applied Probability, 39 (2007), 853-863. doi: 10.1239/aap/1198177228
    [10] P. Holme and B. J. Kim, Growing scale-free networks with tunable clustering, Physical Review E, 65 (2002), 026107.
    [11] G. Lee and G. I. Kim, Degree and wealth distribution in a network, Physica A-Statistical Mechanics and its Applications, 383 (2007), 677-686.
    [12] N. Miyoshi, T. Shigezumi, R. Uehara and O. Watanabe, Scale free interval graphs, Theoretical Computer Science, 410 (2009), 4588-4600. doi: 10.1016/j.tcs.2009.08.012
    [13] Y. Ou and C.-Q. Zhang, A new multimembership clustering method, Journal of Industrial and Management Optimization, 3 (2007), 619-624. doi: 10.3934/jimo.2007.3.619
    [14] M. M. Sørensen, b-tree facets for the simple graph partitioning polytope, Journal of Combinatorial Optimization, 8 (2004), 151-170. doi: 10.1023/B:JOCO.0000031417.96218.26
    [15] J. Szymański, Concentration of vertex degrees in a scale-free random graph process, Random Structures and Algorithms, 26 (2005), 224-236. doi: 10.1002/rsa.20065
    [16] D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature, 393 (1998), 440-442. doi: 10.1038/30918
  • This article has been cited by:

    1. Qu Qinqin, Gao Chao, Qiu Lei, Liu Yue, 2019, Congestion control strategy for power scale-free communication network by link addition, 978-1-7281-0510-9, 1714, 10.1109/ICEMI46757.2019.9101412
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3955) PDF downloads(68) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog