A model for biological dynamic networks

  • Received: 01 March 2011 Revised: 01 September 2011
  • Primary: 05C60, 92C42; Secondary: 05C80.

  • The main aim of this paper is to introduce a mathematical framework to study stochastically evolving networks. More precisely, we provide a common language and suitable tools to study systematically the probability distribution of topological characteristics, which, in turn, play a key role in applications, especially for biological networks. The latter is possible via suitable definition of a random network process and new results for graph isomorphism, which, under suitable generic assumptions, can be stated in terms of the graph walk matrix and computed in polynomial time.

    Citation: Alessia Marigo, Benedetto Piccoli. A model for biological dynamic networks[J]. Networks and Heterogeneous Media, 2011, 6(4): 647-663. doi: 10.3934/nhm.2011.6.647

    Related Papers:

    [1] Alessia Marigo, Benedetto Piccoli . A model for biological dynamic networks. Networks and Heterogeneous Media, 2011, 6(4): 647-663. doi: 10.3934/nhm.2011.6.647
    [2] Jan Haskovec, Vybíral Jan . Robust network formation with biological applications. Networks and Heterogeneous Media, 2024, 19(2): 771-799. doi: 10.3934/nhm.2024035
    [3] Joachim von Below, José A. Lubary . Isospectral infinite graphs and networks and infinite eigenvalue multiplicities. Networks and Heterogeneous Media, 2009, 4(3): 453-468. doi: 10.3934/nhm.2009.4.453
    [4] M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer . On algebraic graph theory and the dynamics of innovation networks. Networks and Heterogeneous Media, 2008, 3(2): 201-219. doi: 10.3934/nhm.2008.3.201
    [5] Alessia Marigo . Equilibria for data networks. Networks and Heterogeneous Media, 2007, 2(3): 497-528. doi: 10.3934/nhm.2007.2.497
    [6] Raúl M. Falcón, Venkitachalam Aparna, Nagaraj Mohanapriya . Optimal secret share distribution in degree splitting communication networks. Networks and Heterogeneous Media, 2023, 18(4): 1713-1746. doi: 10.3934/nhm.2023075
    [7] Rosa M. Benito, Regino Criado, Juan C. Losada, Miguel Romance . Preface: "New trends, models and applications in complex and multiplex networks". Networks and Heterogeneous Media, 2015, 10(1): i-iii. doi: 10.3934/nhm.2015.10.1i
    [8] Mirela Domijan, Markus Kirkilionis . Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3(2): 295-322. doi: 10.3934/nhm.2008.3.295
    [9] Gabriella Bretti, Roberto Natalini, Benedetto Piccoli . Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1(1): 57-84. doi: 10.3934/nhm.2006.1.57
    [10] Riccardo Bonetto, Hildeberto Jardón Kojakhmetov . Nonlinear diffusion on networks: Perturbations and consensus dynamics. Networks and Heterogeneous Media, 2024, 19(3): 1344-1380. doi: 10.3934/nhm.2024058
  • The main aim of this paper is to introduce a mathematical framework to study stochastically evolving networks. More precisely, we provide a common language and suitable tools to study systematically the probability distribution of topological characteristics, which, in turn, play a key role in applications, especially for biological networks. The latter is possible via suitable definition of a random network process and new results for graph isomorphism, which, under suitable generic assumptions, can be stated in terms of the graph walk matrix and computed in polynomial time.


    [1] U. Alon, "An Introduction to Systems Biology: Design Principles of Biological Circuits," Chapman & Hall/CRC Mathematical and Computational Biology Series, Chapman & Hall/CRC, Boca Raton, FL, 2007.
    [2] A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512. doi: 10.1126/science.286.5439.509
    [3] A.-L. Barabási and R. E. Crandall, Linked: The new science of networks, Am. J. Phys., 71 (2003), 409-410. doi: 10.1119/1.1538577
    [4] B. Bollobás, C. Borgs, J. Chayes and O. Riordan, Directed scale-free graphs, in "Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms" (Baltimore, MD, 2003), 132-139, ACM, New York, 2003.
    [5] M. Chaves and E. D. Sontag, State-estimation for chemical reaction networks of Feinberg-Horn-Jackson zero deficiency type, Europ. J. of Control, 8 (2002), 343-359. doi: 10.3166/ejc.8.343-359
    [6] C. Cooper and A. Frieze, A general model of web graphs, Random Struct. Alg., 22 (2003), 311-335. doi: 10.1002/rsa.10084
    [7] D. M. Cvetković, M. Doob and H. Sachs, "Spectra of Graphs: Theory and Applications," Third edition, Johann Ambrosius Barth, Heidelberg, 1995.
    [8] D. Del Vecchio, A. J. Ninfa and E. D. Sontag, Modular cell biology: Retroactivity and insulation, Mol. Syst. Biology, 4 (2008), Article number 161. doi: 10.1038/msb4100204
    [9] R. Durrett, "Random Graph Dynamics," Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 2007.
    [10] P. Erdős and A. Renyi, On random graphs, Publ. Math. Debrecen, 6 (1959), 290-297.
    [11] M. Farina, R. Findeisen, E. Bullinger, S. Bittanti, F. Allgower and P. Wellstead, Results towards identifiability properties of biochemical reaction networks, in "Proceedings of the 45th IEEE Conference on Decision & Control," San Diego, CA, USA, December 13-15, (2006), 2104-2109.
    [12] E. M. Hagos, Some results on graph spectra, Linear Algebra Appl., 356 (2002), 103-111. doi: 10.1016/S0024-3795(02)00324-5
    [13] S. Mangan and U. Alon, Structure and function of the feed-forward loop network motif, PNAS, 100 (2003), 11980-11985. doi: 10.1073/pnas.2133841100
    [14] M. E. J. Newman, The structure and functions of complex networks, SIAM Review, 45 (2003), 167-256. doi: 10.1137/S003614450342480
    [15] B. O. Palsson, "Systems Biology-Properties of Reconstructed Networks," Cambridge University Press, Cambridge, 2006. doi: 10.1017/CBO9780511790515
    [16] E. D. Sontag, Molecular systems biology and control, Europ. J. of Control, 11 (2005), 396-435.
    [17] D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature, 393 (1998), 440-442. doi: 10.1038/30918
  • This article has been cited by:

    1. Xu Li, Qiming Sun, Identifying and Ranking Influential Nodes in Complex Networks Based on Dynamic Node Strength, 2021, 14, 1999-4893, 82, 10.3390/a14030082
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3890) PDF downloads(84) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog