Effects of topology on robustness in ecological bipartite networks

  • Received: 01 December 2011 Revised: 01 June 2012
  • Primary: 58F15, 58F17; Secondary: 53C35.

  • High robustness of complex ecological systems in the face of species extinction has been hypothesized based on the redundancy in species. We explored how differences in network topology may affect robustness. Ecological bipartite networks used to be small, asymmetric and sparse matrices. We created synthetic networks to study the influence of the properties of network dimensions asymmetry, connectance and type of degree distribution on network robustness. We used two extinction strategies: node extinction and link extinction, and three extinction sequences differing in the order of species removal (least-to-most connected, random, most-to-least connected). We assessed robustness to extinction of simulated networks, which differed in one of the three topological features. Simulated networks indicated that robustness decreases when (a) extinction involved those nodes belonging to the most species-rich guild and (b) networks had lower connectance. We also compared simulated networks with different degree- distribution networks, and they showed important differences in robustness depending on the extinction scenario. In the link extinction strategy, the robustness of synthetic networks was clearly determined by the asymmetry in the network dimensions, while the variation in connectance produced negligible differences.

    Citation: Juan Manuel Pastor, Silvia Santamaría, Marcos Méndez, Javier Galeano. Effects of topology on robustness in ecological bipartite networks[J]. Networks and Heterogeneous Media, 2012, 7(3): 429-440. doi: 10.3934/nhm.2012.7.429

    Related Papers:

    [1] Juan Manuel Pastor, Silvia Santamaría, Marcos Méndez, Javier Galeano . Effects of topology on robustness in ecological bipartite networks. Networks and Heterogeneous Media, 2012, 7(3): 429-440. doi: 10.3934/nhm.2012.7.429
    [2] Juan Manuel Pastor, Javier García-Algarra, José M. Iriondo, José J. Ramasco, Javier Galeano . Dragging in mutualistic networks. Networks and Heterogeneous Media, 2015, 10(1): 37-52. doi: 10.3934/nhm.2015.10.37
    [3] A. Marigo . Robustness of square networks. Networks and Heterogeneous Media, 2009, 4(3): 537-575. doi: 10.3934/nhm.2009.4.537
    [4] Giovanni Scardoni, Carlo Laudanna . Identifying critical traffic jam areas with node centralities interference and robustness. Networks and Heterogeneous Media, 2012, 7(3): 463-471. doi: 10.3934/nhm.2012.7.463
    [5] Ginestra Bianconi, Riccardo Zecchina . Viable flux distribution in metabolic networks. Networks and Heterogeneous Media, 2008, 3(2): 361-369. doi: 10.3934/nhm.2008.3.361
    [6] Jan Haskovec, Vybíral Jan . Robust network formation with biological applications. Networks and Heterogeneous Media, 2024, 19(2): 771-799. doi: 10.3934/nhm.2024035
    [7] Yunhua Liao, Mohamed Maama, M. A. Aziz-Alaoui . Consensus dynamics and coherence in hierarchical small-world networks. Networks and Heterogeneous Media, 2025, 20(2): 482-499. doi: 10.3934/nhm.2025022
    [8] Mirela Domijan, Markus Kirkilionis . Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3(2): 295-322. doi: 10.3934/nhm.2008.3.295
    [9] Maximiliano Fernandez, Javier Galeano, Cesar Hidalgo . Bipartite networks provide new insights on international trade markets. Networks and Heterogeneous Media, 2012, 7(3): 399-413. doi: 10.3934/nhm.2012.7.399
    [10] Yacine Chitour, Guilherme Mazanti, Mario Sigalotti . Stability of non-autonomous difference equations with applications to transport and wave propagation on networks. Networks and Heterogeneous Media, 2016, 11(4): 563-601. doi: 10.3934/nhm.2016010
  • High robustness of complex ecological systems in the face of species extinction has been hypothesized based on the redundancy in species. We explored how differences in network topology may affect robustness. Ecological bipartite networks used to be small, asymmetric and sparse matrices. We created synthetic networks to study the influence of the properties of network dimensions asymmetry, connectance and type of degree distribution on network robustness. We used two extinction strategies: node extinction and link extinction, and three extinction sequences differing in the order of species removal (least-to-most connected, random, most-to-least connected). We assessed robustness to extinction of simulated networks, which differed in one of the three topological features. Simulated networks indicated that robustness decreases when (a) extinction involved those nodes belonging to the most species-rich guild and (b) networks had lower connectance. We also compared simulated networks with different degree- distribution networks, and they showed important differences in robustness depending on the extinction scenario. In the link extinction strategy, the robustness of synthetic networks was clearly determined by the asymmetry in the network dimensions, while the variation in connectance produced negligible differences.


    [1] R. Albert, H. Jeong and A. L. Barabási, Error and attack tolerance of complex networks, Nature, 406 (2000), 378-382. doi: 10.1038/35019019
    [2] J. Bascompte, P. Jordano and J. M. Olesen, Asymmetric coevolutionary networks facilitate biodiversity maintenance, Science, 312 (2006), 431-433.
    [3] J. Bascompte and P. Jordano, Plant-animal mutualistic networks: The architecture of biodiversity, Annu. Rev. Ecol. Evol. S., 38 (2007), 567-593.
    [4] P. Crucitti, V. Latora, M. Marchiori and A. Rapisarda, Error and attack tolerance of complex networks, Physica A, 340 (2004), 388-394. doi: 10.1016/j.physa.2004.04.031
    [5] C. F. Dormann, J. Fründ, N. Blüthgen and B. Gruber, Indices, graphs and null models: analyzing bipartite ecological networks, The Open Ecology Journal, 2 (2009), 7-24.
    [6] J. A. Dunne, R. J. Williams and N. D. Martinez, Network structure and biodiversity loss in food webs: Robustness increases with connectance, Ecol. Lett., 5 (2002), 558-567.
    [7] J. A. Dunne and R. J. Williams, Cascading extinctions and community collapse in model food webs, Philos. T. R. Soc. B., 364 (2009), 1711-1723.
    [8] H. Elberling and J. M. Olesen, The structure of a high latitude plant-flower visitor system: tthe dominance of flies, Ecography, 22 (1999), 314-323.
    [9] M. R. Gardner and W. R. Ashby, Connectance of large dynamic (cybernetic) systems: Critical values for stability, Nature, 228 (1970), 784-784. doi: 10.1038/228784a0
    [10] J. Gómez-Gardeñez, V. Latora, Y. Moreno and E. Profumo, Spreading of sexually transmitted diseasesin heterosexual populations, P. Natl. Acad. Sci. USA, 105 (2008), 1399-1404. doi: 10.1073/pnas.0707332105
    [11] P. Jordano, J. Bascompte and J. M. Olesen, Invariant properties in coevolutionary networks of plant-animal interactions, Ecol. Lett., 6 (2003), 69-81.
    [12] C. N. Kaiser-Bunbury, S. Muff, J. Memmott and C. B. Muller, The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour, Ecol. Lett., 13 (2010), 442-452.
    [13] Y. Lai, A. Motter and T. Nishikawa, Attacks and cascades in complex networks, Lec. Notes Phys., 310 (2004), 299-310. doi: 10.1007/978-3-540-44485-5_14
    [14] R. May, Will a large complex system be stable?, Nature, 238 (1972), 413-414.
    [15] R. May, "Stability and Complexity in Model Ecosystems," Princeton Univ. Press, 2001.
    [16] J. Memmott, N. M. Waser and M. V. Price, Tolerance of pollination networks to species extinctions, P. Roy. Soc. Lond. B. Bio., 271 (2004), 2605-2611. doi: 10.1098/rspb.2004.2909
    [17] A. Motter and Y. Lai, Cascade-based attacks on complex networks, Phys. Rev. E, 66 (2002), 065102-4. doi: 10.1103/PhysRevE.66.065102
    [18] http://www.nceas.ucsb.edu/.
    [19] J. M. Olesen and P. Jordano, Geographic patterns in plant-pollinator mutualistic networks, Ecology, 83 (2002), 2416-2424.
    [20] J. M. Olesen, J. Bascompte, Y. L. Dupont and P. Jordano, The modularity of pollination networks, P. Natl. Acad. Sci. USA, 104 (2007), 19891-19896. doi: 10.1073/pnas.0706375104
    [21] S. R. Proulx and P. C. Phillips, The opportunity for canalization and the evolution of genetic networks, Am. Nat., 165 (2005), 147-162. doi: 10.1086/426873
    [22] M. Rosas-Casals, S. Valverde and R. V. Solé, Topological vulnerability of the European power grid under errors and attacks, Int. J. Bifurcat. Chaos, 17 (2007), 2465-2475. doi: 10.1142/S0218127407018531
    [23] To be published.
    [24] R. V. Solé and J. M. Montoya, Complexity and fragility in ecological networks, P. Roy. Soc. Lond. B. Biol., 268 (2001), 2039-2045. doi: 10.1098/rspb.2001.1767
    [25] U. T. Srinivasan, J. A. Dunne, J. Harte and N. D. Martinez, Response of complex food webs to realistic extinction sequences, Ecology, 88 (2007), 671-682. doi: 10.1890/06-0971
    [26] P. Yodzis, The connectance of real ecosystems, Nature, 284 (1980), 544-545. doi: 10.1038/284544a0
  • This article has been cited by:

    1. Erliang Gao, Yuxian Wang, Cheng Bi, Christopher N. Kaiser-Bunbury, Zhigang Zhao, Restoration of Degraded Alpine Meadows Improves Pollination Network Robustness and Function in the Tibetan Plateau, 2021, 9, 2296-701X, 10.3389/fevo.2021.632961
    2. Josef S. Berger, Klaus Birkhofer, Helena I. Hanson, Katarina Hedlund, Landscape configuration affects herbivore–parasitoid communities in oilseed rape, 2018, 91, 1612-4758, 1093, 10.1007/s10340-018-0965-1
    3. Juan Manuel Pastor, Javier García-Algarra, José M. Iriondo, José J. Ramasco, Javier Galeano, Dragging in mutualistic networks, 2015, 10, 1556-1801, 37, 10.3934/nhm.2015.10.37
    4. Silvia Santamaría, Javier Galeano, Juan Manuel Pastor, Marcos Méndez, Removing interactions, rather than species, casts doubt on the high robustness of pollination networks, 2016, 125, 00301299, 526, 10.1111/oik.02921
    5. Hongjun Liu, Teng Niu, Qiang Yu, Linzhe Yang, Jun Ma, Shi Qiu, Evaluation of the Spatiotemporal Evolution of China’s Ecological Spatial Network Function–Structure and Its Pattern Optimization, 2022, 14, 2072-4292, 4593, 10.3390/rs14184593
    6. Miranda S. Bane, Michael J. O. Pocock, Richard James, Effects of model choice, network structure, and interaction strengths on knockout extinction models of ecological robustness, 2018, 8, 20457758, 10794, 10.1002/ece3.4529
    7. Damien R. Farine, Eric Vander Wal, Structural trade‐offs can predict rewiring in shrinking social networks, 2021, 90, 0021-8790, 120, 10.1111/1365-2656.13140
    8. Zubair Ahmad Rather, Jeff Ollerton, Sajad H. Parey, Shoukat Ara, Stella Watts, Manzoor Ahmad Paray, Anzar Ahmad Khuroo, Plant-pollinator meta-network of the Kashmir Himalaya: Structure, modularity, integration of alien species and extinction simulation, 2023, 298, 03672530, 152197, 10.1016/j.flora.2022.152197
    9. Silvia Santamaría, Javier Galeano, Juan Manuel Pastor, Marcos Méndez, Robustness of Alpine Pollination Networks: Effects of Network Structure and Consequences for Endemic Plants, 2014, 46, 1523-0430, 568, 10.1657/1938-4246-46.3.568
    10. Willem Proesmans, Emeline Felten, Emilien Laurent, Matthias Albrecht, Nathan Cyrille, Audrey Labonté, Corina Maurer, Robert Paxton, Oliver Schweiger, Hajnalka Szentgyörgyi, Adam J. Vanbergen, Urbanisation and agricultural intensification modulate plant–pollinator network structure and robustness, 2024, 38, 0269-8463, 628, 10.1111/1365-2435.14503
    11. Yunshan Wan, Yilei Wang, Ming Gao, Lin Jin, An empirical assessment of whether urban green ecological networks have the capacity to store higher levels of carbon, 2024, 14, 2045-2322, 10.1038/s41598-024-52650-y
    12. Álvaro Lozano, Rubén Vigara, Carmen Mayora-Cebollero, Roberto Barrio, Dominant patterns in small directed bipartite networks: ubiquitous generalized tripod gait, 2024, 112, 0924-090X, 15549, 10.1007/s11071-024-09830-2
    13. Yedra García, Luis Giménez-Benavides, José M. Iriondo, Carlos Lara-Romero, Marcos Méndez, Javier Morente-López, Silvia Santamaría, Addition of nocturnal pollinators modifies the structure of pollination networks, 2024, 14, 2045-2322, 10.1038/s41598-023-49944-y
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5093) PDF downloads(125) Cited by(13)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog