Identifying critical traffic jam areas with node centralities interference and robustness

  • Received: 01 December 2011 Revised: 01 July 2012
  • 05C85, 90C35, 90B10, 90B06.

  • We introduce the notions of centrality interference and centrality robustness, as measures of variation of centrality values when the structure of a network is modified by removing or adding individual nodes from/to a network. Centrality analysis allows categorizing nodes according to their topological relevance in a network. Thus, centrality interference analysis allows understanding which parts of a network are mostly influenced by a node and, conversely, centrality robustness allows quantifying the functional dependency of a node from other nodes in the network. We examine the theoretical significance of these measures and apply them to classify nodes in a road network to predict the effects on the traffic jam due to variations in the structure of the network. In these case the interference analysis allows to predict which are the distinct regions of the network affected by the function of different nodes. Such notions, when applied to a variety of different contexts, opens new perspectives in network analysis since they allow predicting the effects of local network modifications on single node as well as global network functionality.

    Citation: Giovanni Scardoni, Carlo Laudanna. Identifying critical traffic jam areas with node centralitiesinterference and robustness[J]. Networks and Heterogeneous Media, 2012, 7(3): 463-471. doi: 10.3934/nhm.2012.7.463

    Related Papers:

    [1] Giovanni Scardoni, Carlo Laudanna . Identifying critical traffic jam areas with node centralities interference and robustness. Networks and Heterogeneous Media, 2012, 7(3): 463-471. doi: 10.3934/nhm.2012.7.463
    [2] Manel Hmimida, Rushed Kanawati . Community detection in multiplex networks: A seed-centric approach. Networks and Heterogeneous Media, 2015, 10(1): 71-85. doi: 10.3934/nhm.2015.10.71
    [3] D. Alderson, H. Chang, M. Roughan, S. Uhlig, W. Willinger . The many facets of internet topology and traffic. Networks and Heterogeneous Media, 2006, 1(4): 569-600. doi: 10.3934/nhm.2006.1.569
    [4] Mirela Domijan, Markus Kirkilionis . Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3(2): 295-322. doi: 10.3934/nhm.2008.3.295
    [5] Regino Criado, Julio Flores, Alejandro J. García del Amo, Miguel Romance . Structural properties of the line-graphs associated to directed networks. Networks and Heterogeneous Media, 2012, 7(3): 373-384. doi: 10.3934/nhm.2012.7.373
    [6] Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193
    [7] Jan Haskovec, Vybíral Jan . Robust network formation with biological applications. Networks and Heterogeneous Media, 2024, 19(2): 771-799. doi: 10.3934/nhm.2024035
    [8] M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer . On algebraic graph theory and the dynamics of innovation networks. Networks and Heterogeneous Media, 2008, 3(2): 201-219. doi: 10.3934/nhm.2008.3.201
    [9] Mahdi Jalili . EEG-based functional brain networks: Hemispheric differences in males and females. Networks and Heterogeneous Media, 2015, 10(1): 223-232. doi: 10.3934/nhm.2015.10.223
    [10] Gabriella Bretti, Roberto Natalini, Benedetto Piccoli . Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1(1): 57-84. doi: 10.3934/nhm.2006.1.57
  • We introduce the notions of centrality interference and centrality robustness, as measures of variation of centrality values when the structure of a network is modified by removing or adding individual nodes from/to a network. Centrality analysis allows categorizing nodes according to their topological relevance in a network. Thus, centrality interference analysis allows understanding which parts of a network are mostly influenced by a node and, conversely, centrality robustness allows quantifying the functional dependency of a node from other nodes in the network. We examine the theoretical significance of these measures and apply them to classify nodes in a road network to predict the effects on the traffic jam due to variations in the structure of the network. In these case the interference analysis allows to predict which are the distinct regions of the network affected by the function of different nodes. Such notions, when applied to a variety of different contexts, opens new perspectives in network analysis since they allow predicting the effects of local network modifications on single node as well as global network functionality.


    [1] R. Albert, H. Jeong and A.-L. Barabási, Error and attack tolerance of complex networks, Nature, 406 (2000), 378-382.
    [2] A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512.
    [3] A.-L. Barabási and Z. N. Oltvai, Network biology: Understanding the cell's functional organization, Nature Reviews Genetics, 5 (2004), 101-113.
    [4] U. S. Bhalla and R. Iyengar, Emergent properties of networks of biological signaling pathways, Science, 283 (1999).
    [5] G. Caldarelli, "Scale-Free Networks: Complex Webs in Nature and Technology (Oxford Finance)," Oxford University Press, USA, June 2007.
    [6] P. Crucitti, V. Latora, M. Marchiori and A. Rapisarda, Error and attack tolerance of complex networks, News and expectations in thermostatistics, Phys. A, 340 (2004), 388-394.
    [7] J. A. Goguen and J. Meseguer, Security policies and security models, Symposium on Security and Privacy, IEEE Computer Society Press, (1982), 11-20.
    [8] H. Jeong, S. P. Mason, A. L. Barabási and Z. N. Oltvai, Lethality and centrality in protein networks, Nature, 411 (2001), 41-42.
    [9] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai and A. L. Barabási, The large-scale organization of metabolic networks, Nature, 407 (2000), 651-654.
    [10] D. Koschützki, K. A. Lehmann, L. Peeters, S. Richter, D. T. Podehl and O. Zlotowski, Centrality indices, in "Network Analysis: Methodological Foundations" (eds. U. Brandes and T. Erlebach), Springer, (2005), 16-61.
    [11] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii and U. Alon, Network motifs: Simple building blocks of complex networks, Science, 298 (2002), 824-827.
    [12] M. E. J. Newman, Modularity and community structure in networks, Proceedings of the National Academy of Sciences, 103 (2006), 8577-8582.
    [13] The official, Autostrade per l'Italia, http://www.autostrade.it/, 2011.
    [14] G. Scardoni, M. Petterlini and C. Laudanna, Analyzing biological network parameters with CentiScaPe, Bioinformatics, 25 (2009), 2857-2859.
    [15] C. M. Schneider, T. Mihaljev, S. Havlin and H. J. Herrmann, Suppressing epidemics with a limited amount of immunization units, Physical Review E, 84 (2011), 061911+.
    [16] S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), 268-276.
    [17] Duncan J. Watts and Steven H. Strogatz, Collective dynamics of 'small-world' networks, Nature, 393 (1998), 440-442.
  • This article has been cited by:

    1. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    2. V.K. Md Aksam, V.M. Chandrasekaran, Sundaramurthy Pandurangan, Topological alternate centrality measure capturing drug targets in the network of MAPK pathways, 2018, 12, 1751-8849, 226, 10.1049/iet-syb.2017.0058
    3. Selim Reza, Marta Campos Ferreira, J.J.M. Machado, João Manuel R.S. Tavares, Road networks structure analysis: A preliminary network science-based approach, 2022, 1012-2443, 10.1007/s10472-022-09818-x
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3962) PDF downloads(72) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog