Loading [MathJax]/jax/output/SVG/fonts/TeX/fontdata.js

On vanishing viscosity approximation of conservation laws with discontinuous flux

  • Received: 01 January 2010 Revised: 01 April 2010
  • Primary: 35L65.

  • We characterize the vanishing viscosity limit for multi-dimensional conservation laws of the form

    ut+divf(x,u)=0,u|t=0=u0

    in the domain R+×RN. The flux f=f(x,u) is assumed locally Lipschitz continuous in the unknown u and piecewise constant in the space variable x; the discontinuities of f(,u) are contained in the union of a locally finite number of sufficiently smooth hypersurfaces of RN. We define "GVV-entropy solutions'' (this formulation is a particular case of the one of [3]); the definition readily implies the uniqueness and the L1 contraction principle for the GVV-entropy solutions. Our formulation is compatible with the standard vanishing viscosity approximation

    uεt+div(f(x,uε))=εΔuε,uε|t=0=u0,ε0,

    of the conservation law. We show that, provided uε enjoys an ε-uniform L bound and the flux f(x,) is non-degenerately nonlinear, vanishing viscosity approximations uε converge as ε0 to the unique GVV-entropy solution of the conservation law with discontinuous flux.

    Citation: Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws withdiscontinuous flux[J]. Networks and Heterogeneous Media, 2010, 5(3): 617-633. doi: 10.3934/nhm.2010.5.617

    Related Papers:

    [1] Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro . On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(3): 617-633. doi: 10.3934/nhm.2010.5.617
    [2] Felisia Angela Chiarello, Giuseppe Maria Coclite . Nonlocal scalar conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2023, 18(1): 380-398. doi: 10.3934/nhm.2023015
    [3] Wen Shen . Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition. Networks and Heterogeneous Media, 2018, 13(3): 449-478. doi: 10.3934/nhm.2018020
    [4] Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra . Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks and Heterogeneous Media, 2013, 8(4): 969-984. doi: 10.3934/nhm.2013.8.969
    [5] Darko Mitrovic . Existence and stability of a multidimensional scalar conservation law with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(1): 163-188. doi: 10.3934/nhm.2010.5.163
    [6] Clément Cancès . On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types. Networks and Heterogeneous Media, 2010, 5(3): 635-647. doi: 10.3934/nhm.2010.5.635
    [7] John D. Towers . An explicit finite volume algorithm for vanishing viscosity solutions on a network. Networks and Heterogeneous Media, 2022, 17(1): 1-13. doi: 10.3934/nhm.2021021
    [8] Raimund Bürger, Harold Deivi Contreras, Luis Miguel Villada . A Hilliges-Weidlich-type scheme for a one-dimensional scalar conservation law with nonlocal flux. Networks and Heterogeneous Media, 2023, 18(2): 664-693. doi: 10.3934/nhm.2023029
    [9] Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina . Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2(1): 159-179. doi: 10.3934/nhm.2007.2.159
    [10] Shyam Sundar Ghoshal . BV regularity near the interface for nonuniform convex discontinuous flux. Networks and Heterogeneous Media, 2016, 11(2): 331-348. doi: 10.3934/nhm.2016.11.331
  • We characterize the vanishing viscosity limit for multi-dimensional conservation laws of the form

    ut+divf(x,u)=0,u|t=0=u0

    in the domain R+×RN. The flux f=f(x,u) is assumed locally Lipschitz continuous in the unknown u and piecewise constant in the space variable x; the discontinuities of f(,u) are contained in the union of a locally finite number of sufficiently smooth hypersurfaces of RN. We define "GVV-entropy solutions'' (this formulation is a particular case of the one of [3]); the definition readily implies the uniqueness and the L1 contraction principle for the GVV-entropy solutions. Our formulation is compatible with the standard vanishing viscosity approximation

    uεt+div(f(x,uε))=εΔuε,uε|t=0=u0,ε0,

    of the conservation law. We show that, provided uε enjoys an ε-uniform L bound and the flux f(x,) is non-degenerately nonlinear, vanishing viscosity approximations uε converge as ε0 to the unique GVV-entropy solution of the conservation law with discontinuous flux.



  • This article has been cited by:

    1. Wen Shen, On the Cauchy problems for polymer flooding with gravitation, 2016, 261, 00220396, 627, 10.1016/j.jde.2016.03.020
    2. Ilja Kröker, Wolfgang Nowak, Christian Rohde, A stochastically and spatially adaptive parallel scheme for uncertain and nonlinear two-phase flow problems, 2015, 19, 1420-0597, 269, 10.1007/s10596-014-9464-5
    3. Benjamin Gess, Mario Maurelli, Well-posedness by noise for scalar conservation laws, 2018, 43, 0360-5302, 1702, 10.1080/03605302.2018.1535604
    4. Graziano Crasta, Virginia De Cicco, Guido De Philippis, Francesco Ghiraldin, Structure of Solutions of Multidimensional Conservation Laws with Discontinuous Flux and Applications to Uniqueness, 2016, 221, 0003-9527, 961, 10.1007/s00205-016-0976-0
    5. Eduardo Abreu, Abel Bustos, Paola Ferraz, Wanderson Lambert, A Relaxation Projection Analytical–Numerical Approach in Hysteretic Two-Phase Flows in Porous Media, 2019, 79, 0885-7474, 1936, 10.1007/s10915-019-00923-4
    6. Sabrina Francesca Pellegrino, On the implementation of a finite volumes scheme with monotone transmission conditions for scalar conservation laws on a star-shaped network, 2020, 155, 01689274, 181, 10.1016/j.apnum.2019.09.011
    7. Boris Andreianov, Clément Cancès, Vanishing capillarity solutions of Buckley–Leverett equation with gravity in two-rocks’ medium, 2013, 17, 1420-0597, 551, 10.1007/s10596-012-9329-8
    8. Mauro Garavello, Stefano Villa, The Cauchy problem for the Aw–Rascle–Zhang traffic model with locally constrained flow, 2017, 14, 0219-8916, 393, 10.1142/S0219891617500138
    9. Boris Andreianov, Abraham Sylla, Existence analysis and numerical approximation for a second-order model of traffic with orderliness marker, 2022, 32, 0218-2025, 1295, 10.1142/S0218202522500294
    10. Fabio Ancona, Maria Teresa Chiri, Attainable profiles for conservation laws with flux function spatially discontinuous at a single point, 2020, 26, 1292-8119, 124, 10.1051/cocv/2020044
    11. MIROSLAV BULÍČEK, PIOTR GWIAZDA, AGNIESZKA ŚWIERCZEWSKA-GWIAZDA, MULTI-DIMENSIONAL SCALAR CONSERVATION LAWS WITH FLUXES DISCONTINUOUS IN THE UNKNOWN AND THE SPATIAL VARIABLE, 2013, 23, 0218-2025, 407, 10.1142/S0218202512500510
    12. Aekta Aggarwal, Manas Ranjan Sahoo, Abhrojyoti Sen, Ganesh Vaidya, Solutions with concentration for conservation laws with discontinuous flux and its applications to numerical schemes for hyperbolic systems, 2020, 145, 0022-2526, 247, 10.1111/sapm.12319
    13. Piotr Gwiazda, Agnieszka Świerczewska-Gwiazda, Petra Wittbold, Aleksandra Zimmermann, Multi-dimensional scalar balance laws with discontinuous flux, 2014, 267, 00221236, 2846, 10.1016/j.jfa.2014.07.009
    14. M. Köppel, I. Kröker, C. Rohde, Intrusive uncertainty quantification for hyperbolic-elliptic systems governing two-phase flow in heterogeneous porous media, 2017, 21, 1420-0597, 807, 10.1007/s10596-017-9662-z
    15. John D. Towers, Convergence of the Godunov scheme for a scalar conservation law with time and space discontinuities, 2018, 15, 0219-8916, 175, 10.1142/S0219891618500078
    16. Darko Mitrović, Boris Andreianov, Entropy conditions for scalar conservation laws with discontinuous flux revisited, 2015, 32, 0294-1449, 1307, 10.1016/j.anihpc.2014.08.002
    17. Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello, Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network, 2017, 37, 1553-5231, 5913, 10.3934/dcds.2017257
    18. Dmitry Golovaty, Truyen Nguyen, On the existence, uniqueness and stability of entropy solutions to scalar conservation laws, 2012, 253, 00220396, 1341, 10.1016/j.jde.2012.04.024
    19. Boris Andreianov, Clément Cancès, On interface transmission conditions for conservation laws with discontinuous flux of general shape, 2015, 12, 0219-8916, 343, 10.1142/S0219891615500101
    20. Elena Bachini, Mario Putti, Geometrically intrinsic modeling of shallow water flows, 2020, 54, 0764-583X, 2125, 10.1051/m2an/2020031
    21. Alberto Bressan, Graziano Guerra, Wen Shen, Vanishing viscosity solutions for conservation laws with regulated flux, 2019, 266, 00220396, 312, 10.1016/j.jde.2018.07.044
    22. Eduardo Abreu, Elena Bachini, John Pérez, Mario Putti, A geometrically intrinsic lagrangian-Eulerian scheme for 2D shallow water equations with variable topography and discontinuous data, 2023, 443, 00963003, 127776, 10.1016/j.amc.2022.127776
    23. Felisia Angela Chiarello, Giuseppe Maria Coclite, Nonlocal scalar conservation laws with discontinuous flux, 2022, 18, 1556-1801, 380, 10.3934/nhm.2023015
    24. Boris Andreianov, Kenneth Hvistendahl Karlsen, Nils Henrik Risebro, A Theory of L 1-Dissipative Solvers for Scalar Conservation Laws with Discontinuous Flux, 2011, 201, 0003-9527, 27, 10.1007/s00205-010-0389-4
    25. K. H. Karlsen, J. D. Towers, Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition, 2017, 14, 0219-8916, 671, 10.1142/S0219891617500229
    26. John D. Towers, Convergence via OSLC of the Godunov scheme for a scalar conservation law with time and space flux discontinuities, 2018, 139, 0029-599X, 939, 10.1007/s00211-018-0957-3
    27. Benjamin Gess, 2018, Chapter 3, 978-3-319-74928-0, 43, 10.1007/978-3-319-74929-7_3
    28. Stefan Diehl, 2012, Chapter 7, 978-3-642-20235-3, 175, 10.1007/978-3-642-20236-0_7
    29. Boris Andreianov, Nicolas Seguin, Analysis of a Burgers equation with singular resonant source term and convergence of well-balanced schemes, 2012, 32, 1553-5231, 1939, 10.3934/dcds.2012.32.1939
    30. Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch, Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure, 2021, 16, 1556-181X, 283, 10.3934/nhm.2021007
    31. Graziano Guerra, Wen Shen, Vanishing Viscosity and Backward Euler Approximations for Conservation Laws with Discontinuous Flux, 2019, 51, 0036-1410, 3112, 10.1137/18M1205662
    32. Sabrina F. Pellegrino, A filtered Chebyshev spectral method for conservation laws on network, 2023, 151, 08981221, 418, 10.1016/j.camwa.2023.10.017
    33. Aekta Aggarwal, Helge Holden, Ganesh Vaidya, Well-posedness and error estimates for coupled systems of nonlocal conservation laws, 2024, 0272-4979, 10.1093/imanum/drad101
    34. Alexander Keimer, Lukas Pflug, Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity, 2023, 361, 1778-3569, 1723, 10.5802/crmath.490
    35. Boris Andreianov, Abraham Sylla, Finite volume approximation and well-posedness of conservation laws with moving interfaces under abstract coupling conditions, 2023, 30, 1021-9722, 10.1007/s00030-023-00857-9
    36. Nikita Rastegaev, Sergey Matveenko, Kružkov-type uniqueness theorem for the chemical flood conservation law system with local vanishing viscosity admissibility, 2024, 21, 0219-8916, 1003, 10.1142/S0219891624500164
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4958) PDF downloads(100) Cited by(36)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog