Loading [MathJax]/jax/output/SVG/jax.js

Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain

  • Received: 01 July 2009 Revised: 01 February 2010
  • Primary: 35B27; Secondary: 35J25.

  • We investigate the Neumann problem for a nonlinear elliptic operator Au(s)=ni=1xi(ai(x,u(s)x)) of Leray-Lions type in the domain Ω(s)=ΩF(s), where Ω is a domain in Rn(n3), F(s) is a closed set located in the neighbourhood of a (n1)-dimensional manifold Γ lying inside Ω. We study the asymptotic behaviour of u(s) as s, when the set F(s) tends to Γ. Under appropriate conditions, we prove that u(s) converges in suitable topologies to a solution of a limit boundary value problem of transmission type, where the transmission conditions contain an additional term.

    Citation: Mamadou Sango. Homogenization of the Neumann problem for a quasilinear ellipticequation in a perforated domain[J]. Networks and Heterogeneous Media, 2010, 5(2): 361-384. doi: 10.3934/nhm.2010.5.361

    Related Papers:

    [1] Mamadou Sango . Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks and Heterogeneous Media, 2010, 5(2): 361-384. doi: 10.3934/nhm.2010.5.361
    [2] Patrizia Donato, Florian Gaveau . Homogenization and correctors for the wave equation in non periodic perforated domains. Networks and Heterogeneous Media, 2008, 3(1): 97-124. doi: 10.3934/nhm.2008.3.97
    [3] Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski . Homogenization of variational functionals with nonstandard growth in perforated domains. Networks and Heterogeneous Media, 2010, 5(2): 189-215. doi: 10.3934/nhm.2010.5.189
    [4] Patrizia Donato, Olivier Guibé, Alip Oropeza . Corrector results for a class of elliptic problems with nonlinear Robin conditions and $ L^1 $ data. Networks and Heterogeneous Media, 2023, 18(3): 1236-1259. doi: 10.3934/nhm.2023054
    [5] Luis Caffarelli, Antoine Mellet . Random homogenization of fractional obstacle problems. Networks and Heterogeneous Media, 2008, 3(3): 523-554. doi: 10.3934/nhm.2008.3.523
    [6] Hakima Bessaih, Yalchin Efendiev, Florin Maris . Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10(2): 343-367. doi: 10.3934/nhm.2015.10.343
    [7] Martin Heida, Benedikt Jahnel, Anh Duc Vu . Regularized homogenization on irregularly perforated domains. Networks and Heterogeneous Media, 2025, 20(1): 165-212. doi: 10.3934/nhm.2025010
    [8] Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski . Steklov problems in perforated domains with a coefficient of indefinite sign. Networks and Heterogeneous Media, 2012, 7(1): 151-178. doi: 10.3934/nhm.2012.7.151
    [9] Martin Heida . Stochastic homogenization on perforated domains Ⅰ – Extension Operators. Networks and Heterogeneous Media, 2023, 18(4): 1820-1897. doi: 10.3934/nhm.2023079
    [10] Martin Heida . Stochastic homogenization on perforated domains III–General estimates for stationary ergodic random connected Lipschitz domains. Networks and Heterogeneous Media, 2023, 18(4): 1410-1433. doi: 10.3934/nhm.2023062
  • We investigate the Neumann problem for a nonlinear elliptic operator Au(s)=ni=1xi(ai(x,u(s)x)) of Leray-Lions type in the domain Ω(s)=ΩF(s), where Ω is a domain in Rn(n3), F(s) is a closed set located in the neighbourhood of a (n1)-dimensional manifold Γ lying inside Ω. We study the asymptotic behaviour of u(s) as s, when the set F(s) tends to Γ. Under appropriate conditions, we prove that u(s) converges in suitable topologies to a solution of a limit boundary value problem of transmission type, where the transmission conditions contain an additional term.


  • This article has been cited by:

    1. Hamid Haddadou, H-convergence of a class of quasilinear equations in perforated domains beyond periodic setting, 2021, 10, 2193-5343, 91, 10.1007/s40065-021-00314-4
    2. Gabriel Nguetseng, 2025, Chapter 5, 978-3-031-84704-2, 143, 10.1007/978-3-031-84705-9_5
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3719) PDF downloads(60) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog