Citation: Luis Caffarelli, Antoine Mellet. Random homogenization of fractional obstacle problems[J]. Networks and Heterogeneous Media, 2008, 3(3): 523-554. doi: 10.3934/nhm.2008.3.523
[1] | Luis Caffarelli, Antoine Mellet . Random homogenization of fractional obstacle problems. Networks and Heterogeneous Media, 2008, 3(3): 523-554. doi: 10.3934/nhm.2008.3.523 |
[2] | Hakima Bessaih, Yalchin Efendiev, Florin Maris . Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10(2): 343-367. doi: 10.3934/nhm.2015.10.343 |
[3] | Patrick W. Dondl, Michael Scheutzow . Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients. Networks and Heterogeneous Media, 2012, 7(1): 137-150. doi: 10.3934/nhm.2012.7.137 |
[4] | Feiyang Peng, Yanbin Tang . Inverse problem of determining diffusion matrix between different structures for time fractional diffusion equation. Networks and Heterogeneous Media, 2024, 19(1): 291-304. doi: 10.3934/nhm.2024013 |
[5] | Renata Bunoiu, Claudia Timofte . Homogenization of a thermal problem with flux jump. Networks and Heterogeneous Media, 2016, 11(4): 545-562. doi: 10.3934/nhm.2016009 |
[6] | Jérôme Coville, Nicolas Dirr, Stephan Luckhaus . Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients. Networks and Heterogeneous Media, 2010, 5(4): 745-763. doi: 10.3934/nhm.2010.5.745 |
[7] | Xavier Blanc, Claude Le Bris . Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5(1): 1-29. doi: 10.3934/nhm.2010.5.1 |
[8] | T. A. Shaposhnikova, M. N. Zubova . Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks and Heterogeneous Media, 2008, 3(3): 675-689. doi: 10.3934/nhm.2008.3.675 |
[9] | L’ubomír Baňas, Amy Novick-Cohen, Robert Nürnberg . The degenerate and non-degenerate deep quench obstacle problem: A numerical comparison. Networks and Heterogeneous Media, 2013, 8(1): 37-64. doi: 10.3934/nhm.2013.8.37 |
[10] | Ben Schweizer, Marco Veneroni . The needle problem approach to non-periodic homogenization. Networks and Heterogeneous Media, 2011, 6(4): 755-781. doi: 10.3934/nhm.2011.6.755 |
1. | Matteo Focardi, Homogenization of Random Fractional Obstacle Problems via Γ-Convergence, 2009, 34, 0360-5302, 1607, 10.1080/03605300903300728 | |
2. | Marcone C. Pereira, Nonlocal evolution equations in perforated domains, 2018, 41, 01704214, 6368, 10.1002/mma.5144 | |
3. | Marcone C. Pereira, Julio D. Rossi, An Obstacle Problem for Nonlocal Equations in Perforated Domains, 2018, 48, 0926-2601, 361, 10.1007/s11118-017-9639-5 | |
4. | Monia Capanna, Julio D. Rossi, Mixing Local and Nonlocal Evolution Equations, 2023, 20, 1660-5446, 10.1007/s00009-023-02263-y | |
5. | Jinggang Tan, The Brezis–Nirenberg type problem involving the square root of the Laplacian, 2011, 42, 0944-2669, 21, 10.1007/s00526-010-0378-3 | |
6. | Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi, Homogenization for Nonlocal Evolution Problems with Three Different Smooth Kernels, 2023, 1040-7294, 10.1007/s10884-023-10248-4 | |
7. | Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi, Homogenization for nonlocal problems with smooth kernels, 2021, 41, 1553-5231, 2777, 10.3934/dcds.2020385 | |
8. | Matteo Focardi, Aperiodic fractional obstacle problems, 2010, 225, 00018708, 3502, 10.1016/j.aim.2010.06.014 | |
9. | Russell W. Schwab, Stochastic Homogenization for Some Nonlinear Integro-Differential Equations, 2013, 38, 0360-5302, 171, 10.1080/03605302.2012.741176 | |
10. | Matteo Focardi, Γ-convergence: a tool to investigate physical phenomena across scales, 2012, 35, 01704214, 1613, 10.1002/mma.2551 | |
11. | Marcone C. Pereira, Julio D. Rossi, Nonlocal problems in perforated domains, 2020, 150, 0308-2105, 305, 10.1017/prm.2018.130 | |
12. | Fábio R. Pereira, Multiplicity results for fractional systems crossing high eigenvalues, 2017, 16, 1553-5258, 2069, 10.3934/cpaa.2017102 | |
13. | Arianna Giunti, Richard Höfer, Juan J. L. Velázquez, Homogenization for the Poisson equation in randomly perforated domains under minimal assumptions on the size of the holes, 2018, 43, 0360-5302, 1377, 10.1080/03605302.2018.1531425 | |
14. | Matteo Focardi, Vector-valued obstacle problems for non-local energies, 2012, 17, 1553-524X, 487, 10.3934/dcdsb.2012.17.487 | |
15. | Arianna Giunti, Convergence rates for the homogenization of the Poisson problem in randomly perforated domains, 2021, 16, 1556-181X, 341, 10.3934/nhm.2021009 |