Random homogenization of fractional obstacle problems

  • Received: 01 January 2008
  • Primary: 74Q05; Secondary: 35R35.

  • We use a characterization of the fractional Laplacian as a Dirichlet to Neumann operator for an appropriate differential equation to study its obstacle problem in perforated domains.

    Citation: Luis Caffarelli, Antoine Mellet. Random homogenization of fractional obstacle problems[J]. Networks and Heterogeneous Media, 2008, 3(3): 523-554. doi: 10.3934/nhm.2008.3.523

    Related Papers:

    [1] Luis Caffarelli, Antoine Mellet . Random homogenization of fractional obstacle problems. Networks and Heterogeneous Media, 2008, 3(3): 523-554. doi: 10.3934/nhm.2008.3.523
    [2] Hakima Bessaih, Yalchin Efendiev, Florin Maris . Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10(2): 343-367. doi: 10.3934/nhm.2015.10.343
    [3] Patrick W. Dondl, Michael Scheutzow . Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients. Networks and Heterogeneous Media, 2012, 7(1): 137-150. doi: 10.3934/nhm.2012.7.137
    [4] Feiyang Peng, Yanbin Tang . Inverse problem of determining diffusion matrix between different structures for time fractional diffusion equation. Networks and Heterogeneous Media, 2024, 19(1): 291-304. doi: 10.3934/nhm.2024013
    [5] Renata Bunoiu, Claudia Timofte . Homogenization of a thermal problem with flux jump. Networks and Heterogeneous Media, 2016, 11(4): 545-562. doi: 10.3934/nhm.2016009
    [6] Jérôme Coville, Nicolas Dirr, Stephan Luckhaus . Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients. Networks and Heterogeneous Media, 2010, 5(4): 745-763. doi: 10.3934/nhm.2010.5.745
    [7] Xavier Blanc, Claude Le Bris . Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5(1): 1-29. doi: 10.3934/nhm.2010.5.1
    [8] T. A. Shaposhnikova, M. N. Zubova . Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks and Heterogeneous Media, 2008, 3(3): 675-689. doi: 10.3934/nhm.2008.3.675
    [9] L’ubomír Baňas, Amy Novick-Cohen, Robert Nürnberg . The degenerate and non-degenerate deep quench obstacle problem: A numerical comparison. Networks and Heterogeneous Media, 2013, 8(1): 37-64. doi: 10.3934/nhm.2013.8.37
    [10] Ben Schweizer, Marco Veneroni . The needle problem approach to non-periodic homogenization. Networks and Heterogeneous Media, 2011, 6(4): 755-781. doi: 10.3934/nhm.2011.6.755
  • We use a characterization of the fractional Laplacian as a Dirichlet to Neumann operator for an appropriate differential equation to study its obstacle problem in perforated domains.


  • This article has been cited by:

    1. Matteo Focardi, Homogenization of Random Fractional Obstacle Problems via Γ-Convergence, 2009, 34, 0360-5302, 1607, 10.1080/03605300903300728
    2. Marcone C. Pereira, Nonlocal evolution equations in perforated domains, 2018, 41, 01704214, 6368, 10.1002/mma.5144
    3. Marcone C. Pereira, Julio D. Rossi, An Obstacle Problem for Nonlocal Equations in Perforated Domains, 2018, 48, 0926-2601, 361, 10.1007/s11118-017-9639-5
    4. Monia Capanna, Julio D. Rossi, Mixing Local and Nonlocal Evolution Equations, 2023, 20, 1660-5446, 10.1007/s00009-023-02263-y
    5. Jinggang Tan, The Brezis–Nirenberg type problem involving the square root of the Laplacian, 2011, 42, 0944-2669, 21, 10.1007/s00526-010-0378-3
    6. Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi, Homogenization for Nonlocal Evolution Problems with Three Different Smooth Kernels, 2023, 1040-7294, 10.1007/s10884-023-10248-4
    7. Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi, Homogenization for nonlocal problems with smooth kernels, 2021, 41, 1553-5231, 2777, 10.3934/dcds.2020385
    8. Matteo Focardi, Aperiodic fractional obstacle problems, 2010, 225, 00018708, 3502, 10.1016/j.aim.2010.06.014
    9. Russell W. Schwab, Stochastic Homogenization for Some Nonlinear Integro-Differential Equations, 2013, 38, 0360-5302, 171, 10.1080/03605302.2012.741176
    10. Matteo Focardi, Γ-convergence: a tool to investigate physical phenomena across scales, 2012, 35, 01704214, 1613, 10.1002/mma.2551
    11. Marcone C. Pereira, Julio D. Rossi, Nonlocal problems in perforated domains, 2020, 150, 0308-2105, 305, 10.1017/prm.2018.130
    12. Fábio R. Pereira, Multiplicity results for fractional systems crossing high eigenvalues, 2017, 16, 1553-5258, 2069, 10.3934/cpaa.2017102
    13. Arianna Giunti, Richard Höfer, Juan J. L. Velázquez, Homogenization for the Poisson equation in randomly perforated domains under minimal assumptions on the size of the holes, 2018, 43, 0360-5302, 1377, 10.1080/03605302.2018.1531425
    14. Matteo Focardi, Vector-valued obstacle problems for non-local energies, 2012, 17, 1553-524X, 487, 10.3934/dcdsb.2012.17.487
    15. Arianna Giunti, Convergence rates for the homogenization of the Poisson problem in randomly perforated domains, 2021, 16, 1556-181X, 341, 10.3934/nhm.2021009
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4017) PDF downloads(97) Cited by(15)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog