Research article Special Issues

A comparative numerical study and stability analysis of African swine fever virus modelled by Caputo fractional derivative

  • Published: 23 October 2025
  • Outbreaks of African swine fever can result in substantial financial repercussions for pig industries in affected areas thereby stemming from the significant mortality rates among pigs and disruptions in the market. In this work, the behavior of an African swine fever virus model with a Caputo fractional derivative is analyzed. The existence and uniqueness results for the proposed fractional order model of African swine fever virus are investigated. The stability of the proposed model is examined within the framework of Ulam-Hyers and generalized Ulam-Hyers. The fractional Adams-Bashforth-Moulton predictor–corrector method is applied to simulate the model, which is compared with the fractional Euler method to validate its efficiency.

    Citation: S. Suganya, V. Parthiban. A comparative numerical study and stability analysis of African swine fever virus modelled by Caputo fractional derivative[J]. Mathematical Modelling and Control, 2025, 5(4): 368-378. doi: 10.3934/mmc.2025025

    Related Papers:

  • Outbreaks of African swine fever can result in substantial financial repercussions for pig industries in affected areas thereby stemming from the significant mortality rates among pigs and disruptions in the market. In this work, the behavior of an African swine fever virus model with a Caputo fractional derivative is analyzed. The existence and uniqueness results for the proposed fractional order model of African swine fever virus are investigated. The stability of the proposed model is examined within the framework of Ulam-Hyers and generalized Ulam-Hyers. The fractional Adams-Bashforth-Moulton predictor–corrector method is applied to simulate the model, which is compared with the fractional Euler method to validate its efficiency.



    加载中


    [1] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: models and numerical methods, World Scientific, 2012. https://doi.org/10.1142/8180
    [2] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley-Interscience, 1993.
    [3] I. Petráš, Fractional-order nonlinear systems: modeling, analysis and simulation, Springer Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18101-6
    [4] S. Suganya, V. Parthiban, A mathematical review on Caputo fractional derivative models for COVID-19, AIP Conf. Proc., 2852 (2023), 110003. https://doi.org/10.1063/5.0166410 doi: 10.1063/5.0166410
    [5] M. B. Barongo, R. P. Bishop, E. M. Fèvre, D. L. Knobel, A. Ssematimba, A mathematical model that simulates control options for African swine fever virus (ASFV), PloS One, 11 (2016), 0158658. https://doi.org/10.1371/journal.pone.0158658 doi: 10.1371/journal.pone.0158658
    [6] A. Kouidere, O. Balatif, M. Rachik, Analysis and optimal control of a mathematical modeling of the spread of African swine fever virus with a case study of South Korea and cost-effectiveness, Chaos Soliton. Fract., 146 (2021), 110867. https://doi.org/10.1016/j.chaos.2021.110867 doi: 10.1016/j.chaos.2021.110867
    [7] K. Yoon-seung, S. Korea again reports african swine fever case since 2019, 2020. Available from: https://en.yna.co.kr/view/AEN20201009000700320.
    [8] H. J. Kim, K. H. Cho, S. K. Lee, D. Y. Kim, J. J. Nah, H. J. Kim, et al., Outbreak of African swine fever in South Korea, 2019, Transbound. Emerg. Dis., 67 (2020), 473–475. https://doi.org/10.1111/tbed.13483 doi: 10.1111/tbed.13483
    [9] R. Shi, Y. Li, C. Wang, Stability analysis and optimal control of a fractional-order model for African swine fever, Virus Res., 288 (2020), 198111. https://doi.org/10.1016/j.virusres.2020.198111 doi: 10.1016/j.virusres.2020.198111
    [10] Y. Zhou, Basic theory of fractional differential equations, World Scientific, 2023. https://doi.org/10.1142/13289
    [11] A. Aphithana, S. K. Ntouyas, J. Tariboon, Existence and Ulam-Hyers stability for Caputo conformable differential equations with four-point integral conditions, Adv. Differ. Equ., 2019 (2019), 1–17. https://doi.org/10.1186/s13662-019-2077-5 doi: 10.1186/s13662-019-2077-5
    [12] A. Khan, H. Khan, J. F. Gómez-Aguilar, T. Abdeljawad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos Soliton. Fract., 127 (2019), 422–427. https://doi.org/10.1016/j.chaos.2019.07.026 doi: 10.1016/j.chaos.2019.07.026
    [13] I. Ahmed, I. A. Baba, A. Yusuf, P. Kumam, W. Kumam, Analysis of Caputo fractional-order model for COVID-19 with lockdown, Adv. Differ. Equ., 2020 (2020), 394. https://doi.org/10.1186/s13662-020-02853-0 doi: 10.1186/s13662-020-02853-0
    [14] E. Hincal, S. H. Alsaadi, Stability analysis of fractional order model on corona transmission dynamics, Chaos Soliton. Fract., 143 (2021), 110628. https://doi.org/10.1016/j.chaos.2020.110628 doi: 10.1016/j.chaos.2020.110628
    [15] M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alexandria Eng. J., 59 (2020), 2379–2389. https://doi.org/10.1016/j.aej.2020.02.033 doi: 10.1016/j.aej.2020.02.033
    [16] K. Shah, F. Jarad, T. Abdeljawad, On a nonlinear fractional order model of dengue fever disease under Caputo-Fabrizio derivative, Alex. Eng. J., 59 (2020), 2305–2313. https://doi.org/10.1016/j.aej.2020.02.022 doi: 10.1016/j.aej.2020.02.022
    [17] P. Verma, S. Tiwari, A. Verma, Theoretical and numerical analysis of fractional order mathematical model on recent COVID-19 model using singular kernel, Proc. Natl. Acda. Sci., India, Sect. A Phys. Sci., 93 (2023), 219–232. https://doi.org/10.1007/s40010-022-00805-9 doi: 10.1007/s40010-022-00805-9
    [18] A. Jajarmi, D. Baleanu, A new fractional analysis on the interaction of HIV with $CD4^{+}$ T-cells, Chaos Soliton. Fract., 113 (2018), 221–229. https://doi.org/10.1016/j.chaos.2018.06.009 doi: 10.1016/j.chaos.2018.06.009
    [19] C. Li, F. Zeng, Numerical methods for fractional calculus, New York: Chapman and Hall/CRC, 2015. https://doi.org/10.1201/b18503
    [20] M. Z. Ullah, A. K. Alzahrani, D. Baleanu, An efficient numerical technique for a new fractional tuberculosis model with nonsingular derivative operator, J. Taibah Univ. Sci., 13 (2019), 1147–1157. https://doi.org/10.1080/16583655.2019.1688543 doi: 10.1080/16583655.2019.1688543
    [21] M. Awais, F. S. Alshammari, S. Ullah, M. A. Khan, S. Islam, Modeling and simulation of the novel coronavirus in Caputo derivative, Results Phys., 19 (2020), 103588. https://doi.org/10.1016/j.rinp.2020.103588 doi: 10.1016/j.rinp.2020.103588
    [22] D. Baleanu, A. Jajarmi, M. Hajipour, On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler kernel, Nonlinear Dyn., 94 (2018), 397–414. https://doi.org/10.1007/s11071-018-4367-y doi: 10.1007/s11071-018-4367-y
    [23] F. Evirgen, Transmission of Nipah virus dynamics under Caputo fractional derivative, J. Comput. Appl. Math., 418 (2023), 114654. https://doi.org/10.1016/j.cam.2022.114654 doi: 10.1016/j.cam.2022.114654
    [24] M. Helikumi, P. O. Lolika, Dynamics and analysis of COVID-19 disease transmission: the effect of vaccination and quarantine, Math. Model. Control, 3 (2023), 192–209. https://doi.org/10.3934/mmc.2023017 doi: 10.3934/mmc.2023017
    [25] S. Paul, A. Mahata, S. Mukherjee, B. Roy, Dynamics of SIQR epidemic model with fractional order derivative, Partial Differ. Equ. Appl. Math., 5 (2022), 100216. https://doi.org/10.1016/j.padiff.2021.100216 doi: 10.1016/j.padiff.2021.100216
    [26] S. Paul, A. Mahata, S. Mukherjee, B. Roy, M. Salimi, A. Ahmadian, Study of fractional order SEIR epidemic model and effect of vaccination on the spread of COVID-19, Int. J. Appl. Comput. Math., 8 (2022), 237. https://doi.org/10.1007/s40819-022-01411-4 doi: 10.1007/s40819-022-01411-4
    [27] N. H. Sweilam, S. M. Al-Mekhlafi, A. Almutairi, D. Baleanu, A hybrid fractional COVID-19 model with general population mask use: numerical treatments, Alex. Eng. J., 60 (2021), 3219–3232. https://doi.org/10.1016/j.aej.2021.01.057 doi: 10.1016/j.aej.2021.01.057
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(917) PDF downloads(84) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog