We study an inverse problem for the Timoshenko beam model, which describes the transverse displacement $ u $ and cross-sectional rotation $ \varphi $ of an elastic beam, accounting for shear and rotary inertia. For a beam of length $ L > 0 $, with Young's modulus $ E $, shear modulus $ G $, density $ \rho $, cross-sectional area $ A $, moment of inertia $ I $, and shear correction factor $ \kappa $, the system under a source $ g(t)(f_1(x), f_2(x)) $ reads:
$ \begin{equation} \left\{ \begin{aligned} {} & \rho A \frac{\partial^2 u}{\partial t^2} - \frac{\partial}{\partial \xi}\left[AG\kappa\left(\frac{\partial u}{\partial \xi} - \varphi\right)\right] = g(t) f_1, \nonumber \\ & \rho I \frac{\partial^2 \varphi}{\partial t^2} - \frac{\partial}{\partial \xi}\left(EI\frac{\partial \varphi}{\partial \xi}\right) - \kappa AG\left(\frac{\partial u}{\partial \xi} - \varphi\right) = g(t) f_2. \nonumber\ \end{aligned} \right. \end{equation} $
We prove that, although the model involves both $ u $ and $ \varphi $, for known $ g \in \mathcal{C}^1 $ the observation of $ u(t, x) $ on $ (0, T]\times\Omega_w $, where $ \emptyset \neq \Omega_w \subset (0, L) $ is an open set, uniquely determines $ (f_1, f_2)\in H^{-1}(\Omega)^2 $ – an advantage in practice, for rotation is very difficult to measure. Numerical results show that, while the Timoshenko model is more accurate, the simpler Euler-Bernoulli model still yields satisfactory reconstructions beyond its formal range of validity.
Citation: Alexandre Kawano, Thomas Brion, Mohamed Ichchou, Abdelmalek Zine. Uniqueness results for the Timoshenko beam model and identification of forces[J]. Mathematics in Engineering, 2025, 7(4): 464-480. doi: 10.3934/mine.2025019
We study an inverse problem for the Timoshenko beam model, which describes the transverse displacement $ u $ and cross-sectional rotation $ \varphi $ of an elastic beam, accounting for shear and rotary inertia. For a beam of length $ L > 0 $, with Young's modulus $ E $, shear modulus $ G $, density $ \rho $, cross-sectional area $ A $, moment of inertia $ I $, and shear correction factor $ \kappa $, the system under a source $ g(t)(f_1(x), f_2(x)) $ reads:
$ \begin{equation} \left\{ \begin{aligned} {} & \rho A \frac{\partial^2 u}{\partial t^2} - \frac{\partial}{\partial \xi}\left[AG\kappa\left(\frac{\partial u}{\partial \xi} - \varphi\right)\right] = g(t) f_1, \nonumber \\ & \rho I \frac{\partial^2 \varphi}{\partial t^2} - \frac{\partial}{\partial \xi}\left(EI\frac{\partial \varphi}{\partial \xi}\right) - \kappa AG\left(\frac{\partial u}{\partial \xi} - \varphi\right) = g(t) f_2. \nonumber\ \end{aligned} \right. \end{equation} $
We prove that, although the model involves both $ u $ and $ \varphi $, for known $ g \in \mathcal{C}^1 $ the observation of $ u(t, x) $ on $ (0, T]\times\Omega_w $, where $ \emptyset \neq \Omega_w \subset (0, L) $ is an open set, uniquely determines $ (f_1, f_2)\in H^{-1}(\Omega)^2 $ – an advantage in practice, for rotation is very difficult to measure. Numerical results show that, while the Timoshenko model is more accurate, the simpler Euler-Bernoulli model still yields satisfactory reconstructions beyond its formal range of validity.
| [1] |
A. Cazzani, F. Stochino, E. Turco, On the whole spectrum of Timoshenko beams. Part Ⅰ: a theoretical revisitation, Z. Angew. Math. Phys., 67 (2016), 24. https://doi.org/10.1007/s00033-015-0592-0 doi: 10.1007/s00033-015-0592-0
|
| [2] |
A. Cazzani, F. Stochino, E. Turco, On the whole spectrum of Timoshenko beams. Part Ⅱ: further applications, Z. Angew. Math. Phys., 67 (2016), 25. https://doi.org/10.1007/s00033-015-0596-9 doi: 10.1007/s00033-015-0596-9
|
| [3] |
A. Díaz-de Anda, J. Flores, L. Gutiérrez, R. A. Méndez-Sánchez, G. Monsivais, A. Morales, Experimental study of the Timoshenko beam theory predictions, J. Sound Vib., 331 (2012), 5732–5744. https://doi.org/10.1016/j.jsv.2012.07.041 doi: 10.1016/j.jsv.2012.07.041
|
| [4] | I. Elishakoff, Who developed the so-called Timoshenko beam theory? Math. Mech. Solids, 25 (2020), 97–116. |
| [5] | K. F. Graff, Wave motion in elastic solids, Oxford University Press, 1975. |
| [6] |
A. Hasanov, Identification of an unknown source term in a vibrating cantilevered beam from final overdetermination, Inverse Probl., 25 (2009), 115015. https://doi.org/10.1088/0266-5611/25/11/115015 doi: 10.1088/0266-5611/25/11/115015
|
| [7] |
A. Hasanov, A. Kawano, Identification of unknown spatial load distributions in a vibrating Euler-Bernoulli beam from limited measured data, Inverse Probl., 32 (2016), 055004. https://doi.org/10.1088/0266-5611/32/5/055004 doi: 10.1088/0266-5611/32/5/055004
|
| [8] |
A. Kawano, Uniqueness in the determination of unknown coefficients of an Euler-Bernoulli beam equation with observation in an arbitrary small interval of time, J. Math. Anal. Appl., 452 (2017), 351–360. https://doi.org/10.1016/j.jmaa.2017.03.019 doi: 10.1016/j.jmaa.2017.03.019
|
| [9] |
A. Kawano, A. Morassi, R. Zaera, The prey's catching problem in an elastically supported spider orb-web, Mech. Syst. Signal Process., 151 (2021), 107310, https://doi.org/10.1016/j.ymssp.2020.107310 doi: 10.1016/j.ymssp.2020.107310
|
| [10] |
A. Kawano, A. Zine, Uniqueness and nonuniqueness results for a certain class of almost periodic distributions, SIAM J. Math. Anal., 43 (2011), 135–152. https://doi.org/10.1137/090763524 doi: 10.1137/090763524
|
| [11] |
A. Kawano, A. Zine, Reliability evaluation of continuous beam structures using data concerning the displacement of points in a small region, Eng. Struct., 180 (2019), 379–387. https://doi.org/10.1016/j.engstruct.2018.11.051 doi: 10.1016/j.engstruct.2018.11.051
|
| [12] |
A. Olevskii, A. Ulanovskii, On multi-dimensional sampling and interpolation, Anal. Math. Phys., 2 (2012), 149–170. https://doi.org/10.1007/s13324-012-0027-4 doi: 10.1007/s13324-012-0027-4
|
| [13] |
R. W. Traill-Nash, A. R. Collar, The effects of shear flexibility and rotatory inertia on the bending vibrations of beams, Q. J. Mech. Appl. Math., 6 (1953), 186–222. https://doi.org/10.1093/qjmam/6.2.186 doi: 10.1093/qjmam/6.2.186
|
| [14] | S. Timoshenko, History of strength of materials: with a brief account of the history of theory of elasticity and theory of structures, Dover Civil and Mechanical Engineering Series, Dover Publications, 1983. |
| [15] |
S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, London, Edinburgh, Dublin Philos. Mag. J. Sci., 41 (1921), 744–746. https://doi.org/10.1080/14786442108636264 doi: 10.1080/14786442108636264
|
















