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Abstract: We study an inverse problem for the Timoshenko beam model, which describes the
transverse displacement u and cross-sectional rotation ¢ of an elastic beam, accounting for shear and
rotary inertia. For a beam of length L > 0, with Young’s modulus E, shear modulus G, density p,
cross-sectional area A, moment of inertia /, and shear correction factor «, the system under a source

g (fi(x), f>(x)) reads:
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We prove that, although the model involves both u and ¢, for known g € C! the observation of u(z, x)
on (0, 7] x Q,, where 0 # Q, c (0,L) is an open set, uniquely determines (fi, f>) € H'(Q)? - an
advantage in practice, for rotation is very difficult to measure. Numerical results show that, while
the Timoshenko model is more accurate, the simpler Euler-Bernoulli model still yields satisfactory
reconstructions beyond its formal range of validity.

Keywords: Timoshenko beam theory; functional analysis; almost periodic distributions; uniqueness;
inverse problems; solid mechanics

1. Introduction

In engineering structural systems, the beam element is virtually ubiquitous, due to its high efficiency
in resisting and transmitting moments across the structure. There are two main beam theories, the one
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known as the Euler-Bernoulli’s and the other known as the Timoshenko, or Timoshenko—Ehrenfest
beam theory. The history concerning the development of the Euler-Bernoulli theory can be recounted
by Timoshenko himself in his book [14]. For the second beam theory, which is intended to be an
improvement to the other, taking into account rotational inertia and shear effects, one can consult
for instance [4, 15]. As the slenderness ratio decreases and as vibration frequencies increase, the
Timoshenko-Ehrenfest beam theory offers better agreement with experimental results. Apart from the
intrinsic mathematical value, the importance of proving that it is possible to uniquely identify imposed
loads over structural systems, and to effectively reconstruct them, is related mainly to safety concerns
(see for instance [11] and references herein).

The inverse problem of identifying imposed loads over beams modeled by the Euler-Bernoulli
equation has been studied for some time [6-8]. Compared to the Timoshenko equation, Euler-
Bernoulli’s case is relatively simple due to the fact it is just one equation to which is associated a
clear sequence of eigenvalues, or natural frequencies. In connection to this issue, the discussion of the
real existence of the so-called second spectrum in the model in the Timoshenko beam theory (TBT)
lasted about a decade [3].

There is now a consensus that the second spectrum really exists and can be measured [1-3].
Physically, this set corresponds to higher natural frequencies. It is known that the first lowest
frequencies, say the first ten, in the TBT are very close to those predicted by the Euler-Bernoulli
theory, and as the frequencies increase, the rate of increase is higher for the EB Theory. In fact,
the EBT predicts a growth of the order of 1, = O(n*) whereas the TBT predicts 4, = O(n) From
the mathematical point of view, it is clear that this series of eigenvalues cannot be discarded, for the
associated eigenvectors are part of an orthogonal Hilbert basis.

In this article, we present clearly the eigenvalue problem, prove a uniqueness result concerning the
identification of loads applied to a Timoshenko beam and show some numerical results employing
a full finite element solid model. The objective of the numerical simulations was that compare the
underlying models for the beam.

Since the Timoshenko model is more refined, it is more aligned with experimental observations
than the Euler-Bernoulli model and is able to impart meaning to observations that the other may
interpret as noise. The central question explored here is which model performs better in solving an
inverse problem—identifying the forces acting on a beam—when both models are valid, particularly
when subjected to high-frequency loads.

2. Description of the Timoshenko beam model

For a beam of length L that lies on the set Q =]0, L[, the governing system of coupled equations for
the displacement field and flexural rotation predicted by the Timoshenko model is given by

2
pa 20 [AGK(@ - so)] = 8(0) i(€), inl0, +eo[x

orr o€ A&
Po 0 (. 0 Bu | @.1)
plﬁ 9 Ela_g — KAG o ¢| = g(t) f2(£),in]0, +o0[XQ,

where u € H)(Q) is the displacement, ¢ € H)(Q) is the rotation angle of the transversal section, A and
I are respectively the area and the moment of inertia of the cross-section, G is the shear modulus, « is
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the Timoshenko shear coefficient and p is the mass volumetric density of the material. The parameter
G and the elastic modulus E are related by the relation G = ﬁ, where v is Poisson’s ratio. For a
prismatic beam, « is related to v by the formula x = 11?5,”:112). The temporal function g € C!([0, +oo[),
2(0) # 0, is known and fi, f, € H™'(]0, L[)) are the unknowns in this inverse problem. g f; and g f>
physically are the distributed force and moment over the beam respectively.

The choice to frame the displacement and rotation fields in the space H(‘)(Q) is because it is
the most natural one when working with Sobolev spaces. Mechanically, the choice corresponds to
the clamped-clamped boundary condition, for which it is not possible to factorize the characteristic
equation associated to the eigenvalue problem.

For the inverse problem, we suppose that the initial conditions are known. We suppose that

u(0,x) = ¢(0,x) =0, Vx € [0, L]. (2.2)

2.1. Eigenvalue problem

We start from (2.1) to obtain the homogeneous problem

Pu 0 ou
5 = (o)

ox ox
(2.3)
’p 0 Op ou
I— = —(EI-Z | + kAG | = - o],
Pise ax( 8x)+K (ax ‘”)
with
V =Hy(10, L)) x Hy(10, L)), [u ¢l€V
to get
2 P Al
pA 0|0 |u _ AGK%C2 ;;AGK(?X g (2.4)
0 plor|e| |AGkL EIL - AGk
=M =K

Consider the triplet of spaces (V, H, V*), where H = (L*(Q))? and V* = (H"'(Q))>.
We define the operators K : V — V*and M : V — V by

AGkL  —AGkZ pA 0
K= ()')C o2 " 2 = :
AGky. Elz= —AGk 0 pl

In H, we employ the standard internal product

L
!
Vi, v = f Vi va, Yvi, v € H.
0

Using the dual paring V X V* 3 (u,v) — (u,v), € C, we have, using the density of C;’(Q2) in H(l)(Q)

that
Oou, Oou, dp1 Op,

K = -AGk{(— — ¢;,— — —EK{—,— )y, Yvy, V.
i, Kva)a <8x 2R ©2)H <8x Ep Y, YVi, v €

Of course, for elements in H, we have {(vi,v2); = (v1,V2)g, Yvi, 2 € H.
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Now clearly
V23 (v, m) B (v, vdy = —(vy, Kvadg

defines an internal product in V.
For each fixed v; € V, the operator V 3 v, = (vy,v;)y is bounded. By Riesz theorem, there is
Tv, € V such that
Wivade = v, Tva)y = —(vi, KTva)q. (2.5)

The operator 7 : V — V is compact by the following argument. The inclusion V — H is compact
by Rellich’s Theorem. Take a weakly convergent sequence (Wi )ren, wx — w in V. It converges strongly
in H.

For every w € V, we have

ITWly, = (Tw, Tw)y = (Tw, w)a.

Then there is a C > 0 such that
ITWI < ClwllglITwlly,

that is, ||[Tw||y < C||wl||y, forallw € V c H. Then w;y — win V implies
ITwi = Twlly = IT(wr = w)lly — 0.

That is, (Twy)ren converges strongly in V. Hence, T : V — V is compact.

We consider the operator M : V — V, which is clearly self-adjoint.

Now we will see that the operator TM : V — V is self-adjoint with respect to the inner product
(-, -)y. If this occurs, then we can apply the Spectral Theorem to the operator TM : V — V and obtain
the properties of the eigenvalues and eigenvectors of the problem. In this case, the eigenvalues will be
the natural frequencies of the problem.

To prove that TM : V — V is self-adjoint with respect to the inner product (-, )y, it suffices to
consider the equality

Vi, TMvay)y = (vi, Mvy)y = (Mvy,voyy = —(KTMvy,v2)4
= —(TMv,Kvy)q = (TMvy,vo)y.

This operator is also compact, as we have seen above. And even more: As (vi, TMv,)y = (vi, M)y,
we see that TM : V — V is positive definite, that is, its eigenvalues will be in R, .

By the Spectral Theorem and from what we said above, we get the existence of a sequence (S )ien C
V that forms an orthonormal Riesz basis with respect to the inner product (-, -)y, such that

TMSk = /lkSk’ <Sm’ Sn>V = 6m,n’ (26)
with 4, > 0, 44 — 0. By the Spectral Theorem, each A; may be multiple but always with finite
multiplicity.

Then

1 1 1
_SmaTMSn :_Sm’MSn :_SmaMSn = O
/1m< v ﬂm< H /1m< )d ,

(Sm, MSn>d = /lmém,n’
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with (/lk)keN Cc R,.
Now we establish the connection with problems (2.3) and (2.4). Since S, € V is an eigenvector
with eigenvalue 4, > 0, we have

<TMSn? V>V = /ln<Sn’ V)V, VV € V
Then, for all v € V, it follows that (MS ,, v}z = —A4,{(KS ,, V)4, OF
<MSn’ V)d = _/ln<KSn’ V)d,

that is, —%MS . = KS, in the weak sense. If we make the usual supposition that u(t, x) = €“"'U,(x)
in (2.4), we obtain
- w:MU, = KU, 2.7

which reveals that the natural frequencies of the system and the eigenvalues of the problem are
related by
, 1
w,=—,neN.
/111

With reference to the debate of the existence of the “second spectrum” of the Timoshenko
beam [1,2], it becomes clear that from the mathematical point of view, it does not make sense exclude
a subset of the whole sequence of eigenvalues (4,),cn € R, and the corresponding eigenspaces, for
(S,)n C V forms a complete Hilbert basis. In fact, experimental investigation [3] shows that the
“second spectrum” is present in the measured values.

The subject of the existence of the “second spectrum” is related to the development of beam
theories. In fact, although the classical Bernoulli-Euler theory accurately predicts the flexural vibration
frequencies of the lower modes of slender beams, it becomes inadequate for higher modes or in the
case of deep beams, where transverse shear deformation and rotatory inertia play a significant role. The
Timoshenko beam model, which accounts for these effects, has provided important insights into the
structure of the vibration spectrum, and a careful physical analysis reveals the existence of a transition
frequency, such that the eigenvectors associated with natural frequencies below and above it exhibit
markedly different shapes. Traill-Nash and Collar [13] interpreted this change as the introduction of a
second spectrum of frequencies and claimed its existence with numerical results. From a mathematical
perspective, the spectrum of the Timoshenko beam is known to be unique, as its existence follows from
the spectral theorem.

In the particular case of a simply supported beam, the wave-number transcendental equation can
be factorized, leading to an algebraic frequency equation that allows for the direct computation of the
natural frequencies w,. For all other boundary conditions, however, such factorization is not possible:
hyperbolic functions appear in the eigenvectors associated with the lower part of the spectrum, and
each eigenvector in the upper part depends simultaneously on two distinct wave numbers. As a

result, the evaluation of the natural frequencies and corresponding modes generally requires numerical
methods [1,2].

2.2. Growth rate of (Wy,)nen

We get an approximate solution U, = [u, ¢,] when w, — +co to (2.7) with the boundary conditions
u,(0) = ¢,(0) = u,(L) = ¢,(L) = 0. The first step is to make the following three substitutions in the
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LA = g, ACk B and g’—', = v. It is easy to verify that @ > 2y always. We also define

operator K: vl

A = (@ —y)? and A, = « + y. With these definitions, after a tedious and long computation, we can
obtain the solution of (2.7) with u,(0) = ¢,(0) = 0 and u,(L) = Cy, ¢,(L) = C,. After ignoring lower
order terms, for instance aﬁwﬁ + /lle‘l x /hwi, we set up a homogeneous linear system for Cy and Cj,
and impose that the determinant of the main matrix is zero, so that there are non-trivial solutions for

C; and C;. The resulting equation is

By — ) sin® Lw, ?
y . (\/7 ) +,8(cos(\/aLwn) - COS(WLwn))

w?(a —y)*sin ( \/aLwn) sin ( WLw,,)
+ \/c_y \/7
The dominating part is the one multiplied by w?, from which we get the equation
w?(a — y)*sin ( V&Lwn) sin ( \/7Lwn)
VY

From (2.8), we get two sequences, one related to sin ( \/ELw) = 0 and the other to sin ( \/7Lw) =0,
that compose the whole set of natural frequencies. We see that we can decompose the whole sequence
(Wp)nen 1n two families.

=0. (2.8)

{wy, : neN}={w;, : ne N}U{w,, : neN}, (2.9)

n |Gk
wln"’_w/_n and wy, ~
> L p >
for large n € N.

Note that this is the same asymptotic behavior that we obtain when we realize that as w, — +oo, the
lower order derivatives contained in (2.7) can be neglected, because quick variation in time and space
dominate.

with

(2.10)

~1
Py
vﬁ

2.3. Solution of the dynamic problem

Now that we have the sequence of eigenvectors (S,),ey C V of the problem we can express the
solution of problem (2.1)-(2.2) using them.

The first step is to represent the load (fi, f2) € V*. By the Riesz representation theorem, any
functional F € V* can be represented uniquely by £ € V. That is,

Fv={,F)y, YveV
We take F' = 3, o0 bnS ,, With (b)), C £2.

(v, Fyy = =0, KF)g = =0, K ) b,S)a

neN
b, b,
= (v, ) buKS)a = v, ) T MSa = M Y S
neN neN neN "
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that is, any element in V* can be represented by M ), o %S,,, with (b,)pen C £2.
Given F € V*, we obtain the sequence (b,),exr C €2 by b, = (F, S ,)4, for

bm bm
<F’Sn>d = <Sn’MZ /1_Sm>d = Z /1_<Sn’MSm>d = bn

meN ~M meN ~M

Now we turn to the solution of the non-homogeneous problem (2.1)-(2.2) that reads after a simple
manipulation and substitution,

2

P » b,
5w =M Kw+g(t)zn:/l—nSn, 2.11)

where (b,)pen C €2 and w = [u ¢]'.
Substituting w(t, x) = 3., gm(#)S ,n(x) into (2.11) and using (2.6) and that M~'KS,, = —%S,,, we get
the solution w € C'([0, T1, L)) N C°([0, T1, H) ().

Y AP BV
wi(t, x) = fo gt T); \//l_ksm( «/ﬂ_k)sk(x) dr. (2.12)

The proof that w € C'([0, T'1, L%(Q)) N C°([0, T, H)(€2)) is by simple verification.
3. Uniqueness theorem and its proof

In this section, we prove the following uniqueness result.

Theorem 3.1. In problem (2.1) with initial conditions (2.2), for g € C'([0, +oo[), g(0) # 0, the function
[fi fo]' € HY(Q) x HY(Q) is uniquely determined by the set {u(t,x) : (t,x) € [0,T] x Q,,}, where
Q,, c Q =10, L[ is any open set and T > 2L \/g.

Observation 3.2. Besides the importance of this result as a mathematical statement, from an
engineering point of view it means that it is possible to identify the loads by observing only the

displacement field. This is particularly important from an application standpoint, since it is difficult or
even impossible to obtain direct information about the rotation of the cross section.

For the proof of Theorem 3.1 we need the following definitions.

Definition 3.3. A set A C R is uniformly discrete if

o(A)= inf [A-A|>0. 3.1

AV ENAEN

Definition 3.4. Let B C R a bounded set with positive measure. The Paley-Wiener space PWp is the
space
PWy ={f : feL’ supp(f) C B}.

Definition 3.5. A countable set A C R is an interpolation set (1S) for PWg if for every c(1) € £2(A),
there is f € PWpg satisfying f(1) = c¢(1), 1 € A.
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The following interpolation theorem is taken from [12].
Theorem 3.6. If 6(A) > | Bl then A is an interpolation set (1S) for PWg.

From (2.9), we see that the sequence is the union of two real sub-sequences A; = (w1,)nen and
Ay = (Wan)nen, With 6(A 1) > 0, 6(A;) > 0. That is, both sequences A; and A, are uniformly discrete.

Proof of Theorem 3.1. We will prove that the operator
J: 0> = C'([0,T],LX(Q)) N C°([0, T, Hy(Q))
defined by
(DiInew P Wl nero.rixa, (£, X) = f gt —1) Z — sm( ) k(x) dt
is injective. Since J is linear, it suffices to prove that
Wleweo.rixa, = 0= b, =0, Vn e N.

Suppose then that for (¢, x) € [0,T] X Q,,, w(t, x) = 0. Taking the first derivative of this equation, we
get

g(0)h(t, x) + f gt —h(t,x)dr =0, V(t,x) € [0, T] X Q,,,
0

where

h(t, x) = Z—sm( )k(x) (3.2)

Remembering that by hypothesis g(0) # 0, (3.2) is Volterra’s integral of second kind, that implies
h(t, x) = 0 for (t,x) € [0,T] x Q,,. Integrating this equation with respect to 7 for 7 = 0 to 7 = ¢ and
substituting A; = ﬁ, we obtain Y ;%) by cos (twy) S k(x) = 0, which we can extend naturally to [T, 0].
It is a technical detkail, but we must account the fact that each w; may be repeated a finite number of
times. Then, after regrouping the same wy, we obtain

+00
h(t, x) = Z apcos (twy) =0,  Y(t,x) € [-T, T] X Q. (3.3)
k=0
where for k = 0, we introduced wy = 1, S¢ = 1 and ag = — X2 biS «(x) which is a series that converges

in R for fixed x € Q,,, because x — ), biS k(%) is a function in V, and therefore continuous in Q,,.
For k > 0, we write

K
=) binSin(x), ko < oo, (3.4)

m=1

For fixed x € Q,,, when we test /(-, x) against ¢ € L2, supp(¢) C]-T,T], thatis, ¢ € PWy_r 7. It yields

0 = (R x), @Yg = (h(-> %), ©a,
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with A(-, x), being in general an ultradistribution, but in the present case it will be a simple distribution.
In fact,

B, X) = =1 ) @S o, +0-0,),

k=1
which tested against ¢ becomes
+00
D aSN@(@) + g(-w) =0, Vx e Q,.
k=1

We can assume that ¢ is an even function in this equation, because every function with support in
1 =T, T[ can be written as the sum of an even and odd functions, and the odd contribution will vanish.
Therefore, we obtain

+o00
Z aiS (xX)e(wy) = 0,¥Vx € Q,,. 3.5
k=1
If (wi)kez, were uniformly discrete, we could use ¢ € PWy_r [ to interpolate (aiS(X))kez to
conclude that a; = 0, for all k € N (and therefore ay = 0), and from it a linear system for by i, . . ., bi,
(see (3.4)) to conclude that b; = 0, for all k£ € N.
Unfortunately, we cannot guarantee that (wy ez, 1s uniformly discrete. However, we can use (2.10)
to write ¢ = ¢ * ¢, = ¢ and ¢, even functions with supp(¢;) C] — T4, T1[, supp(¢r) C] — T, T,
Ty + T, =T, so that supp(¢7 *@,) C] — T, T[. ¢, is used to interpolate (w; ,)nen U {wp = 0} and ¢, is
used to interpolate {w,, : n € N} \ {w;, : n € N}. The steps are as follows.
Write (3.5) as

+00 +0o
Z a S 1 (@1 (w2 (w i) + Z a2 kS 21 (X)1(Wr)Pr(way) = 0,Vx € Q,,. (3.6)
=1 =1

Invoking Theorem 3.6 and using the fact that (a; 1S | x@2(W1))ken € €2 and (w1 ke is uniformly
discrete, we see that there is a ¢; € PW_z, 1, that satisfies ¢;(w;x) = 0, for all k € N, and given any
W1 k> AlSO @1 (way,) # 0, because {w;x : k € N} U {way,} 1s still uniformly discrete.

Now, using the interpolation property guaranteed by Theorem 3.6, we prove that a, ;S (x) = 0, for
all k € N. Varying x € Q,,, in (3.4), we conclude that b,; = 0, for all k € N.

Analogously, exchanging the roles of (w x)ren and (w4 )rewr We conclude that b, = 0, forall k € N.
With this, we conclude that all by in (3.2) are null. With this, we finish the proof of the theorem. O

4. The Euler-Bernoulli model and the related uniqueness result for the identification of loads

We briefly review the Euler-Bernoulli model. In the next section, we will compare results from
numerical experiments for load identification when the underlying model is Timoshenko’s and Euler-
Bernoulli’s.

The Euler-Bernoulli model leads to the equation

O*u o*u

pAW + Elﬁ_‘f“ = g(Hh(é), 4.1)
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where u € HS(Q), Q =]0, L[, is the displacement and the parameters A, E, I are the the same as in (2.1).
The load has the form g(r)h(¢) with g € C! and h € H™2(Q). To solve an inverse problem that is parallel
to the one analyzed for the Timoshenko beam, we set the same boundary condition for the beam of
length L, which is reflected in the choice of the space for the displacement field u € H(z)(Q).

For the inverse problem we assume that the beam is at rest at ¢ = 0, that is,

0
u(0, x) = 6—2‘(0, x) =0, Vx e [0,L]. 4.2)
The uniqueness result for the identification of the load 4 € H™2() [7] can be stated as in the next

theorem.

Theorem 4.1. In problem (4.1) with initial conditions (4.2), for g € C'([0, +o), g(0) # 0, the function
h € H2(Q) is uniquely determined by the set {u(t,x) : (t,x) € [0,T] X Q,}, where Q,, ¢ Q =0, L[is
any open set and T > Q.

The biggest difference between Theorems 3.1 and 4.1 is that in the case of the Euler-Bernoulli
model, the time required for unique identification is arbitrarily small, whereas for the Timoshenko
model there is minimum value. Moreover, despite the fact that in both cases the observation concerns
only displacements, in the Timoshenko model the rotation angle ¢ is independent of the displacement
u, which is not the case for the Euler-Bernoulli model.

S. Recovery process

In this section we show the application of an algorithm that has already been used in our previous
works [9, 10] and some numerical experiment results.

5.1. Numerical method

After the time function g(#) = cos(wyt), is inserted in the displacement field (2.12), we get

w(t, x) = [Z AkSk(x)) cos(wot) — Z (ArS 1 (x) cos(wit)) .
k=1 k=1

After truncation to Ny terms, it becomes

No No
wit, x) = [Z AkSk(x)) cos(wot) — Z (AS 1(x) cos(wit)) , (5.1)
k=1 k=1
where
A, = b (5.2)
k — Uk wi _ (,()(2) . .

We are going to use the family of functions [10],

[sin((§ — w)7)]

¢m,7(§) = (é‘,: — (Um) T

,VmeN, VYT > 0. (5.3)
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Observe that their Fourier transform, which are going to be used as test functions in the time variable,
are compactly supported:
(1) = H () e, m e N, 7 > 0, (5.4)

where 1
H.(t) = —xyy_rq, T> 0.
() ZT)(] Tl T

The parameter 7 > 0 is the half of the length of the observation time interval.
As test functions in the space variable for performing the observation we use the function

U(x) = xa,» (5.5)

where the observation set Q,, C]0, L[ is any open set.
Using the displacement fields w given by (5.1), we define

Ve(g) = (u, ¢gr ®U). (5.6)

Recalling that F(cos(8-)) = n(dz + d_p), we have explicitly

No
By [($4.r(w0) + bgr(—w)| = Y Au(Sic, ) [(Bgr(@p) + pgo(-wp)] = Valg), (5.7)
k=1

where

No
By= ) Aur(Si, ¥).
k=1

Using (5.7) with g = 1,...,Ny, and 7 = T (Ty > 0 chosen appropriately), we set up a matrix
equation of the form
[TN][A] = [V], (5.8)

where [TN] is a Ny X (IVy) square symmetric matrix.
The solution of (5.8) leads to the recovery of the unknowns (Ay)=1, n,. From them, the coeflicients
(bik=1...n, are deduced based on (5.2). And finally, the source term is approximated:

No b
k
f M; LS (5.9)

5.2. Numerical results

We have two competing models for the predictive behavior of an elastic beam: the Timoshenko and
Euler-Bernoulli models. Both serve as approximations of the actual physical engineering situation.
The former is used when the Euler-Bernoulli starts to lose its validity, when dealing with short beams,
characterized by the ratio between length and depth (less than 10), or when the beam is excited with
higher frequencies.

From a theoretical perspective, the Timoshenko model is more suitable for capturing the nuances
of reality, as it incorporates more parameters and degrees of freedom (specifically, the rotation of a
cross-section is not constrained to be the first derivative of the displacement field). This implies that a
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part of experimental data interpreted as noise by the Euler-Bernoulli model should gain meaning in the
light of the Timoshenko beam model. However, of course, both models are susceptible to measurement
errors.

A natural question that arises is which of these two models yields better results when the objective
is to apply them to the solution of an inverse problem, which is to identify the loading acting on a
physical beam when both models are applicable. In this section, we aim to address this question.

The target load f is shown in Figure 1.

%05
2 0.4+
031
0.2
0.1
00 O.‘l O.‘2 013 O.‘4 O.‘5 0.‘6 O.‘7 O.‘8 0.‘9 1
x (m)
Figure 1. Load spatial function.
. ) ) L 7L
The load function is the function that is equal to one between x; = 24 and x, = > and zero
elsewhere, it can be defined by:
L 7L
=H(x—-—|-H|x-—]|, 5.10
f@) (x 24) (x 24) (5-10)

where H is the Heaviside function. This function is to be identified from measurements of displacement
fields obtained by analytical displacement field solution of the Timoshenko beam equation, defined
by (5.1) with a large number of eigenvectors, or by a finite element model of a full 3D complete
rectangular beam.

This beam has a length L = 1 m and a square cross section b = h = 0.01 m. The mechanical
properties are the following: a Young modulus £ = 200.0 GPa, a density p = 8.5 X 10° kg/m? and a
Poisson ratio v = 0.3. From these parameters, the shear modulus, the area, the bending inertia and the
Timoshenko shear coefficient are derived. The values are summarized in Table 1. The beam is clamped
at both ends. The first eigenfrequencies and eigenvectors of both the Timoshenko and Euler-Bernoulli
models are estimated in this case by the finite element method.

The load function is identified by the algorithm, using the eigenvalues and eigenvectors associated
with either the Euler-Bernoulli or Timoshenko equations. It is possible to estimate the frequency up
to which the Euler-Bernoulli beam equation is valid [5]. In our configuration, the Euler-Bernoulli
model is well applicable for frequencies below 8500 Hz approximately, while the Timoshenko beam
equation remains valid, since it has a wider range of applicability. Four excitation frequencies are
tested, fo = 100 Hz, 1000 Hz, 10000 Hz and 20000 Hz.
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Table 1. Mechanical and geometrical properties of the beam.

Property Value
8.5 x 10° kg/m?
200.0 GPa
0.3

b 0.01 m
1.0m
1.0 x 107* m?
8.3x 10719 m*
0.85
76.9 GPa

o

QX ~>» N>«

Figures 2 and 3 present the identification of the load from analytical fields at 100 Hz based on the
eigenvectors of the Euler-Bernoulli beam equation and on the Timoshenko equation. The identification
is possible for different size of support for the load function, as shown Figure 2. The number of
eigenvectors used in the identification is very important. Up to a limit, the more eigenvectors used, the
more accurate the load identification. However, if the number of eigenvectors becomes too high, some
oscillations are induced, which degrade the identification. The effect of the number of eigenvectors on
the L? error committed by the identification is illustrated Figure 3c. Figure 2a presents the identification
with the number of eigenvectors that minimises the error in the L? norm while too many eigenvalues are
used Figure 3a. Moreover, increasing the time window allows to increase the number of eigenvectors
without having oscillation effects and therefore to obtain a better best identification, Figure 3b. Using
only the first eigenvectors, the identification based on the Euler-Bernoulli or Timoshenko models gives
similar results as the first eigenvectors are similar. However, the more eigenvectors are used, the more
different the identifications become. And the Timoshenko eigenvalues provide a better identification.
Figure 4 show similar results with higher excitation frequencies.

Az i 0

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
x(m) x(m)

(a) (b)
Figure 2. Load spatial function identification from analytical displacement field, for two
different functions, at f; = 100 Hz, with an observation window Q,, = [0.87,0.88] and 7 = 4
ms and a time step A¢ = 0.01 ms. Exact function (-), identification based on 6 eigenvectors
(a) and 13 eigenvectors (b) of the Timoshenko model (...) and identification based on 6
eigenvectors (a) and 13 eigenvectors (b) of the Euler-Bernoulli model (- ).
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Figure 3. Load spatial function identification from analytical displacement field at f; = 100
Hz, with an observation window ,, = [0.87,0.88]. (a): T = 4 ms and a time step A7 = 0.01
ms and (b): 7 = 50 ms and a time step Ar = 0.01 ms. Exact function (-), identification
based on 23 eigenvectors of the Timoshenko model (...) and identification based on 16
eigenvectors of the Euler-Bernoulli model (— ). (c) L? error on the source identification
function of the number of eigenvectors considered, all other parameters remaining the same
as in (b). Identification with the Timoshenko model (e), and with the Euler-Bernoulli model

().

L 04

02 02
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
x(m) x(m) x(m)

(@) (b) (©
Figure 4. Load spatial function identification from analytical displacement field at (a):
fo = 1000 Hz, (b): fo = 10000 Hz and (c) fy = 20000 Hz, with an observation window
Q, = [0.87,0.88] and 7 = 4 ms and a time step At = 0.01 ms. Exact function (-),
identification based on 12 eigenvectors (a), 30 eigenvectors (b) or 53 eigenvectors (c) of
the Timoshenko model (...) and identification based on 9 eigenvectors (a), 13 eigenvectors
(b) or 16 eigenvectors (c) of the Euler-Bernoulli model(— ).

Moreover, the size of the observation window can theoretically be arbitrary and as small as possible,
even reduced to a single point. Figure 5 presents an example of identification based on displacement
at a single point. The only limitation is that for all eigenvectors considered, the term (S , ¥), which is
the integration of the eigenvector over the observation window, must not be zero or too small.

To complete the numerical study, displacement fields calculated by a full 3D finite element model
are considered. The resolution makes use of the COMSOL software. The load identification from
these fields at four frequencies is shown in Figure 6. The finite elements model uses 3D quadratic
serendipity elements. The size of the elements changes depending on the cases: at 100 Hz the elements
side measure around 0.01 m, and at 1000 Hz, 10000 Hz and 20000 Hz around 0.005 m. The volume
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of the beam being 10~ m?, the order of magnitude for the number of elements is 800, the number of
nodes is 7500 and the number of degrees of freedom is of the order of 22500.

1.2

Force (N)
<)
IS

-0.21

-0.4

0 01 02 03 04 05 06 07 08 09 1
x(m)

Figure 5. Load spatial function identification from analytical displacement field at f, = 100
Hz, with an observation window €,, = {0.88} and 7 = 4 ms and a time step At = 0.01 ms.
Exact function (-), identification based on 9 eigenvectors of the Timoshenko model (. ..) and
identification based on 9 eigenvectors of the Euler-Bernoulli model (- ).
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Figure 6. Load spatial function identification from finite element displacement field at (a):
fo =100 Hz and 7 = 4 ms, (b): fo = 1000 Hz and 7 = 4 ms, (c) fy = 10000 Hz and 7 = 4
ms and (d) f, = 20000 Hz and T = 3 ms, with an observation window Q,, = [0.87,0.88] and
a time step At = 0.01 ms. Exact function (-), identification based on 6 eigenvectors (a), 12
eigenvectors (b), 30 eigenvectors (c) of the Timoshenko model (. ..) and identification based
on 6 eigenvectors (a), 9 eigenvectors (b), 13 eigenvectors (c), of the Euler-Bernoulli model

)
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From the numerical simulation results we see that both the Timoshenko model and the Euler-
Bernoulli model eigenvectors allow load identification. There is not much difference in accuracy
between the two models. The solution using eigenvectors from the Timoshenko model only seems
to be slightly better at capturing the non-smooth aspect of the load function.

6. Conclusions

The forcing load can indeed be identified uniquely even when supposing the Timoshenko model
and observing only the displacement field even ignoring the angle of the cross section, which from the
point of view of applications is very important, since it is difficult to obtain information regarding the
rotation of the cross section.

After proving a mathematical result that guarantees uniqueness in the identification of loads acting
over beams modeled by the Timoshenko equation, some numerical experiments using full 3-D finite
element models were conducted.

Effects of errors in observation, time interval and observation space interval were considered and
give results that in agreement with what is expected from the physical point of view, concerning the
length of observation interval and extent over the beam. Our numerical experiments suggest that both
Euler-Bernoulli and Timoshenko models give similar results in and out the range in which both are
applicable. In particular, for the direct problem, the maximum frequency for which the Timoshenko
equation remained valid was of 8500 Hz.

However, even at 20000 Hz, out of the range in which the Euler-Bernoulli model is applicable [5],
the unknown load was identified correctly. One possible explanation for this is the nature of the inverse
problem solution that we employed, in which we employ only the first eigenpairs of the problem, and
for those, the Euler-Bernoulli model is still applicable. Further research may be necessary to clarify
this finding.
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