We establish partial Hölder continuity of the gradient for equilibrium configurations of vectorial multidimensional variational problems, involving bulk and surface energies. The bulk energy densities are uniformly strictly quasiconvex functions with p-growth, 1<p<2, without any further structure conditions. The anisotropic surface energy is defined by means of an elliptic integrand Φ not necessarily regular.
Citation: Menita Carozza, Luca Esposito, Lorenzo Lamberti. Quasiconvex bulk and surface energies with subquadratic growth[J]. Mathematics in Engineering, 2025, 7(3): 228-263. doi: 10.3934/mine.2025011
[1] | Wenbin Gong, Yaqiang Wang . Some new criteria for judging H-tensors and their applications. AIMS Mathematics, 2023, 8(4): 7606-7617. doi: 10.3934/math.2023381 |
[2] | Tinglan Yao . An optimal Z-eigenvalue inclusion interval for a sixth-order tensor and its an application. AIMS Mathematics, 2022, 7(1): 967-985. doi: 10.3934/math.2022058 |
[3] | Sourav Shil, Hemant Kumar Nashine . Positive definite solution of non-linear matrix equations through fixed point technique. AIMS Mathematics, 2022, 7(4): 6259-6281. doi: 10.3934/math.2022348 |
[4] | Shiyu Lin, Shilin Yang . A new family of positively based algebras Hn. AIMS Mathematics, 2024, 9(2): 2602-2618. doi: 10.3934/math.2024128 |
[5] | Jie Zhou, Tianxiu Lu, Jiazheng Zhao . The expansivity and sensitivity of the set-valued discrete dynamical systems. AIMS Mathematics, 2024, 9(9): 24089-24108. doi: 10.3934/math.20241171 |
[6] | Panpan Liu, Hongbin Lv . An algorithm for calculating spectral radius of s-index weakly positive tensors. AIMS Mathematics, 2024, 9(1): 205-217. doi: 10.3934/math.2024012 |
[7] | Reena Jain, Hemant Kumar Nashine, Jung Rye Lee, Choonkil Park . Unified relational-theoretic approach in metric-like spaces with an application. AIMS Mathematics, 2021, 6(8): 8959-8977. doi: 10.3934/math.2021520 |
[8] | Keun Young Lee, Gwanghyun Jo . The dual of a space of compact operators. AIMS Mathematics, 2024, 9(4): 9682-9691. doi: 10.3934/math.2024473 |
[9] | Shengying Mu, Yanhui Zhou . An analysis of the isoparametric bilinear finite volume element method by applying the Simpson rule to quadrilateral meshes. AIMS Mathematics, 2023, 8(10): 22507-22537. doi: 10.3934/math.20231147 |
[10] | Salma Aljawi, Kais Feki, Hranislav Stanković . Jointly A-hyponormal m-tuple of commuting operators and related results. AIMS Mathematics, 2024, 9(11): 30348-30363. doi: 10.3934/math.20241464 |
We establish partial Hölder continuity of the gradient for equilibrium configurations of vectorial multidimensional variational problems, involving bulk and surface energies. The bulk energy densities are uniformly strictly quasiconvex functions with p-growth, 1<p<2, without any further structure conditions. The anisotropic surface energy is defined by means of an elliptic integrand Φ not necessarily regular.
Consider the following mth degree homogeneous polynomial of n variables f(x) as
f(x)=∑i1,i2,…,im∈Nai1i2⋯imxi1xi2⋯xim, | (1.1) |
where x=(x1,x2,⋯,xn)∈Rn. When m is even, f(x) is called positive definite if
f(x)>0,foranyx∈Rn,x≠0. |
The homogeneous polynomial f(x) in (1.1) can be expressed as the tensor product of a symmetric tensor A with m-order, n-dimension and xm defined by
f(x)≡Axm=∑i1,i2,…,im∈Nai1i2⋯imxi1xi2⋯xim, | (1.2) |
where
A=(ai1i2⋯im),ai1i2⋯im∈C(R),ij=1,2,⋯,n,j=1,2,⋯,m, |
C(R) presents complex (real) number fields. The symmetric tensor A is called positive definite if f(x) in (1.2) is positive definite [1]. Moreover, a tensor I=(δi1i2⋯im) is called the unit tensor[2], where
δi1i2⋯im={1,ifi1=⋯=im,0,otherwise. |
The positive definiteness of tensor has received much attention of researchers' in recent decade [3,4,5]. Based on the Sturm theorem, the positive definiteness of a multivariate polynomial form can be checked for n≤3 [6]. For n>3 and m≥4, it is difficult to determine the positive definiteness of f(x) in (2). Ni et al.[1] provided an eigenvalue method for identifying positive definiteness of a multivariate form. However, all the eigenvalues of the tensor are needed in this method, thus the method is not practical when tensor order or dimension is large.
Recently, based on the criteria of H-tensors, Li et al.[7] provided a practical method for identifying the positive definiteness of an even-order symmetric tensor. H-tensor is a special kind of tensors and an even order symmetric H-tensor with positive diagonal entries is positive definite. Due to this, we may identify the positive definiteness of a tensor via identifying H-tensor. For the latter, with the help of generalized diagonally dominant tensor, various criteria for H-tensors and M-tensors is established [8,9,10,11,12,13,14,15,16], which only depends on the elements of the tensors and is more effective to determine whether a given tensor is an H-tensor (M-tensor) or not. For example, the following result is given in [16]:
Theorem 1. Let A=(ai1⋯im) be a complex tensor with m-order, n-dimension. If
|aii⋯i|>∑i2,i3,…,im∈Nm−1∖Nm−13δii2…im=0|aii2⋯im|+∑i2i3⋯im∈Nm−13maxj∈{i2,i3,⋯,im}Λj(A)|ajj⋯j||aii2⋯im|, ∀i∈N1∪N2, |
then A is an H-tensor.
In this paper, we continue to present new criterions based on H-tensors for identifying positive definiteness of homogeneous polynomial forms. The obtained results extend the corresponding conclusions [16,17,18]. The validity of our proposed methods are theoretically guaranteed and the numerical experiments show their effciency.
In this section, some notation, definitions and lemmas are given.
Let S be a nonempty subset of N={1,2,⋯,n} and let N∖S be the complement of S in N. Given an m-order n-dimension complex tensor A=(ai1⋯im), we denote
Λi(A)=∑i2,…,im∈Nδii2…im=0|aii2⋯im|=∑i2,…,im∈N|aii2⋯im|−|aii⋯i|;N1=N1(A)={i∈N:0<|aii⋯i|=Λi(A)};N2=N2(A)={i∈N:0<|aii⋯i|<Λi(A)};N3=N3(A)={i∈N:|aii⋯i|>Λi(A)};Nm−10=Nm−1∖(Nm−12∪Nm−13);q=maxi∈N2Λi(A)−|aii⋯i|Λi(A);Pi(A)=q(∑i2,…,im∈Nm−10|aii2⋯im|+∑i2,…,im∈Nm−12|aii2⋯im|+∑i2,…,im∈Nm−13δii2…im=0|aii2⋯im|),∀i∈N3;t=maxi∈N3q(∑i2⋯im∈Nm−10|aii2⋯im|+∑i2⋯im∈Nm−12|aii2⋯im|)Pi(A)−∑i2⋯im∈Nm−13δii2⋯im=0maxj∈{i2,i3,⋯,im}Pj(A)|ajj⋯j||aii2⋯im|. |
In this paper, we always assume that neither N1 or N2 is empty. Otherwise, we assume that A satisfies: aii⋯i≠0,Λi(A)≠0,∀i∈N.
we may define the following structured tensors extended from matrices.
Definition 1. [10] Let A=(ai1i2⋯im) be an m-order n-dimension complex tensor. A is called an H-tensor if there is a positive vector x=(x1,x2,⋯,xn)T∈Rn such that
|aii⋯i|xm−1i>∑i2,…,im∈Nδii2…im=0|aii2⋯im|xi2⋯xim,∀i∈N. |
Definition 2. [2] An m-order n-dimension complex tensor A=(ai1i2⋯im) is called reducible if there exists a nonempty proper index subset I⊂N such that
ai1i2⋯im=0,∀i1∈I,∀i2,⋯,im∉I. |
Otherwise, we say A is irreducible.
Example 1. Consider the 4-order 4-dimension tensor A given
a1111=a2222=a3333=a4444=a1444=a2333=2, |
and zero elsewhere. Then ai1i2i3i4=0 for all i1∈{1,4} and for all i2,i3,i4∈{2,3}. From Definition 2, we have that A is reducible.
Definition 3. [12] Let A=(ai1i2⋯im) be an m-order n-dimension complex tensor, for i,j∈N(i≠j), if there exist indices k1,k2,⋯,kr with
∑i2,…,im∈Nδksi2…im=0,ks+1∈{i2,…,im}|aksi2⋯im|≠0,s=0,1,…,r, |
where k0=i,kr+1=j, we call that there is a nonzero elements chain from i to j.
It is shown that for any H-tensor, there exists at least one strictly diagonally dominant row [7]. Further, we have the following conclusion.
Lemma 1. [10] If A is a strictly diagonally dominant tensor, then A is an H-tensor.
Lemma 2. [7] Let A=(ai1⋯im) be a complex tensor with m-order, n-dimension. If there exists a positive diagonal matrix X such that AXm−1 is an H-tensor, then A is an H-tensor.
Lemma 3. [7] Let A=(ai1⋯im) be a complex tensor with m-order, n-dimension. If A is irreducible,
|ai⋯i|≥Λi(A),∀i∈N, |
and strictly inequality holds for at least one i, then A is an H-tensor.
Lemma 4. [12] Let A=(ai1⋯im) be a complex tensor with m-order, n-dimension. If
● (i) |aii⋯i|≥Λi(A),∀i∈N,
● (ii) N3={i∈N:|aii⋯i|>Λi(A)}≠∅,
● (iii) For any i∉N3, there exists a nonzero elements chain from i to j such that j∈N3,
then A is an H-tensor.
In this section, we give some new criteria for H-tensors.
Theorem 2. Let A=(ai1⋯im) be a complex tensor with m-order, n-dimension. If for i∈N2,
|aii⋯i|>Λi(A)Λi(A)−|aii⋯i|[q(∑i2i3⋯im∈Nm−10|aii2⋯im|+∑i2i3⋯im∈Nm−12δii2⋯im=0|aii2⋯im|)+∑i2i3⋯im∈Nm−13maxj∈{i2,i3,⋯,im}tPj(A)|ajj⋯j||aii2⋯im|], | (3.1) |
and for i∈N1, |aii⋯i|≠∑i2i3⋯im∈Nm−10δii2⋯im=0|aii2⋯im|, then A is an H-tensor.
Proof. From the definition of q, we know that 0≤q<1, q≥Λi(A)−|aii⋯i|Λi(A)(∀i∈N2), so for any i∈N3,
Pi(A)=q(∑i2,…,im∈Nm−10|aii2⋯im|+∑i2,…,im∈Nm−12|aii2⋯im|+∑i2,…,im∈Nm−13δii2…im=0|aii2⋯im|)=qΛi(A)<q|aii⋯i|, |
that is
q>Pi(A)|aii⋯i|. | (3.2) |
By the definition of Pi(A), we have
q(∑i2i3⋯im∈Nm−10|aii2⋯im|+∑i2i3⋯im∈Nm−12|aii2⋯im|)Pi(A)−∑i2i3⋯im∈Nm−13δii2⋯im=0maxj∈{i2,i3,⋯,im}Pj(A)|ajj⋯j||aii2⋯im|=Pi(A)−q∑i2…im∈Nm−13δii2…im=0|aii2⋯im|Pi(A)−∑i2i3⋯im∈Nm−13δii2…im=0maxj∈{i2,i3,⋯,im}Pj(A)|ajj⋯j||aii2⋯im|≤1. |
For any i∈N3, from Inequality (3.2) and 0≤t≤1, we conclude that
q>tPi(A)|aii⋯i|,∀i∈N3. | (3.3) |
For any i∈N2, by Inequality (3.1), it holds that
|aii⋯i|Λi(A)−|aii⋯i|Λi(A)>q(∑i2⋯im∈Nm−10|aii2⋯im|+∑i2⋯im∈Nm−12δii2⋯im=0|aii2⋯im|)+∑i2⋯im∈Nm−13maxj∈{i2,i3,⋯,im}tPj(A)|ajj⋯j||aii2⋯im|. | (3.4) |
By Inequality (3.3) and Inequality (3.4), there exists a sufficiently small positive number ε such that
q>tPi(A)|aii⋯i|+ε,∀i∈N3, | (3.5) |
and
|aii⋯i|Λi(A)−|aii⋯i|Λi(A)>q(∑i2⋯im∈Nm−10|aii2⋯im|+∑i2⋯im∈Nm−12δii2⋯im=0|aii2⋯im|)+∑i2⋯im∈Nm−13maxj∈{i2,i3,⋯,im}tPj(A)|ajj⋯j||aii2⋯im|+ε∑i2⋯im∈Nm−13|aii2⋯im|,∀i∈N2, |
that is,
ε∑i2⋯im∈Nm−13|aii2⋯im|<|aii⋯i|Λi(A)−|aii⋯i|Λi(A)−q(∑i2⋯im∈Nm−10|aii2⋯im|+∑i2⋯im∈Nm−12δii2⋯im=0|aii2⋯im|)−∑i2⋯im∈Nm−13maxj∈{i2,i3,⋯,im}tPj(A)|ajj⋯j||aii2⋯im|, ∀i∈N2. | (3.6) |
By the definition of t, it holds that
t≥q(∑i2⋯im∈Nm−10|aii2⋯im|+∑i2⋯im∈Nm−12|aii2⋯im|)Pi(A)−∑i2⋯im∈Nm−13δii2⋯im=0maxj∈{i2,i3,⋯,im}Pj(A)|ajj⋯j||aii2⋯im|,∀i∈N2, |
that is
q(∑i2⋯im∈Nm−10|aii2⋯im|+∑i2⋯im∈Nm−12|aii2⋯im|)+t∑i2⋯im∈Nm−13δii2⋯im=0maxj∈{i2,i3,⋯,im}Pj(A)|ajj⋯j||aii2⋯im|≤tPi(A),∀i∈N2. | (3.7) |
Let the matrix D=diag(d1,d2,⋯,dn), and denote B=ADm−1=(bi1i2⋯im), where
di={q1m−1,i∈N1,(Λi(A)−|aii⋯i|Λi(A))1m−1,i∈N2,(ε+tPi(A)|aii⋯i|)1m−1,i∈N3. |
For any i∈N1, by q>tPi(A)|aii⋯i|(∀i∈N3), we conclude that
Λi(B)=q∑i2⋯im∈Nm−10δii2⋯im=0|aii2⋯im|+∑i2⋯im∈Nm−12|aii2⋯im|(Λi2(A)−|ai2i2⋯i2|Λi2(A))1m−1⋯(Λim(A)−|aimim⋯im|Λim(A))1m−1+∑i2⋯im∈Nm−13|aii2⋯im|(tPi2(A)|ai2i2⋯i2|+ε)1m−1⋯(tPim(A)|aimim⋯im|+ε)1m−1≤q(∑i2⋯im∈Nm−10δii2⋯im=0|aii2⋯im|+∑i2⋯im∈Nm−12|aii2⋯im|)+∑i2⋯im∈Nm−13|aii2⋯im|(maxj∈{i2,i3,⋯,im}tPj(A)|ajj⋯j|+ε)<q(∑i2⋯im∈Nm−10δii2⋯im=0|aii2⋯im|+∑i2⋯im∈Nm−12|aii2⋯im|)+q∑i2⋯im∈Nm−13|aii2⋯im|=q|aii⋯i|=|bii⋯i|. |
For ∀i∈N2, by Inequality (3.6), then
Λi(B)=q∑i2⋯im∈Nm−10|aii2⋯im|+∑i2⋯im∈Nm−12δii2⋯im=0|aii2⋯im|(Λi2(A)−|ai2i2⋯i2|Λi2(A))1m−1⋯(Λim(A)−|aimim⋯im|Λim(A))1m−1+∑i2⋯im∈Nm−13|aii2⋯im|(tPi2(A)|ai2i2⋯i2|+ε)1m−1⋯(tPim(A)|aimim⋯im|+ε)1m−1≤q(∑i2⋯im∈Nm−10|aii2⋯im|+∑i2⋯im∈Nm−12δii2⋯im=0|aii2⋯im|)+∑i2⋯im∈Nm−13|aii2⋯im|(maxj∈{i2,i3,⋯,im}tPj(A)|ajj⋯j|+ε)=q(∑i2⋯im∈Nm−10|aii2⋯im|+∑i2⋯im∈Nm−12δii2⋯im=0|aii2⋯im|)+∑i2⋯im∈Nm−13maxj∈{i2,i3,⋯,im}tPj(A)|ajj⋯j||aii2⋯im|+ε∑i2⋯im∈Nm−13|aii2⋯im|<q(∑i2⋯im∈Nm−10|aii2⋯im|+∑i2⋯im∈Nm−12δii2⋯im=0|aii2⋯im|)+∑i2⋯im∈Nm−13maxj∈{i2,i3,⋯,im}tPj(A)|ajj⋯j||aii2⋯im|+[|aii⋯i|Λi(A)−|aii⋯i|Λi(A)−q(∑i2⋯im∈Nm−10|aii2⋯im|+∑i2⋯im∈Nm−12δii2⋯im=0|aii2⋯im|)−∑i2⋯im∈Nm−13maxj∈{i2,i3,⋯,im}tPj(A)|ajj⋯j||aii2⋯im|]=|aii⋯i|Λi(A)−|aii⋯i|Λi(A)=|bii⋯i|. |
Finally, for any i∈N3, by Inequality (3.7), thus
Λi(B)=q∑i2⋯im∈Nm−10|aii2⋯im|+∑i2⋯im∈Nm−12|aii2⋯im|(Λi2(A)−|ai2i2⋯i2|Λi2(A))1m−1⋯(Λim(A)−|aimim⋯im|Λim(A))1m−1+∑i2⋯im∈Nm−13δii2⋯im=0|aii2⋯im|(tPi2(A)|ai2i2⋯i2|+ε)1m−1⋯(tPim(A)|aimim⋯im|+ε)1m−1≤q(∑i2⋯im∈Nm−10|aii2⋯im|+∑i2⋯im∈Nm−12|aii2⋯im|)+∑i2⋯im∈Nm−13δii2⋯im=0|aii2⋯im|(maxj∈{i2,i3,⋯,im}tPj(A)|ajj⋯j|+ε)=q(∑i2⋯im∈Nm−10|aii2⋯im|+∑i2⋯im∈Nm−12|aii2⋯im|)+∑i2⋯im∈Nm−13δii2⋯im=0maxj∈{i2,i3,⋯,im}tPj(A)|ajj⋯j||aii2⋯im|+ε∑i2⋯im∈Nm−13δii2⋯im=0|aii2⋯im|≤tPi(A)+ε∑i2⋯im∈Nm−13δii2⋯im=0|aii2⋯im|<tPi(A)+ε|aii⋯i|=|bii⋯i|. |
Therefore, we obtain that |bii⋯i|>Λi(B)(∀i∈N). From Lemma 1, B is an H-tensor. Further, by Lemma 2, A is an H-tensor.
Remark 1. From Theorem 2, we conclude that 0≤p<1, 0≤t≤1, and for any i∈N3,
tPi(A)|aii⋯i|<Λi(A)|aii⋯i|<1. |
Thus, all conditions in Theorem 2 are weaker than that in Theorem 1. Example 2 illustrates the superiority of Theorem 2.
Theorem 3. Let A=(ai1⋯im) be a complex tensor with m-order, n-dimension. If A is irreducible, and for all i∈N2,
|aii⋯i|≥Λi(A)Λi(A)−|aii⋯i|[q(∑i2i3⋯im∈Nm−10|aii2⋯im|+∑i2i3⋯im∈Nm−12δii2⋯im=0|aii2⋯im|)+∑i2i3⋯im∈Nm−13maxj∈{i2,i3,⋯,im}tPj(A)|ajj⋯j||aii2⋯im|], | (3.8) |
and at least one strict inequality in (3.8) holds, then A is an H-tensor.
Proof. Notice that A is irreducible, this implies that for any i∈N3, Pi(A)>0, t>0 (Otherwise, A is reducible).
For any i∈N2, by Inequality (3.8), we obtain
|aii⋯i|Λi(A)−|aii⋯i|Λi(A)≥q(∑i2i3⋯im∈Nm−10|aii2⋯im|+∑i2i3⋯im∈Nm−12δii2⋯im=0|aii2⋯im|)+∑i2i3⋯im∈Nm−13maxj∈{i2,i3,⋯,im}tPj(A)|ajj⋯j||aii2⋯im|. | (3.9) |
Let the matrix D=diag(d1,d2,⋯,dn), denote B=ADm−1=(bi1i2⋯im), where
di={q1m−1,i∈N1,(Λi(A)−|aii⋯i|Λi(A))1m−1,i∈N2,(tPi(A)|aii⋯i|)1m−1,i∈N3. |
For any i∈N1, by q>tPi(A)|aii⋯i|(∀i∈N3), we conclude that
Λi(B)=q∑i2⋯im∈Nm−10δii2⋯im=0|aii2⋯im|+∑i2⋯im∈Nm−12|aii2⋯im|(Λi2(A)−|ai2i2⋯i2|Λi2(A))1m−1⋯(Λim(A)−|aimim⋯im|Λim(A))1m−1+∑i2⋯im∈Nm−13|aii2⋯im|(tPi2(A)|ai2i2⋯i2|)1m−1⋯(tPim(A)|aimim⋯im|)1m−1≤q(∑i2⋯im∈Nm−10δii2⋯im=0|aii2⋯im|+∑i2⋯im∈Nm−12|aii2⋯im|)+∑i2⋯im∈Nm−13maxj∈{i2,i3,⋯,im}tPj(A)|ajj⋯j||aii2⋯im|<q(∑i2⋯im∈Nm−10δii2⋯im=0|aii2⋯im|+∑i2⋯im∈Nm−12|aii2⋯im|)+q∑i2⋯im∈Nm−13|aii2⋯im|=q|aii⋯i|=|bii⋯i|. |
For any i∈N2, by Inequality (3.9), it holds that
Λi(B)=q∑i2⋯im∈Nm−10|aii2⋯im|+∑i2⋯im∈Nm−12δii2⋯im=0|aii2⋯im|(Λi2(A)−|ai2i2⋯i2|Λi2(A))1m−1⋯(Λim(A)−|aimim⋯im|Λim(A))1m−1+∑i2⋯im∈Nm−13|aii2⋯im|(tPi2(A)|ai2i2⋯i2|)1m−1⋯(tPim(A)|aimim⋯im|)1m−1≤q(∑i2⋯im∈Nm−10|aii2⋯im|+∑i2⋯im∈Nm−12δii2⋯im=0|aii2⋯im|)+∑i2⋯im∈Nm−13maxj∈{i2,i3,⋯,im}tPj(A)|ajj⋯j||aii2⋯im|≤|aii⋯i|Λi(A)−|aii⋯i|Λi(A)=|bii⋯i|. |
Next, for any i∈N3, by Inequality (3.7), then
Λi(B)=q∑i2⋯im∈Nm−10|aii2⋯im|+∑i2⋯im∈Nm−12|aii2⋯im|(Λi2(A)−|ai2i2⋯i2|Λi2(A))1m−1⋯(Λim(A)−|aimim⋯im|Λim(A))1m−1+∑i2⋯im∈Nm−13δii2⋯im=0|aii2⋯im|(tPi2(A)|ai2i2⋯i2|)1m−1⋯(tPim(A)|aimim⋯im|)1m−1≤q(∑i2⋯im∈Nm−10|aii2⋯im|+∑i2⋯im∈Nm−12|aii2⋯im|)+∑i2⋯im∈Nm−13δii2⋯im=0maxj∈{i2,i3,⋯,im}tPj(A)|ajj⋯j||aii2⋯im|≤tPi(A)=tPi(A)|aii⋯i|×|aii⋯i|=|bii⋯i|. |
Therefore, |bii⋯i|≥Λi(B) (∀i∈N), and for all ∀i∈N2, at least one strict inequality in (10) holds, that is, there exists an i0∈N2 such that |bi0i0⋯i0|>Λi0(B).
On the other hand, since A is irreducible and so is B. Then, by Lemma 3, we have that B is an H-tensor. By Lemma 2, A is also an H-tensor.
Let
K(A)={i∈N2:|aii⋯i|>Λi(A)Λi(A)−|aii⋯i|[q(∑i2i3⋯im∈Nm−10|aii2⋯im|+∑i2i3⋯im∈Nm−12δii2⋯im=0|aii2⋯im|)+∑i2i3⋯im∈Nm−13maxj∈{i2,i3,⋯,im}tPj(A)|ajj⋯j||aii2⋯im|]}. |
Theorem 4. Let A=(ai1⋯im) be a complex tensor with m-order, n-dimension. For any i∈N2,
|aii⋯i|≥Λi(A)Λi(A)−|aii⋯i|[q(∑i2i3⋯im∈Nm−10|aii2⋯im|+∑i2i3⋯im∈Nm−12δii2⋯im=0|aii2⋯im|)+∑i2i3⋯im∈Nm−13maxj∈{i2,i3,⋯,im}tPj(A)|ajj⋯j||aii2⋯im|], |
and if for any i∈N∖K(A)≠∅, there exists a nonzero elements chain from i to j such that j∈K(A)≠∅, then A is an H-tensor.
Proof. Let the matrix D=diag(d1,d2,⋯,dn), and denote B=ADm−1=(bi1i2⋯im), where
di={q1m−1,i∈N1,(Λi(A)−|aii⋯i|Λi(A))1m−1,i∈N2,(tPi(A)|aii⋯i|)1m−1,i∈N3. |
A similar argument to that of Theorem 2, we can prove that |bii⋯i|≥Λi(B)(∀i∈N), and there exists at least an i∈N2 such that |bii⋯i|>Λi(B).
On the other hand, if |bii⋯i|=Λi(B), then i∈N∖K(A), by the assumption, we know that there exists a nonzero elements chain of A from i to j, such that j∈K(A). Hence, there exists a nonzero elements chain of B from i to j, such that j satisfying |bjj⋯j|>Λj(B).
Based on above analysis, we get that B satisfies the conditions of Lemma 4, so B is an H-tensor. By Lemma 2, A is an H-tensor.
Example 2. Consider the 3-order 3-dimension tensor A=(aijk) defined as follows:
A=[A(1,:,:),A(2,:,:),A(3,:,:)], |
A(1,:,:)=(12101601015),A(2,:,:)=(110060001),A(3,:,:)=(1000100016). |
Obviously,
|a111|=12, Λ1(A)=24, |a222|=6, Λ2(A)=3, |a333|=16, Λ3(A)=2. |
so N1=∅,N2={1},N3={2,3}. By calculations, we have
qi=1=24−1224=12=q, |
P2(A)=12(1+1+1)=32, P3(A)=12(0+1+1)=1, |
P2(A)|a222|=326=14, P3(A)|a333|=116, |
ti=2=12(1+1)32−14×1=45, ti=3=12(0+1)1−14×1=23, t=45. |
When i=1, we get
Λ1(A)Λ1(A)−|a111|[q(∑i2i3∈N20|a1i2i3|+∑i2i3∈N22δ1i2i3=0|a1i2i3|)+∑i2i3∈N23maxj∈{i2,i3}tPj(A)|ajjj||a1i2i3|]=2424−12[12(3+0)+45×14×21]=575<12=|a111|, |
so A satisfies the conditions of Theorem 2, then A is an H-tensor. However,
∑i2i3∈N2∖N23δ1i2i3=0|a1i2i3|+∑i2i3∈N23maxj∈{i2,i3}Λj(A)|ajjj||a1i2i3|=3+12×21=272>12=|a111|, |
so A does not satisfy the conditions of Theorem 1.
Based on the criteria of H-tensors in Section 3, we present some criteria for identifying the positive definiteness of an even-order real symmetric tensor. First, we recall the following lemma.
Lemma 5. [7] Let A=(ai1i2⋯im) be an even-order real symmetric tensor with m-order, n-dimension, and ak⋯k>0 for all k∈N. If A is an H-tensor, then A is positive definite.
From Theorems 2−4 and Lemma 5, we obtain easily the following result.
Theorem 5. Let A=(ai1i2⋯im) be an even-order real symmetric tensor with m-order, n-dimension, and aii⋯i>0 for all i∈N. If one of the following holds:
● (i) A satisfies all the conditions of Theorem 2,
● (ii) A satisfies all the conditions of Theorem 3,
● (iii) A satisfies all the conditions of Theorem 4,
then A is positive definite.
Example 3. Let
f(x)=Ax4=16x41+20x42+30x43+33x44−8x31x4+12x21x2x3−12x2x23x4−24x1x2x3x4 |
be a 4th-degree homogeneous polynomial. We can get the 4-order 4-dimension real symmetric tensor A=(ai1i2i3i4), where
a1111=16, a2222=20, a3333=30, a4444=33,a1114=a1141=a1411=a4111=−2,a1123=a1132=a1213=a1312=a1231=a1321=1,a2113=a2131=a2311=a3112=a3121=a3211=1,a2334=a2343=a2433=a4233=a4323=a4332=−1,a3234=a3243=a3324=a3342=a3423=a3432=−1,a1234=a1243=a1324=a1342=a1423=a1432=−1,a2134=a2143=a2314=a2341=a2413=a2431=−1,a3124=a3142=a3214=a3241=a3412=a3421=−1,a4123=a4132=a4213=a4231=a4312=a4321=−1, |
and zero elsewhere. By calculations, we have
a1111=16<18=Λ1(A), |
and
a4444(a1111−Λ1(A)+|a1444|)=−66<0=Λ4(A)|a1444|. |
Then A is not strictly diagonally dominate as defined in [17] or quasidoubly strictly diagonally dominant as defined in [18]. Hence, we cannot use Theorem 3 in [17] and Theorem 4 in [18] to identify the positive definiteness of A. However, it can be verified that A satisfies all the conditions of Theorem 2.
Λ1(A)=18, Λ2(A)=12, Λ3(A)=15, Λ4(A)=11, |
so N1=∅,N2={1},N3={2,3,4}. By calculations, we have
qi=1=18−1618=19=q, |
P2(A)=19(9+0+3)=43, P3(A)=19(9+0+6)=53, P4(A)=19(6+2+3)=119, |
P2(A)|a2222|=4320=115, P3(A)|a3333|=5330=118, P4(A)|a4444|=11933=127, |
ti=2=19(9+0)43−115×3=1517, ti=3=19(9+1)53−115×6=1519, |
ti=4=19(6+2)119−115×3=1013, t=1517. |
When i=1, we get
Λ1(A)Λ1(A)−|a1111|[q(∑i2i3i4∈N30|a1i2i3i4|+∑i2i3i4∈N32δ1i2i3i4=0|a1i2i3i4|)+∑i2i3i4∈N33maxj∈{i2,i3,i4}tPj(A)|ajjjj||a1i2i3i4|]=1818−16[19(12+0)+1517×115×6]=25817<16=|a1111|. |
Therefore, from Theorem 5, we have that A is positive definite, that is, f(x) is positive definite.
In this paper, we given some inequalities to identify whether a tensor is an H-tensor, which was also used to identify the positive definiteness of an even degree homogeneous polynomial f(x)≡Axm. These inequalities were expressed in terms of the elements of A, so they can be checked easily.
The authors wish to give their sincere thanks to the anonymous referees for their valuable suggestions and helpful comments, which help improve the quality of the paper significantly. This work was supported by the National Natural Science Foundation of China (11861077), the Foundation of Science and Technology Department of Guizhou Province (20191161, 20181079), the Talent Growth Project Department of Guizhou Province ([2016]168) and the Research Foundation of Guizhou Minzu University (2019YB08).
The authors declare that they have no competing interests.
[1] | E. Acerbi, N. Fusco, An approximation lemma for W1;p functions, Material Instabilities in Continuum Mechanics (Edinburgh, 1985-1986), Oxford Science Publications, Oxford University Press,, 1988, 1–5. |
[2] |
E. Acerbi, N. Fusco, A regularity theorem for minimizers of quasiconvex integrals, Arch. Ration. Mech. Anal., 99 (1987), 261–281. https://doi.org/10.1007/BF00284509 doi: 10.1007/BF00284509
![]() |
[3] |
F. J. Almgren, Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. Math., 87 (1968), 321–391. https://doi.org/10.2307/1970587 doi: 10.2307/1970587
![]() |
[4] |
L. Ambrosio, G. Buttazzo, An optimal design problem with perimeter penalization, Calc. Var. Partial Differential Equations, 1 (1993), 55–69. https://doi.org/10.1007/BF02163264 doi: 10.1007/BF02163264
![]() |
[5] |
A. Arroyo-Rabasa, Regularity for free interface variational problems in a general class of gradients, Calc. Var. Partial Differential Equations, 55 (2016), 154. https://doi.org/10.1007/s00526-016-1085-5 doi: 10.1007/s00526-016-1085-5
![]() |
[6] |
G. Bellettini, M. Novaga, M. Paolini, On a Crystalline Variational Problem, Part Ⅰ: first variation and global L∞ regularity, Arch. Rational Mech. Anal., 157 (2001), 165–191. https://doi.org/10.1007/s002050010127 doi: 10.1007/s002050010127
![]() |
[7] |
G. Bellettini, M. Novaga, M. Paolini, On a Crystalline Variational Problem, Part Ⅱ: BV regularity and structure of minimizers on facets, Arch. Rational Mech. Anal., 157 (2001), 193–217. https://doi.org/10.1007/s002050100126 doi: 10.1007/s002050100126
![]() |
[8] |
E. Bombieri, Regularity theory for almost minimal currents, Arch. Ration. Mech. Anal., 78 (1982), 99–130. https://doi.org/10.1007/BF00250836 doi: 10.1007/BF00250836
![]() |
[9] |
M. Carozza, L. Esposito, L. Lamberti, Quasiconvex bulk and surface energies: C1,α regularity, Adv. Nonlinear Anal., 13 (2024), 20240021. https://doi.org/10.1515/anona-2024-0021 doi: 10.1515/anona-2024-0021
![]() |
[10] |
M. Carozza, I. Fonseca, A. P. Di Napoli, Regularity results for an optimal design problem with a volume constraint, ESAIM: COCV, 20 (2014), 460–487. https://doi.org/10.1051/cocv/2013071 doi: 10.1051/cocv/2013071
![]() |
[11] |
M. Carozza, I. Fonseca, A. P. Di Napoli, Regularity results for an optimal design problem with quasiconvex bulk energies, Calc. Var. Partial Differential Equations, 57 (2018), 68. https://doi.org/10.1007/s00526-018-1343-9 doi: 10.1007/s00526-018-1343-9
![]() |
[12] |
M. Carozza, N. Fusco, G. Mingione, Partial regularity of minimizers of quasiconvex integrals with subquadratic growth, Ann. Mat. Pura Appl., 175 (1998), 141–164. https://doi.org/10.1007/BF01783679 doi: 10.1007/BF01783679
![]() |
[13] |
M. Carozza, G. Mingione, Partial regularity of minimizers of quasiconvex integrals with subquadratic growth: the general case, Ann. Pol. Math., 77 (2001), 219–243. https://doi.org/10.4064/ap77-3-3 doi: 10.4064/ap77-3-3
![]() |
[14] |
M. Carozza, A. P. Di Napoli, A regularity theorem for minimisers of quasiconvex integrals: The case 1<p<2, Proc. Roy. Soc. Edinb. Sec. A Math., 126 (1996), 1181–1200. https://doi.org/10.1017/S0308210500023350 doi: 10.1017/S0308210500023350
![]() |
[15] |
M. Carozza, A. P. Di Napoli, Partial regularity of local minimizers of quasiconvex integrals with sub-quadratic growth, Proc. Roy. Soc. Edinb. Sec. A Math., 133 (2003), 1249–1262. https://doi.org/10.1017/S0308210500002900 doi: 10.1017/S0308210500002900
![]() |
[16] |
R. Choksi, R. Neumayer, I. Topaloglu, Anisotropic liquid drop models, Adv. Calc. Var., 15 (2022), 109–131. https://doi.org/10.1515/acv-2019-0088 doi: 10.1515/acv-2019-0088
![]() |
[17] |
G. De Philippis, A. Figalli, A note on the dimension of the singular set in free interface problems, Differ. Integral Equ., 28 (2015), 523–536. https://doi.org/10.57262/die/1427744099 doi: 10.57262/die/1427744099
![]() |
[18] |
G. De Philippis, N. Fusco, M. Morini, Regularity of capillarity droplets with obstacle, Trans. Amer. Math. Soc., 377 (2024), 5787–5835. https://doi.org/10.1090/tran/9152 doi: 10.1090/tran/9152
![]() |
[19] |
G. De Philippis, F. Maggi, Dimensional estimates for singular sets in geometric variational problems with free boundaries, J. Reine Angew. Math., 725 (2017), 217–234. https://doi.org/10.1515/crelle-2014-0100 doi: 10.1515/crelle-2014-0100
![]() |
[20] |
F. Duzaar, G. Mingione, Regularity for degenerate elliptic problems via p-harmonic approximation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 735–766. https://doi.org/10.1016/j.anihpc.2003.09.003 doi: 10.1016/j.anihpc.2003.09.003
![]() |
[21] |
F. Duzaar, K. Steffen, Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals, J. Reine Angew. Math., 546 (2002), 73–138. https://doi.org/10.1515/crll.2002.046 doi: 10.1515/crll.2002.046
![]() |
[22] |
L. Esposito, Density lower bound estimate for local minimizer of free interface problem with volume constraint, Ricerche Mat., 68 (2019), 359–373. https://doi.org/10.1007/s11587-018-0407-7 doi: 10.1007/s11587-018-0407-7
![]() |
[23] | L. Esposito, N. Fusco, A remark on a free interface problem with volume constraint, J. Convex Anal., 18 (2011), 417–426. |
[24] |
L. Esposito, L. Lamberti, Regularity Results for an Optimal Design Problem with lower order terms, Adv. Calc. Var., 16 (2023) 1093–1122. https://doi.org/10.1515/acv-2021-0080 doi: 10.1515/acv-2021-0080
![]() |
[25] |
L. Esposito, L. Lamberti, Regularity results for a free interface problem with Hölder coefficients, Calc. Var. Partial Differential Equations, 62 (2023), 156. https://doi.org/10.1007/s00526-023-02490-x doi: 10.1007/s00526-023-02490-x
![]() |
[26] |
L. Esposito, L. Lamberti, G. Pisante, Epsilon-regularity for almost-minimizers of anisotropic free interface problem with Hölder dependence on the position, Interfaces Free Bound., 2024. https://doi.org/10.4171/ifb/535 doi: 10.4171/ifb/535
![]() |
[27] |
A. Figalli, Regularity of codimension-1 minimizing currents under minimal assumptions on the integrand, J. Differential Geom., 106 (2017), 371–391. https://doi.org/10.4310/jdg/1500084021 doi: 10.4310/jdg/1500084021
![]() |
[28] |
A. Figalli, F. Maggi, On the shape of liquid drops and crystals in the small mass regime, Arch. Rational Mech. Anal., 201 (2011), 143–207. https://doi.org/10.1007/s00205-010-0383-x doi: 10.1007/s00205-010-0383-x
![]() |
[29] |
N. Fusco, V. Julin, On the regularity of critical and minimal sets of a free interface problem, Interfaces Free Bound., 17 (2015), 117–142. https://doi.org/10.4171/IFB/336 doi: 10.4171/IFB/336
![]() |
[30] | M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Vol. 105, Princeton: Princeton University Press, 1984. https://doi.org/10.1515/9781400881628 |
[31] |
M. Giaquinta, G. Modica, Partial regularity of minimizers of quasiconvex integrals, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 3 (1986), 185–208. https://doi.org/10.1016/S0294-1449(16)30385-7 doi: 10.1016/S0294-1449(16)30385-7
![]() |
[32] | E. Giusti, Direct methods in the calculus of variations, World Scientific, 2003. https://doi.org/10.1142/5002 |
[33] |
M. Gurtin, On phase transitions with bulk, interfacial, and boundary energy, Arch. Ration. Mech. Anal., 96 (1986), 243–264. https://doi.org/10.1007/BF00251908 doi: 10.1007/BF00251908
![]() |
[34] |
L. Lamberti, A regularity result for minimal configurations of a free interface problem, Boll. Unione Mat. Ital., 14 (2021), 521–539. https://doi.org/10.1007/s40574-021-00285-6 doi: 10.1007/s40574-021-00285-6
![]() |
[35] |
F. H. Lin, Variational problems with free interfaces, Calc. Var. Partial Differential Equations, 1 (1993), 149–168. https://doi.org/10.1007/BF01191615 doi: 10.1007/BF01191615
![]() |
[36] |
F. H. Lin, R. V. Kohn, Partial regularity for optimal design problems involving both bulk and surface energies, Chin. Ann. Math., 20 (1999), 137–158. https://doi.org/10.1142/S0252959999000175 doi: 10.1142/S0252959999000175
![]() |
[37] | F. Maggi, Sets of finite perimeter and geometric variational problems: an introduction to geometric measure theory, Cambridge University Press, 2012. https://doi.org/10.1017/CBO9781139108133 |
[38] |
P. Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals, Manuscripta Math., 51 (1985), 1–28. https://doi.org/10.1007/BF01168345 doi: 10.1007/BF01168345
![]() |
[39] |
R. Schoen, L. Simon, A new proof of the regularity theorem for rectifiable currents which minimize parametric elliptic functionals, Indiana Univ. Math. J., 31 (1982), 415–434. https://doi.org/10.1512/iumj.1982.31.31035 doi: 10.1512/iumj.1982.31.31035
![]() |
[40] |
D. A. Simmons, Regularity of almost-minimizers of Hölder-coefficient surface energies, Discrete. Contin. Dyn. Syst., 42 (2022), 3233–3299. https://doi.org/10.3934/dcds.2022015 doi: 10.3934/dcds.2022015
![]() |
1. | Dongjian Bai, Feng Wang, New Criterions-Based H-Tensors for Testing the Positive Definiteness of Multivariate Homogeneous Forms, 2022, 10, 2227-7390, 2416, 10.3390/math10142416 | |
2. | 鹏程 赵, New Criterions for H-Tensors and Its Applications, 2022, 11, 2324-7991, 5727, 10.12677/AAM.2022.118604 | |
3. |
Wenbin Gong, Yan Li, Weiting Duan, Tao Wang, Yaqiang Wang,
New iterative schemes for identifying strong |