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1. Introduction and statements

Let us consider a functional # with density energy discontinuous through an interface dA, inside
an open bounded subset Q of R”, of the form

FW,A) = f(F(Dv) + 1,G(Dv)) dx + P(A,Q), (1.1)
Q

where v € Wi)’f (Q;RM), F,G : R™N — R are C*integrands, A C Q and P(A, Q) stands for the
perimeter of the set A in Q. Assume that these integrands satisfy the following growth and uniformly
strict p-quasiconvexity conditions, for p > 1 and positive constants ¢, £, Ly, L;:

0< F&) < Li(l + |75, (F1)
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[ e o> [ (F@+ eiDeP +1DeP) = ax (F2)

0 <G < Ly(1 + €77, G1)

f G( + D) dx 2 f (G@) + CDEP(1 + Dg)'™ ) dx, (G2)
Q Q

for every £ € RN and ¢ € C,(;R").

Existence and regularity results have been obtained initially in the scalar case (N = 1) in [4, 5, 10,
17,22-26,29,34-36]. In the vectorial case (N > 1), the authors in [11] proved the existence of local
minimizers of (1.1), for any p > 1 under the quasiconvexity assumption quoted above. In the same
paper, the C'® partial regularity is proved for minimal configurations outside a negligible set, in the
quadratic case p = 2.

In [9] the same regularity result has been established in the general case p > 2, also addressing
anisotropic surface energies. Almgren was the first to study such surface energies in his celebrated
paper [3] (see also [8,21, 27, 39, 40] for subsequent results). This kind of energies arises in many
physical contexts such as the formation of crystals (see [6, 7]), liquid drops (see [16, 28]), capillary
surfaces (see [18, 19]) and phase transitions (see [33]).

In this paper, we consider the same functional as in [9], given by

I(v,A) = fQ (F(Dv) + 1,G(Dv)) dx + fQ D(x, va(x) dH (%), (1.2)

No*A

in the case of sub-quadratic growth, 1 < p < 2. We achieve analogous regularity results as those
established in [9], thereby completing the answer to the problem for all p > 1.

In this setting A C Q is a set of finite perimeter, u € Wllo’f (Q;RM), 1, is the characteristic function
of the set A, 0*A denotes the reduced boundary of A in Q and v, is the measure-theoretic outer unit
normal to A. Moreover, @ is an elliptic integrand on € (see Definition 2.8), i.e., @ : QxXR" — [0, oo] is
lower semicontinuous, ®(x, -) is convex and positively one-homogeneous, ®@(x, 1v) = tD(x, v) for every
t > 0, and the anisotropic surface energy of a set A of finite perimeter in Q is defined as follows

®(A; B) := f D(x, va(x)) dH" (x), (1.3)
Bno*A
for every Borel set B C 2. The further assumption
! <O(x,v) <A (1.4)
A S0y <A, .

with A > 1, allows to compare the surface energy introduced in (1.3) with the usual perimeter. Let us
recall that in the vectorial setting, as in the previously cited papers, the regularity we can expect for
the gradient of the minimal deformation u : Q — RY, (N > 1), even in absence of a surface term, is
limited to a partial regularity result.
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Definition 1.1. We say that a pair (u, E) is a local minimizer of I in Q, if for every open set U € Q
and every pair (v,A), where v —u € Wé’p(U; RN) and A is a set of finite perimeter with AAE € U, we
have

f(F(Du) +1,G(Du))dx + ®(E;U) < f(F(Dv) +1,G(Dv))dx + D(A; U).
U U

Existence and regularity results for local minimizers of integral functionals with uniformly strict p-
quasiconvex integrand, also in the non autonomous case, have been widely investigated (see [1,2, 12—
15,30-32,38]).

Regarding the functional (1.2), the existence of local minimizers is guaranteed by the following
theorem, proved in [9].

Theorem 1.2. Let p > 1 and assume that (F1), (F2), (G1), and (G2) hold. Then, if v € Wﬁ)’f (Q;RM)
and A C Q is a set of finite perimeter in Q, for every sequence {(vi,Ar)}wen such that {vi} weakly

converges to v in Wﬁ)é’ (Q;RN) and 14, strongly converges to 14 in L}, (Q), we have

I(v,A) < likm inf 7 (v, Ag).

In particular, T admits a minimal configuration (u, 15) € W.-"(€: RY) X BVioe(2; [0, 1]).

loc

We emphasize that, in particular, the previous theorem implies the semicontinuity of the anisotropic
perimeter functional (1.3) (see [9] Proposition 3.2 for the proof).

In this paper, we obtain a C'® regularity result for local minimizers of (1.2) in the case of sub-
quadratic growth, 1 < p < 2. If we further assume a closeness condition on F and G (see assumption
(H) in Theorem 1.3), we prove that u € C'7(Q;) for every y € (0, I%) on a full measure set Q; C Q.
Furthermore, we do not assume any regularity on @ in order to get the regularity of u.

Our main theorem is the following:

Theorem 1.3. Let (u, E) be a local minimizer of I. Let the bulk density energies F and G satisfy (F1),
(F2), (G1), and (G2), with 1 < p < 2, and let the surface energy ® be of general type (1.3) with ©
satisfying (1.4). Assume in addition that

L,
<1,
6+ 6

(H)

then there exists an open set Q; C Q of full measure such that u € C'(Q,;R") for every y € (0, pi)

In the case where hypothesis (H) does not hold, it is still possible to establish a partial C'# regularity
result. To avoid redundancy and overlap, we have chosen to present this result in the form of a remark.
Nevertheless, throughout the paper, we will provide some sketches and insights into the proof in this
case as well.

Remark 1.4. We remark that if (u, E) is a local minimizer of I with the bulk density energies F and
G satisfying (F1), (F2), (G1), (G2), 1 < p < 2, and the surface energy ® of general type (1.3)
satisfying (1.4), then there exist an exponent 3 € (0, 1) and an open set Qy C Q with full measure such
that u € C'8(Qy; RM).
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The proof of the Theorem 1.3 is based on a blow-up argument aimed to establish a decay estimate for
the excess function

P(E, B(x0))

rnl

U.(x0,7) 1= J[ [V(Du) - V((Du),, )| dx +
By (x0)

where
V(E) = (1 + €721, Ve eRA

To this aim, we use a comparison argument between the blow-up sequence v, at small scale in the balls
B,,(x;) and the solution v of a suitable linearized system. The challenging part of the argument, as
usual, is to prove that the ‘good’ decay estimates available for the function v (see Proposition 2.1), are
inherited by the v, as h — oo.

To achieve this result, the main tool is a Caccioppoli type inequality that we prove for minimizers
of perturbed rescaled functionals (see (3.16)) involving the function V(Dv,) and the perimeter of the
rescaled minimal set E,. The Caccioppoli inequality combined with the Sobolev-Poincaré inequality
will lead us to a contradiction (see Step 6 of Proposition 3.1). In this final step, the issue to deal with the
function V(Du) in the sub-quadratic case, is overcome by using a suitable Sobolev Poincaré inequality
involving V(Du) (see Theorem 2.6), whose proof is due to [12].

2. Preliminaries

Let Q be a bounded open set in R, n > 2, u : Q — R¥, N > 1. We denote by B,(x) :=
{y € R" : |y — x| < r} the open ball centered at x € R" of radius r > 0, S"~! represents the unit sphere of

R”, ¢ a generic constant that may vary.
For B,(xy) € R" and u € L'(B.(xy); RY) we denote

(W)xyr := J( u(x)dx
Br(x())

and we will omit the dependence on the center when it is clear from the context. We denote by | - | the
standard Euclidean norm, defined as

N 172
|§|:(ZZ<§?)2] ,
a=1 i=1

for every & € R™V,
If F: R*N - Ris sufficiently differentiable, we write

DF(¢)n = ZZ—@T;, and  DF(@nn = Z Z

a=1 i=1 l aﬁlzjlagaa‘gﬁ

et

for &, n € RPNV,
It is well known that for quasiconvex C! integrands the assumptions (F1) and (G1) yield the upper
bounds . ]
IDF@)| < e Li(1+1¢7)T  and DG < eaLo(1 + )T 2.1)
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for all &£ € R™V, with ¢; and ¢, constants depending only on p (see [32, Lemma 5.2] or [38]).
Furthermore, if F and G are C?, then (F2) and (G2) imply the following strong Legendre-Hadamard
conditions

Z Z QA > cs|APul*  and Z Z

aB=11ij=1 éﬂagg apB=11ij=1 ‘f(lagﬁ

(@A > el APl

forall Q e RN, 1 € R", u € RY, where ¢3 = c3(p, £1) and ¢4 = c4(p, {») are positive constants (see [32,
Proposition 5.2]). Throughout the paper, we frequently employ the Einstein summation convention.
We will need the following quite standard regularity result (see [12] for its proof).

Proposition 2.1. Let v € W(Q; RY) be such that
fg QDD dx =0

for every ¢ € CZ(Q;RN), where Q = {QZE} is a constant matrix satisfying IQZBI < L and the strong
Legendre-Hadamard condition
Q” L1 = AP |l

forall A € R", u € RN and for some positive constants €, L > 0. Then v € C* and, for any Bgr(xo) C Q,
the following estimate holds

sup|Dv| < — |Dv|dx,
Bg/2 R Br

where ¢ = c(n,N,{,L) > 0.
We assume that 1 < p < 2 and we refer to the auxiliary function
V() = (1 + )72, véeRE, (2.2)

whose useful properties are listed in the following lemma (see [12] for the proof).

Lemma 2.2. Let 1 < p <2 and let V : R¥ — RF be the function defined in (2.2), then for any &,1 € R¥
and t > 0 the following inequalities hold:

(
(ii) |V < max{s,#?)|V(&)|
(iii) V(€ +m)| < cp|VE)]+
(iv) 51 —nl < (1 + 1P + )" |V - vap)| < ek, p)lé =7,
(v) V&) -Vep| <

i) |VE-n)| < clp, M|VE) - V)|, ifInl < M.

We will also use the following iteration lemma (see [32, Lemma 6.1]).

) 2072 minflel, 172} < |V(©)] < minflgl, 161772,

~
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Lemma 2.3. Let 0 < p < Rand let : [p,R] — R be a bounded non negative function. Assume that
forallp < s <t <R we have

B N C
(s—0* (s—1f

where ¥ € [0,1), « > 8> 0and A, B,C > 0 are constants. Then there exists a constant ¢ = c(, @) > 0
such that

w(s) < () + A +

lﬁ(p)SC(A+ B ¢ )

R—pr ' (R-pp

An easy extension of this result can be obtained by replacing homogeneity with condition (ii) of
Lemma 2.2.

Lemma 2.4. Let R > 0 and let y: [R/2,R] — [0, +00) be a bounded function. Assume that for all
R/2 < s <t < Rwe have
V( h(X))
t—s

where h € L(B,), A, B > 0, and 0 < ¢ < 1. Then there exists a constant c(9) > 0 such that

w(’g) < c(ﬂ)(A L R‘V(%)'zdx + B).

Given a C! function f : R¥ - R, Q € RFand A > 0, we set

foutey = HQHAOSQ-DIQE

2
dx + B,

Y(s) < () + Af
B,

R

In the next sections we will use the following lemma about the growth of f, , and Dfy ;.

Lemma 2.5. Let 1 < p < oo, and let f be a C*(R¥) function such that

IOl < L(1+|&7) and |IDf(E)| < L(1 + |£2)PV72, (2.3)

for any & € R¥ and for some L > 0. Then for every M > 0 there exists a constant ¢ = c(p, L, M) > 0
such that, for every Q € RX, |0l < M and A > 0, it holds

fou@l < c(Q + 1P P1EP  and  |Dfg (@) < (1 + P4, (2.4)
for all ¢ € R,

Proof. Applying Taylor’s formula for every & € R¥, there exists 6 € [0, 1] such that,

1
foaé) = Esz(Q +0A6)EE,

1 1
Dfo.(&) = /—I(Df(Q +48) - Df(Q) = fo D*f(Q + sAé)é ds.
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If we denote K, := max{lsz(f)l DE <M+ 1}, we have

1 )
|f0.(E)] < EKMISIZ, IDfo (O < Kulél, if |4 < 1. (2.5)
On the other hand, using growth condition (2.3) and the definitions of fy 4 and D fy ,, we get
|foa @) < c(p, L, M)AP2IEP,  IDfo ()] < o(L, M)AP P!, whereas |44 > 1. (2.6)

We get the result by combining (2.5) and (2.6). |

A fundamental tool in order to handle the subquadratic case is the following Sobolev-Poincaré
inequality related to the function V, as established in Theorem 2.4 of [12].

Theorem 2.6. If 1 < p < 2, there exist 2/p < @ < 2 and o > 0 such that if u € W"P(Bsg(xo), RY), then

U— U,
(e
Br(x0) R

where the positive constant C = C(n, N, p) is independent of R and u.

2(1+0)

1
T+ L
dx) SC(J( [vDu)'dx)', 2.7)
B3r(xo)

We remark that a sharper version of Theorem 2.6 can be found in [20].

In the remaining part of this section, we recall some elementary definitions and well-known
properties of sets of finite perimeter. We introduce the notion of anisotropic perimeter as well.
Given a set E C R" and ¢ € [0, 1], we define the set of points of E of density ¢ as

EV ={x€eR": |EN B.(x)| = tIB ()] + 0o(") as r — 0*}.

Let U be an open subset U of R". A Lebesgue measurable set £ C R” is said to be a set of locally finite
perimeter in U if there exists a R"-valued Radon measure pg on U (called the Gauss-Green measure of
E) such that

fV(ﬁdx:fqﬁd,uE, V¢ € CLU).
E U

Moreover, we denote the perimeter of E relative to G C U by P(E, G) = |ug|(G).
It is well known that the support of uz can be characterized by

sptug = {x € U : 0 < |[EN B,(x)| < w,r", Yr > 0} c U N IE, (2.8)

(see [37, Proposition 12.19]). If E is of finite perimeter in U, the reduced boundary 0*E C U of E is
the set of those x € U such that
1o ME(BA(X))
ve(x) ;= lim ———————

0" [ |(B(x)

exists and belongs to S"~!'. The essential boundary of E is defined as 0°E := R" \ (E® U ED). It is
well-understood that

OE CcUNOE Csptug c UNIE, U NO*E = sptug.
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Furthermore, Federer’s criterion (see for instance [37, Theorem 16.2]) ensures that
H" ' ((UNGE)\ d°E) = 0.
By De Giorgi’s rectifiability theorem (see [37, Theorem 15.9]), the Gauss-Green measure ug is
completely characterized as follows:
ME = VEW”_IL(?*E, |,LLE| = W’l_]La*E.
The equality holds in the class of Borel sets compactly contained in U. Here, we have denoted
ULO*E(F) = w(0"E N F), for any subset F of R".

Remark 2.7 (Minimal topological boundary). If E C R" is a set of locally finite perimeter in U and
F c R" is such that (EAF) N U| = 0, then F is a set of locally finite perimeter in U and ug = ur.
In the rest of the paper, the topological boundary OE must be understood by considering the suitable
representative of E in order to have that *E = 0E N U. We will choose EV as representative of E.
With such a choice it can be easily verified that

UNOJE ={xeU:0<|ENB,(x)| <w,r",Yr > 0}.

Therefore, by (2.8), L
O*E = sptug = 0EN U.
In what follows, we give the definition of anisotropic surface energies and we recall some properties.

Definition 2.8 (Elliptic integrands). Given an open subset Q of R", © : QxR" > [0, 0] is said to
be an elliptic integrand on Q if it is lower semicontinuous, with ®(x,-) convex and positively one-
homogeneous for any x € Q, ie., O(x,tv) = 1D(x,v) for every t > 0. Accordingly, the anisotropic
surface energy of a set E of finite perimeter in Q is defined as

®(E;B) := f ) O(x, ve(x)) dH" ' (x), (2.9)
BNO*E

for every Borel set B C Q.

In order to prove the regularity of minimizers of anisotropic surface energies, it is well known that
a C*-dependence of the integrand ® on the variable v, and a continuity condition with respect to the
variable x, must be assumed (see the seminal paper [3]). In fact, one more condition is essential, that
is a non-degeneracy type condition for the integrand ®. More precisely, we have to assume that there

exists a constant A > 1 such that {

A
for any x € Q and v € $""!. We emphasize that (2.10) is the only assumption we make for the elliptic
integrand @. We observe that, if the elliptic integrand @ satisfies the previous condition, then the
anisotropic surface energy (2.9) satisfies the following comparability condition to the perimeter:

< D(x,v) <A, (2.10)

1
X74"—1(19 NJ'E) < ®(E;B) < AH" ' (BNJ'E),
for any set E of finite perimeter in  and any Borel set B C Q.
A useful relation is given by proposition below proved in [9].

Proposition 2.9. Let U C R”" be an open set and let E, F C U be two sets of finite perimeter in U. It
holds that
DEUF;U)=®OE; FO) + ®F, E?) + ®E; {vg = vr)).
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3. Decay estimates

In this section we prove decay estimates for local minimizers u of the functionals (1.2), see
Definition 1.1, by using a well-known blow-up technique involving a suitable excess function. We
consider the bulk excess function defined as

®dx, 3.1)

U(xo, 1) := ]( |V(Du) - V((Dw)s,.,)
By (x0)

for B,(xy) C Q.
When the assumption (H) is in force, we refer to the following “hybrid” excess:

P(E. B/(x0)

rn—l

U*(xo’ r) = U(.X(), r) +

Proposition 3.1. Let (u, E) be a local minimizer of the functional I in (1.2) and let the assumptions
(F1), (F2), (G1), (G2), and (H) hold. For every M > 0 and every 0 < T < %, there exist two constants
g =¢&(,M)>0and C, = C.(n, p,t,,0, L1, Ly, A\, M) > O such that if for some ball B,(xy) € Q the
following condition hold: |(Du),,,| < M and U.(xo, r) < &, then

U.(xg,tr) < C.tU. (X0, 7). 3.2)

Proof. In order to prove (3.2), we argue by contradiction. Let M > 0 and 7 € (0, 1/4) be such that for
every h € N, C, > 0, there exists a ball B,, (x;) € Q such that

|(Du)xh,r/,| < Ma U*(Xh, rh) - O (33)
and
U*(xh’ Trh) > C*TU*(xh’ rh)- (34)

The constant C, will be determined later. We remark that we can confine ourselves to the case in which
E N B,,(x,) # 0, since the case in which B,,(x;) € Q \ E is well known, being U, = U +r.

Step 1. Blow-up. We set /li = U(xp, 1n), Ay = (Du)y, »,» ap = (U)y,.r,» and we define

+ —ap — A
na(y) 1= ’"”yihrh“h Y gy e B, (3.5)

One can easily check that (Dv;)o; = 0 and (vy)o; = 0. We set

E - Xn " E - Xn
E, = , E:= N B,.
h
Iy I

By using (i) and (vi) of Lemma 2.2, we deduce

2

f V(Dv(y)P dy = f v(D“(x) - <Du>xh,m) W
Bl Brh(xh) h
= C(Az/[) |V(D”(X)) - V((Du),, »,) % dx
h By, (xp)
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M
- D ]( V(DuCx, + ry)) = VA dy.
/1h By

Then, since the integral in the last expression appear in the definition of the excess U.(xy, ),

P(E, B, (x;))
4+ —

n—1
Ty

Zdy

T'p,

A = U.(xp,13) :J[ [V(Du(xy + ry)) — V(An)
B

it follows that r, — 0, P(E;,, B;) — 0, and

P(E,, By) <

r, 2
=<1, J( IV(Dviy))[ dy < e(M), e (3.6)
/lh B /lh

Therefore, by (3.3) and (3.6), using also (i) of Lemma 2.2 and Poincaré inequality, we deduce that
there exist a (not relabeled) subsequence of {v;}yan, A € R™N and v € W'*(B;; R"), such that

vy —= v weakly in WY (B RY), v, > v strongly in LP(B;RM), (3.7)

A, — A, A4,Dv, —» 0 in L’(B;;R™) and pointwise a.e. in By,

where we have used the fact that (v;)o; = 0. Moreover, by (3.3) and (3.6), we have that for every
0<e< n%]

. (P(Ej, By))1
im——— 2

oo /112(1+s)
n

P(Ey, By)'*e
—/lZ(HG) =0, (3.8)

h

< %im P(E,, Bl)ﬁ_e lim sup

h— o0

where we have used (3.6) and the choice of € < ﬁ in the last inequalities. Therefore, by the relative
isoperimetric inequality,

[ IE] 1B\ E4l . (P(E, By))"T
lim min 2(1}:6), 12(1+E)h < ¢(n) lim % =0. (3.9)
h— oo /lh /lh h— oo /lh

In the sequel the proof will proceed differently depending on
minf|E}l, |B1 \ Exl} = |E,| or min{|E}l, 1By \ Exl} = [By \ Ejl.

The first case is easier to handle. To understand the reason, let us introduce the expansions of F and G
around A, as follows:

F(Ap + A4§) — F(Ap) — DF(Ap) A

Fi(é) := pe (3.10)
h

(&) = G(Ap + 4:€) - G;\h) — DG(Ay) ¢ ,
h

for any £ € R™¥. In the first case the suitable rescaled functional to consider in the blow-up procedure
is the following:

I,(w):= f [Fr(Dw)dy + 1g:Gi(Dw)] dy. (3.11)
By
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We claim that v, satisfies the minimality inequality
1
Ln(vn) < Ln(v +9) + — f 1 DG(A)Dy(y) dy, (3.12)
h JB

for any ¢ € Wé’p (B;RY). Indeed, using the minimality of (u, E) with respect to (u + ¢, E), for ¢ €
Wé’p (B,,(x1); RY), where ¢ is defined by the change of variable y = x;:”, setting ¢(x) := A ( x;hxh), it
holds that

f [(Fa(Dvi(»)) + 1e:Gr(Dvi(y)] dy
B
1
< f [Fi(Dvi(y) + DY) + Le:Gu(Dvi(y) + Dy(y))] dy + 1 f 1g: DG(Ap) Dy (y) dy,
B B

and (3.12) follows by the definition of 7, in (3.11).
In the second case, the suitable rescaled functional to consider in the blow-up procedure is

H,(w) := f [Fr.(Dw) + G,(Dw)] dy.
B
We claim that

L P
Hu(v) < Hy(vn + ) + —i f (1 + A, + 2,Dvy)? dy, (3.13)
1 (BI\Ep)Nsuppy

for all ¥ € Wé”’ (B1;RY). Indeed, the minimality of (u, E) with respect to (u + ¢, E), for ¢ €
W, (B,,(x); R), implies that

f (F + G)(Du)dx = f [F(Du) + 1:G(Du)] dx + f G(Du)dx
By, (xn) By, (xn)

By, (s)\E

< f [F(Du + Dy) + 1;G(Du + Dg)| dx + f G(Du)dx
By, (¥1) By, (u)\E

- f (F + G)(Du + Dg)dx + f [G(Du) — G(Du + Dy)] dx
By, (xn)

Brh (x\E

< f (F + G)(Du + Dyp)dx + f G(Du)dx, 3.14)
Brh(xh) (Brh (Xh)\E)ﬁSUPP‘P

where we used that the last integral vanishes outside the support of ¢ and that G > 0. Using the change
of variable x = x;, + r,y in the previous formula, we get

(F + G)(Du(xy, + ryy))dy

B

< | (F+G)(Du(x; + rypy) + Dp(x; + ryy)) dy
B

+ f G(Du(xy, + ryy))dy,
(B1\Ep)Nsuppy
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or, equivalently, using the definitions of vy,
f (F + G)(Ay + 4,Dvy)dy < f (F + G)(Ay + 4,(Dvy, + DY) dy
B1 Bl

+ f G(Ah + ﬂhDVh)dy,
(Bi\Ep)Nsuppy

<P(Xh +rpy )
Anrn

where y/(y) := , for y € B;. Therefore, setting

H, .= F, + Gy,

by the definitions of Fj, and G, in (3.10) and using the assumption (G 1), we have that

1
f Hh(Dvh)dy < f Hh(Dvh + Dlﬂ)dy + Y f G(Ah + ﬂhDVh) dy
B B

1 Y (B1\Ep)Nsuppyr

L .
= | (1 +1A+ 4DvP)? dy, (3.15)
n J(B1\Ep)Nsuppy

< f Hh(Dvh + D!ﬂ) dy +
B

1e., (3.13).

Step 2. A Caccioppoli type inequality. The key ingredient in our proof is the following Caccioppoli-
type inequality. The version presented here, which involves the auxiliary function V, was used in [12]
to address the subquadratic case 1 < p < 2. In our setting, there is also a perimeter term, which
is a distinctive feature of our problem. We also draw attention to [20], where a suitable variant of
the Caccioppoli-type inequality involving a modified auxiliary function V|4, was established to handle
potential degeneracy of the strict quasiconvexity.

We claim that there exists a constant ¢ = c¢(n, p, {1, {2, Ly, L, M) > 0 such that for every 0 < p < 1
there exists hy = ho(n, p, M, p) € N such that

f V((Dvi — (Dvi)o)| dy (3.16)
B

o
2

SCUBPV

for all & > hy. We divide the proof into two steps.

2
dy + P(Ey, B)"7 |,

(/lh(vh — (Vn)p — (Dva)e y))
0

Substep 2.a The case min{|E}|, |B; \ Ex|} = |E;|. We consider 0 < g <s<t<p<landletne C;(B)
be a cut off function between By and B, i.e.,0 <n < 1,7 =1o0n B, and |V| < -=. Set p, := (v4)p,,
Py, := (Dvy)p, , and set

2

wi(y) := vi(y) — pn — Py, (3.17)

for any y € B;. Proceeding similarly as in (3.10), we rescale F and G around A, + 4,,P,

F(A, + 4,Py + ,6) — F(A, + 4,Py) — DF(Ay + 4,Pp)A5é

Fi@) := b (3.18)
h

~ G(Ah + /thh + /lhé:) — G(Ah + /thh) — DG(A}, + /thh)/lhé:

Gil) 1= p ,
h
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for any & € R™N, By Lemma 2.5, two growth estimates on F;, Gy, and their gradients hold with some
constants that depend on p, Ly, L,, M (see (3.3)) and could also depend on p through |1, P,|. However,
given p, we may choose hy = hy(n, p, M, p) large enough to have

, P, M)A
Pyl < L2y
pP
for any h > hy. Indeed, by (3.6) the sequence {Dv;}, is equibounded in L”(B;), then we have

2n
1Py < [ f Dyl dy + f IDvildy
e By {IDvy|<1} BQO{IDvh|>1}

( f VD dy) < M

and so the constant in (2.4) can be taken independently of p.
Set

wnpp

Yipi=nw, and Yoy = (1 —nwy,.

By the uniformly strict quasiconvexity of F,, we have

£
7; IV(AuDwy) dy

h v Bs

P2 —_
<O | (1+|4Dyy i) 7 |Dy 4l dy < f Fp(Dyy ) dy

B; B;

= f Fi(Dwy) dy + f Fiu(Dwy, — Dyry ) dy — f Fi(Dwy) dy

B, B, B;

1
= f Fh(DWh) dy - f f DFh(DWh - HD(,l/z,h)Dl/IZ,h do dy (319)
B; B, JO

We estimate separately the two addends in the right-hand side of the previous chain of inequalities.
We deal with the first addend by means of a rescaling of the minimality condition of («, E). Using
the change of variable x = x;, + r;,y, the fact that G > 0 and the minimality of (u, E) with respect to
(u+ ¢, E) for ¢ € W, P (B,,(x,); RV), we have

f F(Du(x;, + ryy))dy < f [F(Du(xy + 14y)) + 1z G(Du(x;, + ryy))] dy

B] BI

< f [F(Du(xy + r4y) + Do(xy, + 14y)) + 1g:G(Du(xy + 1) + Dp(xy + ray)| dy,
B
i.e., by the definitions (3.5) and (3.17) of v, and wy, respectively,

f F(Ah + A, P, + /lhDWh)dy
B
< f [F(Ah + ﬂhPh + /lh(DWh + Dl//)) + ]lE;;G(Ah + /thh + ﬂh(DWh + Dlﬁ)) dy,

B
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for ¥ := W € Wé”’ (By;RY). Therefore, recalling the definitions of F), and Gy, in (3.18), we have
that

f Fh(th)dy < f [Fh(DWh + Dlﬂ) + HEZGI,(th + Dlﬂ)] dy

B By

1
+ F f ]]-E; [G(Ah + /thh) + DG(Ah + /1]1Ph)ﬂh(DWh + Dlﬁ)] dy
h Y Bi
Choosing ¢ such that Yy = =/, 5, the previous inequality becomes

f Fy(Dwy)dy < f [Fi(Dwy, — Dy ) + Lg; Gu(Dwy, — Dy )] dy (3.20)

B, B;

1
+ F f ﬂE; [G(Ah + /thh) + DG(A;, + /thh)/lh(DWh — Dl,bl’h)] dy
h B

= f [Fh(Dwz,h)+1E25/1(Dwz,h)] dy
B\B;

1
2 f 1z [G(A + 4,Py) + DG(Ay + AuPp) D2 ] dy
h v/ B1

s Ly, Ly, M Ej !
< &L, Lo, M) \V(A, Dy )| dy + c(n,p,Lz,M)[M + —f |D‘”2h|dy]’
= . : 2 e

h \B h "

where we have used Lemma 2.5, the second estimate in (2.1), and the fact that |A, + 4,P;,| < M + 1.
By applying Holder’s and Young’s inequalities, we get

1 ;

- f Dol dy < ( f Dyl )

Ap E; E:n(B;\By)

< — |1y + f Dyl ]
AL E;N(B/\By)

21E;) + f ADYp |
L EXNBAB)OAD,1>1)

< —|201E;| + f |vuthz,h))|2dy].
L B/\Bjg

|E;;|”TZ'
4,
1

IA
|

The previous chain of inequalities combined with (3.20) yields

c(n,p, Ly, Ly, M)
A,

f F(Dwy)dy < [f V(Do) dy + IEZI]- (3.21)
B B/\B;

Now we estimate the second addend in the right-hand side of (3.19). Using the upper bound on DF,
in Lemma 2.5,

1
f f DFh(DWh — HDwZ,h)DwZ,h d@dy (322)
B, JO

! =2
<c(p,Li,M) f (1 + 51Dwy, — 6Dy 41*) = |Dwy, — Do 4||Dra 4| d6dy.
B\B, Jo
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Regarding the integrand in the latest estimate, we distinguish two cases:

Case 1: |Dy, ;| < |Dwy, — 6Dy, 4|. By the definition of V, we have

(1+ Z1Dw, — 0Dy, ) T IDwy — DU DU 4| < 421V (A(Dwy — ODY )P
Case 2: |Dwj, — ODyrp ;| < |Dra gl If | Dy | < 1/, using (i) of Lemma 2.2 we get

(1 + A;1Dwy, — HDI//Z,hlz)pTQ|DWh — 0D y||DY ) < IDY2 s < 47 IV(AWDYa )
If Dy, 4| > 1/ 4y, using again (i) of Lemma 2.2, we deduce that

(1 + A\ Dwy, — 6Dyr | ) |DWh DY || Dira 1
<A *|Dwy, — 0Dy P DYl < A2 DY P < APV (DY )P

By combining the two previous cases, we can proceed in the estimate (3.22) as follows:

1
f f DF(Dwy, — D1 ) Dyra , dO dy (3.23)

M f f DV (Dwy, = 6Dy ) + V(D)) db dy
B,\B;

c(p,Ll,M)

. (V(Dwi)l* + [V(2,Dyra 1)) dy.
A, BB,

Hence, combining (3.19) with (3.21) and (3.23), we obtain

4

= f V(A Dwy)P dy
A, B,

< c(n,p, Ly, Ly, M)

A

[f (IV(.Dwp)P + IV(4,D¢ 1)) dy + Ej .
B/\B
By the definition of v, and (ii) and (iii) of Lemma 2.2, we infer that
4 f [V(4,Dwy)I* dy
By

‘ 2
< C[ f (lV(/lthh)Iz + ‘V(Ahﬂ)
B/\B, [=s

for some C = C(n, p, Ly, Lo, M)
By adding C f |V(A,Dwy)? dy to both sides of the previous estimate, dividing by ¢; + C and thanks
to Lemma 2.4, we deduce that
2
V)
p
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Therefore, by the definition of w;,, we conclude that

2
f [V(A(Dvy, — (Dvi)o)| dy
B

[Shs)

A - —(Dv)»e
<c(n,p,t, Ly, Ly, M)[f V( h(Vh (Vh)p ( Vh)z )’))
B, P

2
dy + IE,’ZI]

which, by the relative isoperimetric inequality and the hypothesis of this substep, i.e.,
min{|E} |, |By \ Eyl} = |E} ],

yields the estimate (3.16).
Substep 2.b The case min{|E; |, |B; \ Ey|} = |B; \ Ej|.
Letus fix 0 < g <s<t<p<landletne C;(B,), py, Pyasin Substep 2.a and define

wi(y) :=vp(y) — pn — Pry, Vy € By,

and N o
H, =F,+ Gh.

We remark that Lemma 2.5 can be applied to H,, that is
~ 2
HW(E < c(p, Li, Lo, M)(1 + |,¢1%) T 17, V€ e R™,

and, by the uniformly strict quasiconvexity conditions (F2) and (G2),
— — - p2
f Hy(& + Dy) dx > f [Hy(@) + I+ |4,Dyl) = IDYPldy, Yy e Wy (BiRY),  (3.24)
B B;

where we have set

=10+ 0.

We set again
Yipi=nwy and Yoy = (1 —nwy.

By the quasiconvexity condition (3.24) and since ﬁh(O) = 0, we have

7 — b2
z f V(4 Dwy)P dy = € f (1 + |4Dw,?) = |Dwy* dy
h By By

—_ p=2
< ff (1 + 14,y ) 7 Dy 4 dy (3.25)
B,
< [ Aoy dy = f F,(Dwy — Duny) dy
B, B,

= f Hy(Dwy)dy + f Hy(Dwj, — Dy ) dy — f Hy(Dwy) dy
B, B, B,

1
= | Hy(Dwy)dy - f f DH,;,(Dwy, — 0DYr3 ) Dirr 1, d6 dy.
B Jo

B,
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Similarly to the previous case, we estimate separately the two addends in the right-hand side of the
previous chain of inequalities. Using the minimality condition (3.15) for the rescaled functions v, and
recalling the definition of H,, since Dv;, = Dw,, + P}, we get

f Hy(Dwy)dy < f Hy(Dwy + D) dy
By B
L,

: (1 + 1A, + 3Py + 4,DwyP)? dy. (3.26)
Aj, JB\Epnsuppy

Choosing ¢ = —i;, as test function in (3.26) and using the fact that ﬁh(O) = 0, we estimate

f Hy(Dwy) dy
B,

— L p
< Hh(DWh - le,h) dy + —§ f (1 + |Ah + /thh + /lhl)lft/hlz)]2 dy
B, A, I,

~ L 2
= Hh(DwZ,h) dy + —; f (1 + |Ah + /thh + /lhDWh|2)2 dy
B\B, A, JB)E,

< c(p, Ly, Ly, M)

L P
. V(4D )P dy + = (1 + |Ay + 4Py + 1,DwiP)* dy.
A, B\B, A, Jsog,

We note that, since |A;, + 4,P)| < c(M), for every fixed € > 0 there exists a constant C = C(p, €) such
that .

(1 +|Ay + 4Py + 4,Dwy*)? < C(p, )c(M)” + (1 + £)A7|Dwy P

Summarizing, we get

C(p, Lla LZ? M)

2
A, B\B,

| Howa < V(DU dy (3.27)
B

L 1B\ Ejl
+(1+g)ﬂ—j fB Ly oo e DWil? dy + c(p, Lo, M, £) ‘ﬂz i

h h

Now we estimate the second addend in the right-hand side of (3.25). Using the upper bound on DH,
in Lemma 2.5, we obtain

|
f f DH,;,(Dwy, — 0DYr5 ) D j, d6 dy
B, Jo
! =2
<c(p,Li, L, M) f (1 + A;IDwy, — 6DYra 1*) = |Dwy, — ODYr 4| Dy 1| O dy.
BB, JO

Proceeding exactly as in the estimate (3.23) of the step 2.a, we obtain

1
f f DHh(DWh - eDg[/Z,h)Dl//z,h do dy (328)
B, JO
< C(p’ L19L2’ M)

5 (V(Dwy)P* + |V(2,Dyr2 1)) dy.
A, B\B,
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Inserting (3.27) and (3.28) in (3.25), we infer that

r
— f \V(A,Dwy)I dy
2 Jp,

< C(P,Ll,Lz,M)

5 (IV(Dw) + V(DY 1)) dy
A, B\B,

L |B \ E)|
+(1+ 8)/1_5 f {14, Dw), |>1)|/1hDWh|p dy + c(p, L, M, g) 1 L
h B

h
2

< c(p, Ly, Ly, M) c(p, M, Ly, L) d
— —_— y

IV(4Dwy)I* dy +
A, BAB, A BB,

L E
+<1+e)—§f|vuthh>| dy + c(p, Lo, M, &) 2 B
/lh B, /lh

Vin)
t—s

Taking advantage of the hole filling technique as in the previous case, we obtain

f [V(4,Dwy)* dy
Bv

(e(p. Ly, Ly, M) + (1 + &)L
< (c(p, L1, Ly, M) + ( +:3) 2)f|V(/1hDWh)|2 dy
(c(p, M, Ly, Ly) + ) B,

2 B \E
+e(p, M, Ly, L) V(Ahﬂ) dy + c(p. Lo, M, £y 2B

B/\B, I—s h
The assumption (H) implies that there exists € = &(p, {1, (>, L) > 0 such that (1;31‘2 < 1. Therefore we
have

c+(+el, c+(+ely <1

c+ ’E B c+{+ & )

So, by virtue of Lemma 2.4, from the previous estimate we deduce that
VuDw)E dy < c(n, p, €1, 65, Li L, M)( f (/lh;) dy +1B; \ Ehl)
B B,

(SIS

By definition of w), and the relative isoperimetric inequality, since |B; \ Ej| = min{|E}|,|B; \ E,|}, we
get the estimate (3.16).

Step 3. v solves a linear system in Bj.

Let us divide the proof into two cases, depending on which one is the smallest between |E}| and
1By \ El.

We divide the proof in two substeps.

Substep 3.a The case min{|E]|,|B, \ E,|} = |E;|. We claim that v solves the linear system

f D*F(A)DvDyr dy = 0,

B
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for all y € Cy(By; RY). Since v, satisfies (3.12), we have that

1
0 < Zy(vi + s) — Lu(vy) + m f 1z DG(Ay)sDy dy,

h JB
for every ¢ € Cy(Bi;R") and s € (0,1). Dividing by s and passing to the limit as s — 0, by the
definition of 1, we get (see [9] or [11, Substep 3.a])

1 1
0<— | (DF(Ay+ ,Dv,) = DF(A)Dw dy + — f 15 DG(A; + 4,Dv)Dyrdy.  (3.29)
h Bl h Bl

We partition the unit ball as follows:
B] = B;{ U B; = {y € B] : /lthVhl > 1} U {y S B] : /1]1|DV]1| < 1}

By (3.6), we get

B, | < f /1Z|Dvh|l7 dy < ﬁif |Dv,|P dy < C(n,p,M)/lZ. (3.30)
B! By

h

We rewrite (3.29) as follows:

1
0< - | (DF(Ay+2:Dvy) = DF(Ap)Dy dy
h B;'l

1
+ f f (DZF(Ah+t/lhDvh)—D2F(A))dtDthwdy
~JO
h

1
+ f DZF(A)Dthwdy+/l— f 1£: DG(Aj, + A,Dv) Dy dy. (3.31)
B, h

B

By growth condition in (2.1) and Holder’s inequality, we get

h

(DF(Ah + /lhDVh) — DF(Ah))Dlﬂ dy'

B}

B, .

< c(p,Li, M, D‘”[T + 272 [ Dy dy]
B+

h
i 1
Doy dy) g (IBZI)»]
h
A,

h

<c(n, p,Li, M, D(//)[/lz_l + ! (
B

< ¢(n, p, Ly, M, D))",

thanks to (3.3), (3.6) and (3.30). Thus

o1
lim —
h—oo /1h

B

By (3.3) and the definition of B, we have that |A, + 4,Dv,| < M + 1 on B, . Hence we estimate
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1
f f (DZF(Ah+t/lhDvh)—D2F(A))dtDthwdy‘
B, JO

<[

h

1
f (D*F(A, + tA,Dvy) = D*F(A)) dt| |Dv,||Dy| dy
0

p-1

14

IDVillee ) 1D o,y

h 0

< c(n, p, M, DY) (f
B

h

1 =
< [ f f (D*F(Ay + tA,Dv)) - D’F(A)) di|  dy
.

p-1

N\
dy],

where we have used (3.6). Since, by (3.7), 4,Dv, — 0 a.e. in By, the uniform continuity of D*F on
bounded sets and the Severini-Egorov’s Theorem implies that

1
f (DZF(Ah +t4,Dvy,) — DZF(A)) dt
0

lim

h—oo

1
f f (D*F(A; + t4,Dv)) - D*F(A)) a’tDthzpdy' = 0. (3.33)
~JO

Note that (3.30) yields that 1g- — Lp, in L'(B)), for every r < co. Therefore, by the weak convergence
of Dv;, to Dv in L?(By), it follows that

h—o0 B’

lim | D?F(A)Dv,Dydy = szF(A)Dva//dy. (3.34)
B

By growth condition (2.1), we deduce

f L: [DeG(Ay, + 4,Dvy)Dy dy

c(p, L) o
< ks f 1,1+ 1Ay + 4DviP) T 1Dyl dy

A

<c(p, L, M, IIDlﬁlloo)[ Ejl+ 4, zf |Dvil”” ldy]

< c(p, Ly, M, ||DY|| )[ E;| p_ (f |Dvh|pd)’) #) ]

h

< cn,p. Lo, M, ||Dw||m)[—|E |+ ) (' ﬂg') |
h

where we have used (3.3) and (3.6). Since min{|E}|, |B; \ E}|} = |E}|, by (3.9), we have

E*
lim % =0,
h—oo /lh
and so .
%im m f ILEZDG(A;, + A, Dvy,)Dyr dy = 0. (3.35)
—00 h Bl
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By (3.32)—(3.35), passing to the limit as 4 — oo in (3.31), we get
f DF(A)DvDyrdy > 0.
B

Furthermore, plugging —y in place of y, we get

f DF(A)DvDy dy = 0,
B

i.e., v solves a linear system with constant coeflicients.

Substep 3.b The case min{|E; |, |B; \ E4|} = |B; \ Ejl.
We claim that v solves the linear system

f D*(F + G)(A)DvDyr dy = 0,
B

for all y € Cy(By1; RY).
Arguing as in (3.14) and rescaling, we have that

f Hy(Dvy)dy

B
1
Y

< f Hh(DVh + SDl//) + P f [G(Ah + /lhDVh) - G(Ah + /lhDVh + S/lth//)]dy
B Bi\Ej,

h

1 1
= f H,(Dv;, + SDl,[/) dy + — f f DG(A, + A44Dvy, + l‘S/lthﬂ)SDlﬂ dt dy
B A B\E, JO

L ! =)
< f Hy(Dvy, + sDy) dy + y f f (1 + 1A, + 4,Dv, + ts,Dy|*) = s|Dy| dt dy
B h Bi\Ej, JO

1
Sf H,(Dvy, + sDyr) dy + c(p, Lz,M)[—f s|Dy| dy
By A B \E),

1
+f f ﬂi_levh + tsDy|P~ ' s|Dy| a’tdy],
B\E, Jo

for every ¢ € Cy(By; RY) and for every s € (0, 1). Therefore

1
0< f f DH,(Dvy, + sODy) dOsDyr dy
B Jo

1
+ C(pa L29 M)[_

Dividing by s and passing to the limit as s — 0, by the definition of H), we get
1
0< m [D(F + G)(Ay, + ,Dvy,)Dyr — D(F + G)(A,)Dyr]dy

h JB

1
+ C(pa LZ’ M)[_

f \Duidy + f A2 \Dvy Dy d)].
/1/1 B\E, BI\E),

1
f s|Dy| dy + f f /lf_ZIDvh + tsDy|P~ s|Dy| dt dy|.
/lh B\E}, Bi\E, JO

(3.36)
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As before, we partition B, as follows:
B, =B, UB, ={ye B : A4Dvy| > 1} U{y € By : A4|Dv,| < 1}.

We rewrite (3.36) as

0< % (D(F + G)(Ay + A,Dvy) — D(F + G)(Ay)Dyr dy (3.37)
h B;

" % (DF + G)(Ay + uDvy) — D(F + G)A)Dy dy
h B/;

1

+c(p,L2,M)[/l f |D1//|dy+f /15—2|Dvh|P—1|sz|dy].
h JB\E, BI\E)

Arguing as in (3.32), we obtain that

1
lim — | | (D(F +G)(A + ,Dvy) = D(F + G)A) Dy dy‘ =0, (3.38)
0 Ap B;

and, as in (3.33) and (3.34),

.1 f
lim —
h—oo /lh B

Moreover, we have that

[D(F + G)(Ap + 4,Dvy) — D(F + G)(Ap) 1Dy dy = f D(F + G)(A)DvDyr dy.

h B

1 _ _
L \pyay+ f 21Dy, Dy dy
BI\E),

h JB|\E},

r1 1
B\ E -2+2 7 (|IBy \ Epl\r
< c(p, DY) 1B1\ £l +/IZ o (f |Dvh|pdy) (l 1 \2 hl)
A B, 2
B\ Eil Az—mf,(wl \Eh|)é ,
A z

< c(n, p, Dw)[

where we used (3.6). Since min{|E}[,|B; \ E,|} = |B; \ Ejl, by (3.9), we have

! |Bi \ EWl
im =
h—o0 A

2 0,
h
and we obtain

1
im [— f \Dyldy + f /lZ_ZIDvhlp‘llDz/lldy]:O. (3.39)
h—eo | Ay B \E}, Bi\E},

By (3.38) and (3.39), passing to the limit as 4 — oo in (3.37) we conclude that

f D*(F + G)(A)DvDyrdy > 0

B

and, with —¢ in place of i, we finally get

f D*(F + G)(A)DvDy dy = 0,

B
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as claimed.

Substep 3.c. A decay estimate for Dv.
By Proposition 2.1 and the theory of linear systems (see [30, Theorem 2.1 and Chapter 3]), we
deduce in both cases that v € C* and there exists a constant ¢ = é(n, N, p, {1, {2, Ly, L) > 0 such that

f IDv = (Dv)|* < 572)( Dy — (Dv), [ dx,
B B
2

for any 7 € (0, 1). Moreover, by Proposition 2.1 again,

2/p
|Dv — (Dv)%l2 dx < sup|Dv* < &4 |DvP dx) .
B

B By
2

Observing that
DVl p 5,y < limsup [|Dvilr(s,) < c(n, p),
h

it follows that
J( IDv — (Dv).* < C7?, (3.40)
B

for some fixed C = a(n, N, p, 1,0, Ly, Ly).
Step 4. An estimate for the perimeters.
Our aim is to show that there exists a constant ¢ = c¢(n, p, L,, A, M) > 0 such that

1 n
P(E,, B;) < C[—P(Eh,Bl)”l + I’th + rh/li . (341)
T

By the minimality of (u, E)) with respect to (u, E), where E is a set of finite perimeter such that EAE e
B,,(x;) and B,,(x;) are the balls of the contradiction argument, we get

f 1:G(Du) + ®(E; B,,(x;)) < f 1:G(Du) + ®(E; B,, (xy)).
By, (xn) By, (xn)
Using the change of variable x = x;, + r,y and dividing by /!, we have
T f 15, G(Ay + A4Dvy)dy + ®y(Ey; By) < rhf 15 G(Ay + 4, Dvp)dy + ®,(E;; By),
B] Bl
where

(I)h(Eh; V) = f (I)(Xh + 1y, VEh(y)) dﬂn_l(y),
VNO*E)

for every Borel set V C Q. Assume first that min{|B, \ E}|, |[E;|} = |B; \ E}|. Choosing Eh := E, UB,,
we get

(I)h(Eh; Bl) < rhf ﬂBpG(Ah + /lhDVh)dy + (I)h(Eh; Bl) (342)

B
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By the coarea formula, the relative isoperimetric inequality, the choice of the representative El(ll) of Ej,
which is a Borel set, we get

27
H""' (@B, \ E;)dp < |By \ E4l < c(n)P(Ep, B)™.

T

Therefore, thanks to Chebyshev’s inequality, we may choose p € (r,27), independent of A, such that,
up to subsequences, it holds

H" N "E,NdB,)=0 and H"'(B,\E,) < @P(Eh,Bl)»%. (3.43)
T

We remark that Proposition 2.9 holds also for ®,. Thus, thanks to the choice of p, being H" 1 (0*E;, N
0B,) = 0, we have that
@,(Ey; By) = ®4(Ep; BY) + ®y(B,; E\) + ®4(Ep; {vi, = vi, D)
= ©;(E; B \ B) + ®y(B,; E})).

By the choice of the representative of E), (see Remark 2.7), taking into account (2.10) and the inequality
in (3.43), it follows that

®,(Ej; B) < ®4(Ej; B \ B,) + AH" (9B, N EV) (3.44)

< ®y(Ey; By \ By) + AH""'(9B, \ Ey).

c(n)

< ®,(E;; By \ B,) + A——P(Ej, B))"1.
T

On the other hand, by (2.10) and the additivity of the measure ®,(Ej, -) it holds that

1 _
XP(Eh’BT) < ®,(Ep; By) < ®y(Ey; By) — ©y(Ey; By \ By), (3.45)
since p > 7. Combining (3.42), (3.44) and (3.45), we obtain
1 _
XP(E’“ B;) < ®,(Ey; B)) — ®,(Ey; By \ By) (3.46)
< ®,(E;; By) + i’hf 15,G(Ay + 4uDvy)dy — ®,(Ej; By \ By)
B
c(n) s
< A—P(Eh, B])"*1 + 1y :ﬂ_BpG(Ah + /lhDVh)dy
T B
c(n) o N
S A—P(Ey, B)"™ +c(p, L)ry | (1 + Ay + 4,Dvy|7)? dy
T Bo:
< A——P(E}, B)"" + c(n, p, Lo, M)r,7" + c(p, Lo)ryd, |Dvp|P dy
T Bor

< A@P(Eh, B + c(n, p, Lo, M)r,©" + c(n, p, Lz)rh/lfl,
T

where we used (3.6). The previous estimate leads to (3.41). We reach the same conclusion if

min{|B; \ Ey, |E}|} = |E}],
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choosing E, = E; \ B, as a competitor set.

Step 5. Higher integrability of v,
We will prove that there exist two positive constants C and ¢ depending on n, p, 1, (>, L, L, such
that for every B, C B it holds

140
[V(4,Dv)" 1+ dy < C[(f |vthvh>|2dy) +min{|B; \ Eyl,|E;}|. (3.47)

B B

5
We remark that, using (2.4) in Lemma 2.5 and (iv) of Lemma 2.2,

c(p, Ly, Ly, M)

2 nxN
2 V(ué)I°, VéeR™, (3.48)

IFa(@)] +1Gr(é)] <

and

£
f FyD)dy = f VDG dy, Yo e C (B, RY).
B B

h

Let r > 0 be such that B;, € B, £ < s <t < randn € C(B,) be such that 0 <5 < 1,7 = 1 on B,
|Dn| < =, for some positive constant c. We define

1= n—edn, ¢ = v — (i) J(1 = 1).
We deal with the case min{|E}|, |B, \ E}|} = |E,|, the other one is similar. Using the fact that G, > 0

and the minimality relation (3.12) we deduce

4
= | V:DgpP dy
A, Js,

< f Fu(Dé)) dy
B;

= f Fu(Dvy)dy + f [Fr(Dvy, — D¢») — Fy(Dvy,)] dy

B; B/\B;

< I,(m) + f [F4(Dvs — D) — Fx(Dvp)] dy
B/\B;

1
< Tp(dy + (vp)r) + f [Fr(Dvy, — D¢>) — Fy(Dvy)ldy + T f DG(Ay)| D¢, | dy.
BiNE]

B/\B; h

Then, using growth condition (3.48) and the fact that A is controlled by M, we conclude that

¢ ¢(p. L, Ly, M)
| vubgPdy < ”1—22[ f (VD) + V(D)
Ay J, A, B/\B
FIVADV)P]dy + 4, f Dl dy]
BNE;

By the properties of V, it holds that

€ < C(p)(1 +V(©)I7), V& eR™Y,
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Thus, using Young’s inequality, it follows that

c(P)[, s 2
— | 1uDgldy< —’2’[|E,, NB|+ f V(D)7 dy]
/lh B,ﬁE; /lh B,NE?
P .
< —’Z[c(snE,, NBl+e f |vuhD¢1>|2dy],
/lh B,HEZ

h

for some & > 0 to be chosen. Combining the previous two chains of inequalities, we deduce that

£

Ilz f V(D)) dy

n VB

< C(p’LbLZaM)
A

+c(e)E;NB|+e f \V(A,Dé)))* dy|.

BNE;

[f\ V(D) + V(D) + [V(4,Dvy)I*] dy
BB,

Choosing & sufficiently small, we absorb the last integral to the left-hand side
2 Jy, V(D) dy < M[ Jonz, VDG + IV(4,DG)P + [V(4Dvi)P dy + E; 0 BA]

2
Ah

By (ii) and (iii) of Lemma 2.2, it follows

2
V(Ah"h;f—jﬁ”)’ dy +|E; N B)|

fBS [V(,Dv)P dy < e(p, 61, Ly, Lo, M)[ ﬁ?,\BS V(D)) dy + J;;,\BA

By applying the hole-filling technique, we add c(p, ¢;, Ly, Lo, M) fB |V (A,Dvy)|? dy, and we get

f |V(/1hDVh)|2 dy
Bs

C(p’€1’L17L27M) f 2 f ( vh_(vh)r)2 %
< V(D dy + Vidy————]| dy +|E, N B|.
c(p, €1, Ly, Ly, M) + 1] Jp, YDyl dy B/\B, : S y 1B !
Now we can apply Lemma 2.4 and derive
2 vi = )\
[V(A,Dvp)l” dy < c(p, 1, Ly, Lo, M) Vidh——— dy+ | 1g dy|.
By B, B,

Finally, by Holder’s inequality and Theorem 2.7 we gain

2 Vi = (Vi)r Al+o)
[V(A4,Dvp)I~dy < c(p, 6y, Ly, Ly, M) V(/lhf) dy
Br/Z B,

1
T+o
B,

%
IV(/lhDvh)I“dy] ; J[ 1y dy}.
B,

<c(p,t1, Ly, Ly, M){[
B3r

We conclude the proof by applying Gehring’s lemma (see [32, Theorem 6.6]).
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Step 6. Conclusion.

By the change of variable x = x;, + r;,y, inequalities (3.6), (3.7) and (v) of Lemma 2.2, for every
0 <7 < 1, we have

. U* (xh’ Trh)
limsup ———
h—o0 Ah
E, B, (x )
< lim sup J( |V(Du) — V((Du)y1r,) ?dx + lim sup M + lim sup L
h—oo 2, (X0) h—o0 l =1y h—oco /1h
. 1 2 . (Eh9 T)
< lim sup — |V(/lhDvh + Ay) — V(A + 4,(Dvy),)| dy + lim sup o
h— o0 /) B: h— /lth
< lim sup —np)J( |V(/lh(Dvh — (Dvh)T) dy + hm sup El ik 17) +7T
h—oo T -

Then, using Caccioppoli inequality in (3.16) and estimate of the perimeter (3.46), we get

. U.(xp, Trp)
lim sup —
h—o0 /lh
1 A - T D T 2
< C(n, P 51’ €2$ Ll, LZ’ A’ M){ lim sup _Zf V( h(Vh (Vh)z ( Vh) y) )‘ dy
h—oo A JB,. 2t
1 P(E = 1 ”
+ — lim sup En Bi)wt - lim sup i+—/lp +7
™ h— oo /12 Tn h—o0 /lh /12
1 A — - — (Dvy), 2
<c(n,p, 1,6, Ly, Lo, A, M){hmsup J( V( nn (vh)é (Dv) y)) dy+r},
h—o0 ™’ Bar T

where we have used (3.6), (3.8) and estimate (3.46).
Now we want to prove the following extimate:

1 A - - — (Dvy), 2
lim sup = V( 2(Vi = ()2 — (Dvy) )’)) J
h—oo /lh Ba: 2t
/lh(v - (V)ZT (DV)T y))
= lim sup 2
h—sco 2T

3 f |v—(v)zT;<Dv)Ty|2 "
B>; T

The last inequality is obtained by using that v and Dv are bounded, 4, — 0 and |V(&)| < |€] for |¢] < 1.
We observe that proving the equality is equivalent to show

o1
I := lim -
h—eo I BZT

dy =0.

V(/lh((vh =) = (V4 = V)2r — (Dvy, — Dv), }’)) 2
2T

In the sequel o will denote the exponent given in the Sobolev-Poincaré type inequality of the

Theorem 2.7. We can assume that the higher integrability exponent ¢ given in the Step 5 is such
that 6 < o
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Let us choose 6 € (0, 1) such that 260 + 1l+;g = 1. Applying Holder’s inequality, it holds that

(v = v) = (v = V)ar = (Dv, — D), 20
()slglimsupiz V( W =v) = (v = V)2r — (Dvy, V) y))’dy)

h—oc0 n UBa, 2t
2(1+0) =
X (J[ dy) .
Bor

V( A((vy = v) = (v = V)2 = (Dvy, = Dv), )’))
2T

Using the fact that |V ()| < |£] and (iii) of Lemma 2.2, for the first factor in the previous product, and

using also Theorem 2.7 applied to (v, — v) — (v, — V)2 — (Dvy, — Dv), y, we deduce

- Dv, — D . 26
0<I< hmsup%(%( (vh ", ‘( vy, = Dv) )dy)
h—s00 /lh By T T
20-6)
X ()( |V(/lh(DVh - DV) - /lh(Dvh - DV)T) ad)’) s
Be:

with 2/p < a < 2 given in Theorem 2.7.
In the last term we can increase choosing @ = 2, moreover, using again (iii) of Lemma 2.2 we

deduce
20
o)
1-6
2dy) .

In the last term, we observe that the second addend can be estimated by making use of (i) of Lemma 2.2,
the fact that Dv, — Dv weakly in LP(B;,R™) and 1, — 0. In particular, we obtain

Vp—V
T

N ‘(Dvh — Dv)-
T

c
0 <1 < limsup —(/th( (
h—o0 /li B>:

x b( V(A(Dvy — D) + VDY), - (DV),)
Ber

V(D) = D)) < e,

Regarding the term
)[ V(A4(Dv, — Dv)|dy,
Ber

using (3.47) and the definition of v,, we deduce

[ 1+6
2(1+9) . *
f V(D) dysC(f VuDYP dy) +mm{|Bl\Eh|,|Eh|}]
By | VB

2
_cC b(
| Brh(xh)
<C b(
L Brh(xh)

<C /li(]ﬂi) +/li(l+e):| < C/li(]ﬂi),

2 1+6
v(Du(x)—(Dmxh,r,,) a'x) +min{|Bl\Eh|,|E;|}]

2
V(Du(x)) v((Du)xh,,h))

1+6
a’x) + min{|B, \ Eyl, |E:;|}]
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where 0 < € < n%l Therefore, by Holder’s inequality, we have

f V(uDv,)|'dy < C(M)A;.
B

=

We conclude that

Vp—V

26
o -5

N '(Dvh — Dv)-
T

0<1< lim %Age(}( (
h—oo A By

n T

20
= lim C()( (v = v] + [(Dvy = DV)i)) dy) 0.
—00 Bo,
By virtue of (3.6), (3.8), (3.9), the Poincaré-Wirtinger inequality and (3.40), we get

— (V)2 — (DY), Y2
lim sup < C(”? P 517€2aL29A’ M) |v (V)z 2 ( V) y|
h—o0 h Bor T

gchLax@L%AJwﬂf'MW—«DWA%w+r}
B,

<c(m, N, p, 1,0, Ly, Ly, A, M)[T* + 7]
<C(n,N,p,t,,0, L1, Ly, N\, M)T.

U*(xh’ Trh)
— dy + T}

The contradiction follows, by choosing C. such that C,. > C, since, by (3.4),

U.(xp, Try)
A,

limh inf > C,T.

O

If assumption (H) is not taken into account, it is still possible to establish a decay result for the
excess, analogous to the previous one. However, this requires employing a modified “hybrid” excess,
defined as:

Hﬂﬂmw&+ﬁ

rn—l

U..(xp,r) := U(xy, r) + (

where U(xo,r) is defined in (3.1), 6 is the higher integrability exponent given in the Step 5 of

Proposition 3.1 and 0 < 8 < %. The following result still holds true.

Proposition 3.2. Let (u, E) be a local minimizer of I in (1.2) under the assumptions (F1), (F2), (G1),

and (G2). For every M > Q0 and 0 < 7 < }t, there exist two positive constants gy = &y(t, M) and

Cox = Cux(n, p, €1, 2, Ly, Ly, N\, 8, M) for which, whenever B,(xy) € Q verifies
|(Du)y, -l <M and U.,.(xo,7) < €,

then
U..(xg,Tr) < Con T U..(xo, 7).

In order to avoid unnecessary repetition we do not include the proof here, as it is almost identical to
the proof of the Proposition 3.1, with the obvious adjustments, see [9].
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4. Proof of the main theorem

Here we give the proof of Theorem 1.3 through a suitable iteration procedure. It is easy to show the
validity of the following lemma by arguing exactly in the same way as in [11, Lemma 6.1].

Lemma 4.1. Let (u, E) be a local minimizer of the functional I and let c, the constant introduced in
Proposition 3.1. For every a € (0, 1) and M > 0 there exists ¢y = ¥o(c., @) < 1 such that for ¢ € (0, )
there exists a positive constant €, = &\(n, p, {1, >, L1, Lo, M, ) such that, if B,(xq) € €,

|Duly,, <M and U.(xp,r) <&,

then
\Dul,, g0, < 2M  and  U.(x0,9"r) < 9" U.(x0,7), YheN,. 4.1)

Proof. Let M > 0, @ € (0,1) and & € (0,%), where ¥y < 1. Let & < &), where &, is the constant
appearing in Proposition 3.1. We first prove by induction that

\Dul,, g1y < 2M, Vh € N. (4.2)

If h = 0, the statement holds. Assuming that (4.1) holds for 2 > 0, applying properties (i) and (vi) of
Lemma 2.2, we compute

h+1
1Dl gt < 1Dty + > 11Dty 077 = 1Dt g1
=1
h+1
<M+ Z J[ \Du — (Dut)y, -1,| dx
j=1 Byj,
h+1 1
<M+9™" Z [ |Du — (Du), 9i-1,| dx
Bl I, ctipu-ow, i1, 11)

1

|Boi-1r| i, 01, 0i0u-0u), 101,151

h+1
< M+19‘”Z[
=1
(f,
B

91y

+ |Du — (Du), 91,1 dx]

1

(J[ IV(Du — (Du), p1,) dX)2

Bb‘j_lr

IV(Du = (Du) 91, dx)”]

h+1
< M+ c(p, M9~ 3" [U(x0, 7' )2 + U, 97 r)7]
=1
h+1 _n
1 j-1 1
<M+ c(p,c., M)e[ 9™ Z U7 <M +c(p,c., M)g;
=1

- <2M,
1-92

where we have chosen &, = &((p, c., M, ) > 0 sufficiently small. Now we prove the second inequality
in (4.1). The statement is obvious for 42 = 0. If 4 > 0 and (4.1) holds, we have that

U.(xg, 9"r) < 9" U .(x0, 1) < &1, (4.3)
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by our choice of ¢ and &,. Thus thanks to (4.2) we can apply Proposition 3.1 with ©#"r in place of r to
deduce that
U.(x0,9"'r) < 97U (x0,9"r) < 9" DU, (x0, 1),

where we have chosen ¢y = ¥(c., @) sufficiently small and we have used (4.3). Therefore, the second
inequality in (4.1) is also true for every k € N. O

Analogously, it is possible to prove an iteration lemma for U....

Lemma 4.2. Let (u,E) be a local minimizer of the functional I and let B be the exponent of
Proposition 3.2. For every M > 0 and ¢ € (0,7), with 9y < min {c**,;lt}, there exist &, > 0 and
R > 0 such that, if r < R and xy € Q satisfy

B.(x0) € Q, |Duly,, <M and U.(xy,r)<eg,
where c.. is the constant introduced in Proposition 3.2, then
|Duly, g, <2M  and  U..(x0,9r) < 9%¥U..(x0,7), VkeN.

Proof of Theorem 1.3. We consider the set

Q= {x € Q: limsup|(Du),,| < oo and limsup U.(x,p) = ()}
p—0 p—0

and let xy € Q;. For every M > 0 and for & determined in Lemma 4.1 there exists a radius Ry, > 0
such that
|Duly,» <M and U.(xp,1) <€y,

for every 0 < r < Ry,,. Let 0 < p < 9r < R and h € N be such that 9"*'r < p < 9", where 9 = 2
and 9 is the same constant appearing in Lemma 4.1. By Lemma 4.1, we obtain

1
|Duly, , < ﬁlDuleﬁh, <cM,c.,a).

Using the properties of Lemma 2.2 and reasoning as in the proof of Lemma 4.1, we estimate

V(D) sy, 00,) = V(D) )1
< c(n, p) (D), 1 = (Dut) I

2
<conp}  1Du= (Duy il d)
Bp(XO)

1
< C(I’l, p)ﬁazn[ ” | L { |Du — (Du)xO’ﬂhrl d.x
r 1?hrm

|B1 |Du—(Du)X0Yﬂh,|§l}

1
|Bﬂhr| B

—+

2
|Dl/t - (Du)xo,ﬁhr| dx]

N{|Du—(Du). . |>1}

hr

< c(n, p)ﬂazn[()( \V(Du — (Du),, ) dx)z

B

xo,l‘fhr

hr
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142
+ ()( \V(Du — (Du) gi,) dX)pl
B

Mr

< e(n, p, MY [U.(x0, 9"7) + U.(x0, 9"1)7 ]
< c(n, p,c., M)ﬁ(jz”ﬂh“ U.(xo,71).

Thus, taking the previous chain of inequalities into account, applying again Lemma 4.1, we estimate

U.(x0,p) < Zf ( )IV(DM) — V((Du) 3o, 00 dx + 2IV((Dtt) , g1) = V(D) )
By (xo

P(E, By(x0))
o
Je,

< c(n,p, M, C*ﬁo)b[ \V(Du) = V((Du)y, 91,)I” dx + 9" U, (xo, 1)
By, (x0)

1

PCE. By (X0)  gn..

(ﬁhr)nfl
< c(n, p, v, M, 90)[U.(x0, 9"r) + 9" U (x0, 1)]

< c(n, p,c., M,9) (8) U.(xp, ).
r

The previous estimate implies that

U(.X(),p) < C* (/_)) U*(xo, I"),
r

where C, = C.(n, p, c., M, ). Since U.(y, r) is continuous in y, we have that U.(y, r) < &, for every y
in a suitable neighborhood I of xj. Therefore, for every y € I we have that

UGy.p) < C. (é)a U.0,7).

The last inequality implies, by the Campanato characterization of Holder continuous functions (see [32,
Theorem 2.9]), that u is C'** in I for every 0 < a < %, and we can conclude that the set € is open and
the function u has Holder continuous derivatives in ;.

When the assumption (H) is not enforced, the proof goes exactly in the same way provided we use
Lemma 4.2 in place of Lemma 4.1, with

Q= {x € Q: limsup|(Du),,,| < oo and limsup U..(xy,p) = O}.
p—0 p—0
5. Conclusions
In this paper, we studied the C'® partial regularity for a wide class of multidimensional vectorial
variational problems involving both bulk and surface energies. The bulk energy densities are uniformly

strictly quasiconvex functions with subquadratic growth p € (1,2). Since the case p > 2 had been

Mathematics in Engineering Volume 7, Issue 3, 228-263.



260

addressed in a previous work by the authors, the present paper completes the analysis by covering
the entire range p > 1. The overall strategy of the proof is to establish an excess decay property
for a suitably chosen excess function. The core of the argument - and the main contribution of the
paper - is Proposition 3.1, where a one-step improvement of the excess is established. The proof
proceeds via a contradiction and blow-up argument. The proof of Proposition 3.1 is rather long;
nevertheless, we would like to highlight two fundamental estimates that are pivotal in the proof strategy.
These are the Caccioppoli estimate (3.16) and the higher integrability estimate (3.47) for the blow-up
sequences, in which the influence of the set E appears explicitly. These estimates, together with the
Sobolev—Poincaré inequality (2.7), which is specific to the subquadratic case, constitute the main tools
used to establish the result.

Finally, we would like to mention two possible directions for future research, kindly suggested by
one of the referees. The first concerns the potential extension of the same type of regularity to the
non-uniformly elliptic case. Another intriguing question concerns the double-phase case, which may
be more challenging, but should still be manageable - at least in the situation where the two phases are
separated in the sets E and Q \ E.
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