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1. Introduction and statements

Let us consider a functional F with density energy discontinuous through an interface ∂A, inside
an open bounded subset Ω of Rn, of the form

F (v, A) :=
∫

Ω

(F(Dv) + 1AG(Dv)) dx + P(A,Ω), (1.1)

where v ∈ W1,p
loc (Ω;RN), F,G : Rn×N → R are C2-integrands, A ⊂ Ω and P(A,Ω) stands for the

perimeter of the set A in Ω. Assume that these integrands satisfy the following growth and uniformly
strict p-quasiconvexity conditions, for p > 1 and positive constants `1, `2, L1, L2:

0 ≤ F(ξ) ≤ L1(1 + |ξ|2)
p
2 , (F1)
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∫
Ω

F(ξ + Dϕ) dx ≥
∫

Ω

(
F(ξ) + `1|Dϕ|2(1 + |Dϕ|2)

p−2
2
)

dx, (F2)

0 ≤ G(ξ) ≤ L2(1 + |ξ|2)
p
2 , (G1)

∫
Ω

G(ξ + Dϕ) dx ≥
∫

Ω

(
G(ξ) + `2|Dϕ|2(1 + |Dϕ|2)

p−2
2
)

dx, (G2)

for every ξ ∈ Rn×N and ϕ ∈ C1
0(Ω;RN).

Existence and regularity results have been obtained initially in the scalar case (N = 1) in [4, 5, 10,
17, 22–26, 29, 34–36]. In the vectorial case (N > 1), the authors in [11] proved the existence of local
minimizers of (1.1), for any p > 1 under the quasiconvexity assumption quoted above. In the same
paper, the C1,α partial regularity is proved for minimal configurations outside a negligible set, in the
quadratic case p = 2.

In [9] the same regularity result has been established in the general case p ≥ 2, also addressing
anisotropic surface energies. Almgren was the first to study such surface energies in his celebrated
paper [3] (see also [8, 21, 27, 39, 40] for subsequent results). This kind of energies arises in many
physical contexts such as the formation of crystals (see [6, 7]), liquid drops (see [16, 28]), capillary
surfaces (see [18, 19]) and phase transitions (see [33]).

In this paper, we consider the same functional as in [9], given by

I(v, A) :=
∫

Ω

(
F(Dv) + 1AG(Dv)

)
dx +

∫
Ω∩∂∗A

Φ(x, νA(x)) dHn−1(x), (1.2)

in the case of sub-quadratic growth, 1 < p < 2. We achieve analogous regularity results as those
established in [9], thereby completing the answer to the problem for all p > 1.

In this setting A ⊂ Ω is a set of finite perimeter, u ∈ W1,p
loc (Ω;RN), 1A is the characteristic function

of the set A, ∂∗A denotes the reduced boundary of A in Ω and νA is the measure-theoretic outer unit
normal to A. Moreover, Φ is an elliptic integrand on Ω (see Definition 2.8), i.e., Φ : Ω×Rn → [0,∞] is
lower semicontinuous, Φ(x, ·) is convex and positively one-homogeneous, Φ(x, tν) = tΦ(x, ν) for every
t ≥ 0, and the anisotropic surface energy of a set A of finite perimeter in Ω is defined as follows

Φ(A; B) :=
∫

B∩∂∗A
Φ(x, νA(x)) dHn−1(x), (1.3)

for every Borel set B ⊂ Ω. The further assumption

1
Λ
≤ Φ(x, ν) ≤ Λ, (1.4)

with Λ > 1, allows to compare the surface energy introduced in (1.3) with the usual perimeter. Let us
recall that in the vectorial setting, as in the previously cited papers, the regularity we can expect for
the gradient of the minimal deformation u : Ω → RN , (N > 1), even in absence of a surface term, is
limited to a partial regularity result.
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Definition 1.1. We say that a pair (u, E) is a local minimizer of I in Ω, if for every open set U b Ω

and every pair (v, A), where v − u ∈ W1,p
0 (U;RN) and A is a set of finite perimeter with A∆E b U, we

have ∫
U

(F(Du) + 1EG(Du)) dx +Φ(E; U) ≤
∫

U
(F(Dv) + 1AG(Dv)) dx +Φ(A; U).

Existence and regularity results for local minimizers of integral functionals with uniformly strict p-
quasiconvex integrand, also in the non autonomous case, have been widely investigated (see [1, 2, 12–
15, 30–32, 38]).

Regarding the functional (1.2), the existence of local minimizers is guaranteed by the following
theorem, proved in [9].

Theorem 1.2. Let p > 1 and assume that (F1), (F2), (G1), and (G2) hold. Then, if v ∈ W1,p
loc (Ω;RN)

and A ⊂ Ω is a set of finite perimeter in Ω, for every sequence {(vk, Ak)}k∈N such that {vk} weakly
converges to v in W1,p

loc (Ω;RN) and 1Ak strongly converges to 1A in L1
loc(Ω), we have

I(v, A) ≤ lim inf
k→∞

I(vk, Ak).

In particular, I admits a minimal configuration (u,1E) ∈ W1,p
loc (Ω;RN) × BVloc(Ω; [0, 1]).

We emphasize that, in particular, the previous theorem implies the semicontinuity of the anisotropic
perimeter functional (1.3) (see [9] Proposition 3.2 for the proof).

In this paper, we obtain a C1,α regularity result for local minimizers of (1.2) in the case of sub-
quadratic growth, 1 < p < 2. If we further assume a closeness condition on F and G (see assumption
(H) in Theorem 1.3), we prove that u ∈ C1,γ(Ω1) for every γ ∈ (0, 1

p′ ) on a full measure set Ω1 ⊂ Ω.
Furthermore, we do not assume any regularity on Φ in order to get the regularity of u.

Our main theorem is the following:

Theorem 1.3. Let (u, E) be a local minimizer of I. Let the bulk density energies F and G satisfy (F1),
(F2), (G1), and (G2), with 1 < p < 2, and let the surface energy Φ be of general type (1.3) with Φ

satisfying (1.4). Assume in addition that

L2

`1 + `2
< 1, (H)

then there exists an open set Ω1 ⊂ Ω of full measure such that u ∈ C1,γ(Ω1;RN) for every γ ∈
(
0, 1

p′
)
.

In the case where hypothesis (H) does not hold, it is still possible to establish a partial C1,β regularity
result. To avoid redundancy and overlap, we have chosen to present this result in the form of a remark.
Nevertheless, throughout the paper, we will provide some sketches and insights into the proof in this
case as well.

Remark 1.4. We remark that if (u, E) is a local minimizer of I with the bulk density energies F and
G satisfying (F1), (F2), (G1), (G2), 1 < p < 2, and the surface energy Φ of general type (1.3)
satisfying (1.4), then there exist an exponent β ∈ (0, 1) and an open set Ω0 ⊂ Ω with full measure such
that u ∈ C1,β(Ω0;RN).
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The proof of the Theorem 1.3 is based on a blow-up argument aimed to establish a decay estimate for
the excess function

U∗(x0, r) := −
∫

Br(x0)

∣∣∣V(Du) − V
(
(Du)x0,r

)∣∣∣2 dx +
P(E, Br(x0))

rn−1 + r,

where
V(ξ) = (1 + |ξ|2)(p−2)/4ξ, ∀ξ ∈ Rk.

To this aim, we use a comparison argument between the blow-up sequence vh at small scale in the balls
Brh(xh) and the solution v of a suitable linearized system. The challenging part of the argument, as
usual, is to prove that the ‘good’ decay estimates available for the function v (see Proposition 2.1), are
inherited by the vh as h→ ∞.

To achieve this result, the main tool is a Caccioppoli type inequality that we prove for minimizers
of perturbed rescaled functionals (see (3.16)) involving the function V(Dvh) and the perimeter of the
rescaled minimal set Eh. The Caccioppoli inequality combined with the Sobolev-Poincaré inequality
will lead us to a contradiction (see Step 6 of Proposition 3.1). In this final step, the issue to deal with the
function V(Du) in the sub-quadratic case, is overcome by using a suitable Sobolev Poincaré inequality
involving V(Du) (see Theorem 2.6), whose proof is due to [12].

2. Preliminaries

Let Ω be a bounded open set in Rn, n ≥ 2, u : Ω → RN , N > 1. We denote by Br(x) :=
{y ∈ Rn : |y − x| < r} the open ball centered at x ∈ Rn of radius r > 0, Sn−1 represents the unit sphere of
Rn, c a generic constant that may vary.

For Br(x0) ⊂ Rn and u ∈ L1(Br(x0);RN) we denote

(u)x0,r := −
∫

Br(x0)
u(x) dx

and we will omit the dependence on the center when it is clear from the context. We denote by | · | the
standard Euclidean norm, defined as

|ξ| =

 N∑
α=1

n∑
i=1

(ξαi )2

1/2

,

for every ξ ∈ Rn×N .

If F : Rn×N → R is sufficiently differentiable, we write

DF(ξ)η :=
N∑
α=1

n∑
i=1

∂F
∂ξαi

(ξ)ηαi and D2F(ξ)ηη :=
N∑

α,β=1

n∑
i, j=1

∂F

∂ξαi ∂ξ
β
j

(ξ)ηαi η
β
j ,

for ξ, η ∈ Rn×N .
It is well known that for quasiconvex C1 integrands the assumptions (F1) and (G1) yield the upper

bounds
|DF(ξ)| ≤ c1L1(1 + |ξ|2)

p−1
2 and |DG(ξ)| ≤ c2L2(1 + |ξ|2)

p−1
2 (2.1)
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for all ξ ∈ Rn×N , with c1 and c2 constants depending only on p (see [32, Lemma 5.2] or [38]).
Furthermore, if F and G are C2, then (F2) and (G2) imply the following strong Legendre-Hadamard

conditions

N∑
α,β=1

n∑
i, j=1

∂F

∂ξαi ∂ξ
β
j

(Q)λiλ jµ
αµβ ≥ c3|λ|

2|µ|2 and
N∑

α,β=1

n∑
i, j=1

∂G

∂ξαi ∂ξ
β
j

(Q)λiλ jµ
αµβ ≥ c4|λ|

2|µ|2,

for all Q ∈ Rn×N , λ ∈ Rn, µ ∈ RN , where c3 = c3(p, `1) and c4 = c4(p, `2) are positive constants (see [32,
Proposition 5.2]). Throughout the paper, we frequently employ the Einstein summation convention.
We will need the following quite standard regularity result (see [12] for its proof).

Proposition 2.1. Let v ∈ W1,1(Ω;RN) be such that∫
Ω

Qi j
αβDivαD jϕ

β dx = 0,

for every ϕ ∈ C∞c (Ω;RN), where Q = {Qi j
αβ} is a constant matrix satisfying |Qi j

αβ| ≤ L and the strong
Legendre-Hadamard condition

Qi j
αβλiλ jµ

αµβ ≥ `|λ|2|µ|2,

for all λ ∈ Rn, µ ∈ RN and for some positive constants `, L > 0. Then v ∈ C∞ and, for any BR(x0) ⊂ Ω,
the following estimate holds

sup
BR/2

|Dv| ≤
c

Rn

∫
BR

|Dv| dx,

where c = c(n,N, `, L) > 0.

We assume that 1 < p < 2 and we refer to the auxiliary function

V(ξ) = (1 + |ξ|2)(p−2)/4ξ, ∀ξ ∈ Rk, (2.2)

whose useful properties are listed in the following lemma (see [12] for the proof).

Lemma 2.2. Let 1 < p < 2 and let V : Rk → Rk be the function defined in (2.2), then for any ξ, η ∈ Rk

and t > 0 the following inequalities hold:

(i) 2(p−2)/4 min{|ξ|, |ξ|p/2} ≤
∣∣∣V(ξ)

∣∣∣ ≤ min{|ξ|, |ξ|p/2},

(ii)
∣∣∣V(tξ)

∣∣∣ ≤ max{t, tp/2}
∣∣∣V(ξ)

∣∣∣,
(iii)

∣∣∣V(ξ + η)
∣∣∣ ≤ c(p)

[∣∣∣V(ξ)
∣∣∣ +

∣∣∣V(η)
∣∣∣],

(iv) p
2 |ξ − η| ≤

(
1 + |ξ|2 + |η|2

)(2−p)/4∣∣∣V(ξ) − V(η)
∣∣∣ ≤ c(k, p)|ξ − η|,

(v)
∣∣∣V(ξ) − V(η)

∣∣∣ ≤ c(k, p)
∣∣∣V(ξ − η)

∣∣∣,
(vi)

∣∣∣V(ξ − η)
∣∣∣ ≤ c(p,M)

∣∣∣V(ξ) − V(η)
∣∣∣, if |η| ≤ M.

We will also use the following iteration lemma (see [32, Lemma 6.1]).
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Lemma 2.3. Let 0 < ρ < R and let ψ : [ρ,R] → R be a bounded non negative function. Assume that
for all ρ ≤ s < t ≤ R we have

ψ(s) ≤ ϑψ(t) + A +
B

(s − t)α
+

C
(s − t)β

where ϑ ∈ [0, 1), α > β > 0 and A, B,C ≥ 0 are constants. Then there exists a constant c = c(ϑ, α) > 0
such that

ψ
(
ρ
)
≤ c

(
A +

B
(R − ρ)α

+
C

(R − ρ)β

)
.

An easy extension of this result can be obtained by replacing homogeneity with condition (ii) of
Lemma 2.2.

Lemma 2.4. Let R > 0 and let ψ : [R/2,R] → [0,+∞) be a bounded function. Assume that for all
R/2 ≤ s < t ≤ R we have

ψ(s) ≤ ϑψ(t) + A
∫

BR

∣∣∣∣∣V( h(x)
t − s

)∣∣∣∣∣2dx + B,

where h ∈ Lp(Br), A, B > 0, and 0 < ϑ < 1. Then there exists a constant c(ϑ) > 0 such that

ψ
(R

2

)
≤ c(ϑ)

(
A

∫
BR

∣∣∣∣V(h(x)
R

)∣∣∣∣2dx + B
)
.

Given a C1 function f : Rk → R, Q ∈ Rk and λ > 0, we set

fQ,λ(ξ) :=
f (Q + λξ) − f (Q) − D f (Q)λξ

λ2 , ∀ξ ∈ Rk.

In the next sections we will use the following lemma about the growth of fQ,λ and D fQ,λ.

Lemma 2.5. Let 1 < p < ∞, and let f be a C2(Rk) function such that

| f (ξ)| ≤ L
(
1 + |ξ|p) and |D f (ξ)| ≤ L

(
1 + |ξ|2

)(p−1)/2
, (2.3)

for any ξ ∈ Rk and for some L > 0. Then for every M > 0 there exists a constant c = c(p, L,M) > 0
such that, for every Q ∈ Rk, |Q| ≤ M and λ > 0, it holds

| fQ,λ(ξ)| ≤ c
(
1 + |λξ|2

)(p−2)/2
|ξ|2 and |D fQ,λ(ξ)| ≤ c

(
1 + |λξ|2

)(p−2)/2
|ξ|, (2.4)

for all ξ ∈ Rk.

Proof. Applying Taylor’s formula for every ξ ∈ Rk, there exists θ ∈ [0, 1] such that,

fQ,λ(ξ) =
1
2

D2 f (Q + θλξ)ξξ,

D fQ,λ(ξ) =
1
λ

(
D f (Q + λξ) − D f (Q)

)
=

∫ 1

0
D2 f (Q + sλξ)ξ ds.
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If we denote KM := max
{
|D2 f (ξ)| : |ξ| ≤ M + 1

}
, we have

| fQ,λ(ξ)| ≤
1
2

KM |ξ|
2, |D fQ,λ(ξ)| ≤ KM |ξ|, if |λξ| ≤ 1. (2.5)

On the other hand, using growth condition (2.3) and the definitions of fQ,λ and D fQ,λ, we get

| fQ,λ(ξ)| ≤ c(p, L,M)λp−2|ξ|p, |D fQ,λ(ξ)| ≤ c(L,M)λp−2|ξ|p−1, whereas |λξ| > 1. (2.6)

We get the result by combining (2.5) and (2.6). �

A fundamental tool in order to handle the subquadratic case is the following Sobolev-Poincaré
inequality related to the function V , as established in Theorem 2.4 of [12].

Theorem 2.6. If 1 < p < 2, there exist 2/p < α < 2 and σ > 0 such that if u ∈ W1,p(B3R(x0),RN), then(
−

∫
BR(x0)

∣∣∣∣∣V(u − uxo,R

R

)∣∣∣∣∣2(1+σ)

dx
) 1

2(1+σ)

≤ C
(
−

∫
B3R(x0)

∣∣∣V(
Du

)∣∣∣αdx
) 1
α

, (2.7)

where the positive constant C = C(n,N, p) is independent of R and u.

We remark that a sharper version of Theorem 2.6 can be found in [20].
In the remaining part of this section, we recall some elementary definitions and well-known

properties of sets of finite perimeter. We introduce the notion of anisotropic perimeter as well.
Given a set E ⊂ Rn and t ∈ [0, 1], we define the set of points of E of density t as

E(t) =
{
x ∈ Rn : |E ∩ Br(x)| = t|Br(x)| + o(rn) as r → 0+} .

Let U be an open subset U of Rn. A Lebesgue measurable set E ⊂ Rn is said to be a set of locally finite
perimeter in U if there exists a Rn-valued Radon measure µE on U (called the Gauss-Green measure of
E) such that ∫

E
∇φ dx =

∫
U
φ dµE, ∀φ ∈ C1

c (U).

Moreover, we denote the perimeter of E relative to G ⊂ U by P(E,G) = |µE |(G).
It is well known that the support of µE can be characterized by

sptµE =
{
x ∈ U : 0 < |E ∩ Br(x)| < ωnrn, ∀r > 0

}
⊂ U ∩ ∂E, (2.8)

(see [37, Proposition 12.19]). If E is of finite perimeter in U, the reduced boundary ∂∗E ⊂ U of E is
the set of those x ∈ U such that

νE(x) := lim
r→0+

µE(Br(x))
|µE |(Br(x))

exists and belongs to Sn−1. The essential boundary of E is defined as ∂eE := Rn \ (E(0) ∪ E(1)). It is
well-understood that

∂∗E ⊂ U ∩ ∂eE ⊂ sptµE ⊂ U ∩ ∂E, U ∩ ∂∗E = sptµE.
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Furthermore, Federer’s criterion (see for instance [37, Theorem 16.2]) ensures that

Hn−1((U ∩ ∂eE) \ ∂∗E) = 0.

By De Giorgi’s rectifiability theorem (see [37, Theorem 15.9]), the Gauss-Green measure µE is
completely characterized as follows:

µE = νEH
n−1x∂∗E, |µE | = H

n−1x∂∗E.

The equality holds in the class of Borel sets compactly contained in U. Here, we have denoted
µx∂∗E(F) = µ(∂∗E ∩ F), for any subset F of Rn.

Remark 2.7 (Minimal topological boundary). If E ⊂ Rn is a set of locally finite perimeter in U and
F ⊂ Rn is such that |(E∆F) ∩ U | = 0, then F is a set of locally finite perimeter in U and µE = µF .
In the rest of the paper, the topological boundary ∂E must be understood by considering the suitable
representative of E in order to have that ∂∗E = ∂E ∩ U. We will choose E(1) as representative of E.
With such a choice it can be easily verified that

U ∩ ∂E =
{
x ∈ U : 0 < |E ∩ Br(x)| < ωnrn,∀r > 0

}
.

Therefore, by (2.8),
∂∗E = sptµE = ∂E ∩ U.

In what follows, we give the definition of anisotropic surface energies and we recall some properties.

Definition 2.8 (Elliptic integrands). Given an open subset Ω of Rn, Φ : Ω × Rn → [0,∞] is said to
be an elliptic integrand on Ω if it is lower semicontinuous, with Φ(x, ·) convex and positively one-
homogeneous for any x ∈ Ω, i.e., Φ(x, tν) = tΦ(x, ν) for every t ≥ 0. Accordingly, the anisotropic
surface energy of a set E of finite perimeter in Ω is defined as

Φ(E; B) :=
∫

B∩∂∗E
Φ(x, νE(x)) dHn−1(x), (2.9)

for every Borel set B ⊂ Ω.

In order to prove the regularity of minimizers of anisotropic surface energies, it is well known that
a Ck-dependence of the integrand Φ on the variable ν, and a continuity condition with respect to the
variable x, must be assumed (see the seminal paper [3]). In fact, one more condition is essential, that
is a non-degeneracy type condition for the integrand Φ. More precisely, we have to assume that there
exists a constant Λ > 1 such that

1
Λ
≤ Φ(x, ν) ≤ Λ, (2.10)

for any x ∈ Ω and ν ∈ Sn−1. We emphasize that (2.10) is the only assumption we make for the elliptic
integrand Φ. We observe that, if the elliptic integrand Φ satisfies the previous condition, then the
anisotropic surface energy (2.9) satisfies the following comparability condition to the perimeter:

1
Λ
Hn−1(B ∩ ∂∗E) ≤ Φ(E; B) ≤ ΛHn−1(B ∩ ∂∗E),

for any set E of finite perimeter in Ω and any Borel set B ⊂ Ω.
A useful relation is given by proposition below proved in [9].

Proposition 2.9. Let U ⊂ Rn be an open set and let E, F ⊂ U be two sets of finite perimeter in U. It
holds that

Φ(E ∪ F; U) = Φ(E; F(0)) +Φ(F; E(0)) +Φ(E; {νE = νF}).
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3. Decay estimates

In this section we prove decay estimates for local minimizers u of the functionals (1.2), see
Definition 1.1, by using a well-known blow-up technique involving a suitable excess function. We
consider the bulk excess function defined as

U(x0, r) := −
∫

Br(x0)

∣∣∣V(Du) − V
(
(Du)x0,r

)∣∣∣2 dx, (3.1)

for Br(x0) ⊂ Ω.
When the assumption (H) is in force, we refer to the following “hybrid” excess:

U∗(x0, r) := U(x0, r) +
P(E, Br(x0))

rn−1 + r.

Proposition 3.1. Let (u, E) be a local minimizer of the functional I in (1.2) and let the assumptions
(F1), (F2), (G1), (G2), and (H) hold. For every M > 0 and every 0 < τ < 1

4 , there exist two constants
ε0 = ε0(τ,M) > 0 and C∗ = C∗(n, p, `1, `2, L1, L2,Λ,M) > 0 such that if for some ball Br(x0) b Ω the
following condition hold: |(Du)x0,r| ≤ M and U∗(x0, r) ≤ ε0, then

U∗(x0, τr) ≤ C∗τU∗(x0, r). (3.2)

Proof. In order to prove (3.2), we argue by contradiction. Let M > 0 and τ ∈ (0, 1/4) be such that for
every h ∈ N, C∗ > 0, there exists a ball Brh(xh) b Ω such that

|(Du)xh,rh | ≤ M, U∗(xh, rh)→ 0 (3.3)

and
U∗(xh, τrh) ≥ C∗τU∗(xh, rh). (3.4)

The constant C∗ will be determined later. We remark that we can confine ourselves to the case in which
E ∩ Brh(xh) , ∅, since the case in which Brh(xh) ⊂ Ω \ E is well known, being U∗ = U + r.

Step 1. Blow-up. We set λ2
h := U∗(xh, rh), Ah := (Du)xh,rh , ah := (u)xh,rh , and we define

vh(y) :=
u(xh + rhy) − ah − rhAhy

λhrh
, ∀y ∈ B1. (3.5)

One can easily check that (Dvh)0,1 = 0 and (vh)0,1 = 0. We set

Eh :=
E − xh

rh
, E∗h :=

E − xh

rh
∩ B1.

By using (ii) and (vi) of Lemma 2.2, we deduce

−

∫
B1

|V(Dvh(y))|2 dy = −

∫
Brh (xh)

∣∣∣∣∣V(Du(x) − (Du)xh,rh

λh

)∣∣∣∣∣2 dx

≤
c(M)
λ2

h

−

∫
Brh (xh)

∣∣∣V(Du(x)) − V
(
(Du)xh,rh

)∣∣∣2 dx
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=
c(M)
λ2

h

−

∫
B1

∣∣∣V(Du(xh + rhy)) − V(Ah))
∣∣∣2 dy.

Then, since the integral in the last expression appear in the definition of the excess U∗(xh, rh),

λ2
h = U∗(xh, rh) = −

∫
B1

∣∣∣V(
Du(xh + rhy)

)
− V

(
Ah

)∣∣∣2 dy +
P(E, Brh(xh))

rn−1
h

+ rh,

it follows that rh → 0, P(Eh, B1)→ 0, and

rh

λ2
h

≤ 1, −

∫
B1

∣∣∣V(
Dvh(y)

)∣∣∣2 dy ≤ c(M),
P(Eh, B1)

λ2
h

≤ 1. (3.6)

Therefore, by (3.3) and (3.6), using also (i) of Lemma 2.2 and Poincaré inequality, we deduce that
there exist a (not relabeled) subsequence of {vh}h∈N, A ∈ Rn×N and v ∈ W1,p(B1;RN), such that

vh ⇀ v weakly in W1,p(B1;RN), vh → v strongly in Lp(B1;RN), (3.7)
Ah → A, λhDvh → 0 in Lp(B1;Rn×N) and pointwise a.e. in B1,

where we have used the fact that (vh)0,1 = 0. Moreover, by (3.3) and (3.6), we have that for every
0 ≤ ε < 1

n−1

lim
h→∞

(P(Eh, B1))
n

n−1

λ2(1+ε)
h

≤ lim
h→∞

P(Eh, B1)
1

n−1−ε lim sup
h→∞

P(Eh, B1)1+ε

λ2(1+ε)
h

= 0, (3.8)

where we have used (3.6) and the choice of ε < 1
n−1 in the last inequalities. Therefore, by the relative

isoperimetric inequality,

lim
h→∞

min

 |E∗h|λ2(1+ε)
h

,
|B1 \ Eh|

λ2(1+ε)
h

 ≤ c(n) lim
h→∞

(P(Eh, B1))
n

n−1

λ2(1+ε)
h

= 0. (3.9)

In the sequel the proof will proceed differently depending on

min{|E∗h|, |B1 \ Eh|} = |E∗h| or min{|E∗h|, |B1 \ Eh|} = |B1 \ Eh|.

The first case is easier to handle. To understand the reason, let us introduce the expansions of F and G
around Ah as follows:

Fh(ξ) :=
F(Ah + λhξ) − F(Ah) − DF(Ah)λhξ

λ2
h

, (3.10)

Gh(ξ) :=
G(Ah + λhξ) −G(Ah) − DG(Ah)λhξ

λ2
h

,

for any ξ ∈ Rn×N . In the first case the suitable rescaled functional to consider in the blow-up procedure
is the following:

Ih(w) :=
∫

B1

[
Fh(Dw)dy + 1E∗h

Gh(Dw)
]
dy. (3.11)
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We claim that vh satisfies the minimality inequality

Ih(vh) ≤ Ih(vh + ψ) +
1
λh

∫
B1

1E∗h
DG(Ah)Dψ(y) dy, (3.12)

for any ψ ∈ W1,p
0 (B1;RN). Indeed, using the minimality of (u, E) with respect to (u + ϕ, E), for ϕ ∈

W1,p
0 (Brh(xh);RN), where ϕ is defined by the change of variable y = x−xh

rh
, setting ϕ(x) := λhrhψ( x−xh

rh
), it

holds that∫
B1

[
(Fh(Dvh(y)) + 1E∗h

Gh(Dvh(y))
]
dy

≤

∫
B1

[
Fh(Dvh(y) + Dψ(y)) + 1E∗h

Gh(Dvh(y) + Dψ(y))
]
dy +

1
λh

∫
B1

1E∗h
DG(Ah)Dψ(y) dy,

and (3.12) follows by the definition of Ih in (3.11).
In the second case, the suitable rescaled functional to consider in the blow-up procedure is

Hh(w) :=
∫

B1

[
Fh(Dw) + Gh(Dw)

]
dy.

We claim that

Hh(vh) ≤ Hh(vh + ψ) +
L2

λ2
h

∫
(B1\Eh)∩suppψ

(1 + |Ah + λhDvh|
2)

p
2 dy, (3.13)

for all ψ ∈ W1,p
0 (B1;RN). Indeed, the minimality of (u, E) with respect to (u + ϕ, E), for ϕ ∈

W1,p
0 (Brh(xh);RN), implies that∫

Brh (xh)
(F + G)(Du) dx =

∫
Brh (xh)

[
F(Du) + 1EG(Du)

]
dx +

∫
Brh (xh)\E

G(Du)dx

≤

∫
Brh (xh)

[
F(Du + Dϕ) + 1EG(Du + Dϕ)

]
dx +

∫
Brh (xh)\E

G(Du)dx

=

∫
Brh (xh)

(F + G)(Du + Dϕ)dx +

∫
Brh (xh)\E

[
G(Du) −G(Du + Dϕ)

]
dx

≤

∫
Brh (xh)

(F + G)(Du + Dϕ)dx +

∫
(Brh (xh)\E)∩suppϕ

G(Du)dx, (3.14)

where we used that the last integral vanishes outside the support of ϕ and that G ≥ 0. Using the change
of variable x = xh + rhy in the previous formula, we get∫

B1

(F + G)(Du(xh + rhy))dy

≤

∫
B1

(F + G)(Du(xh + rhy) + Dϕ(xh + rhy)) dy

+

∫
(B1\Eh)∩suppψ

G(Du(xh + rhy))dy,
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or, equivalently, using the definitions of vh,∫
B1

(F + G)(Ah + λhDvh)dy ≤
∫

B1

(F + G)(Ah + λh(Dvh + Dψ)) dy

+

∫
(B1\Eh)∩suppψ

G(Ah + λhDvh)dy,

where ψ(y) := ϕ(xh+rhy)
λhrh

, for y ∈ B1. Therefore, setting

Hh := Fh + Gh,

by the definitions of Fh and Gh in (3.10) and using the assumption (G1), we have that∫
B1

Hh(Dvh)dy ≤
∫

B1

Hh(Dvh + Dψ)dy +
1
λ2

h

∫
(B1\Eh)∩suppψ

G(Ah + λhDvh) dy

≤

∫
B1

Hh(Dvh + Dψ) dy +
L2

λ2
h

∫
(B1\Eh)∩suppψ

(
1 + |Ah + λhDvh|

2) p
2 dy, (3.15)

i.e., (3.13).

Step 2. A Caccioppoli type inequality. The key ingredient in our proof is the following Caccioppoli-
type inequality. The version presented here, which involves the auxiliary function V , was used in [12]
to address the subquadratic case 1 < p < 2. In our setting, there is also a perimeter term, which
is a distinctive feature of our problem. We also draw attention to [20], where a suitable variant of
the Caccioppoli-type inequality involving a modified auxiliary function V|A| was established to handle
potential degeneracy of the strict quasiconvexity.

We claim that there exists a constant c = c(n, p, `1, `2, L1, L2,M) > 0 such that for every 0 < ρ < 1
there exists h0 = h0(n, p,M, ρ) ∈ N such that∫

B ρ
2

∣∣∣V(
λh(Dvh − (Dvh) ρ

2

)∣∣∣2 dy (3.16)

≤ c
[ ∫

Bρ

∣∣∣∣∣V(λh
(
vh − (vh)ρ − (Dvh) ρ

2
y
)

ρ

)∣∣∣∣∣2 dy + P(Eh, B1)
n

n−1

]
,

for all h > h0. We divide the proof into two steps.

Substep 2.a The case min{|E∗h|, |B1 \Eh|} = |E∗h|. We consider 0 < ρ

2 < s < t < ρ < 1 and let η ∈ C∞0 (Bt)
be a cut off function between Bs and Bt, i.e., 0 ≤ η ≤ 1, η ≡ 1 on Bs and |∇η| ≤ c

t−s . Set ph := (vh)Bρ ,
Ph := (Dvh)B ρ

2
, and set

wh(y) := vh(y) − ph − Phy, (3.17)

for any y ∈ B1. Proceeding similarly as in (3.10), we rescale F and G around Ah + λhPh,

F̃h(ξ) :=
F(Ah + λhPh + λhξ) − F(Ah + λhPh) − DF(Ah + λhPh)λhξ

λ2
h

, (3.18)

G̃h(ξ) :=
G(Ah + λhPh + λhξ) −G(Ah + λhPh) − DG(Ah + λhPh)λhξ

λ2
h

,
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for any ξ ∈ Rn×N . By Lemma 2.5, two growth estimates on F̃h, G̃h and their gradients hold with some
constants that depend on p, L1, L2,M (see (3.3)) and could also depend on ρ through |λhPh|. However,
given ρ, we may choose h0 = h0(n, p,M, ρ) large enough to have

|λhPh| <
c(n, p,M)λh

ρ
n
p

< 1,

for any h ≥ h0. Indeed, by (3.6) the sequence {Dvh}h is equibounded in Lp(B1), then we have

|Ph| ≤
2n

ωnρn

[ ∫
B ρ

2
∩{|Dvh |≤1}

|Dvh| dy +

∫
B ρ

2
∩{|Dvh |>1}

|Dvh| dy
]

≤ 1 +
2n

ω
1
p
n ρ

n
p

( ∫
B1

|V(Dvh)|2 dy
) 1

p

≤
c(n, p,M)

ρ
n
p

,

and so the constant in (2.4) can be taken independently of ρ.
Set

ψ1,h := ηwh and ψ2,h := (1 − η)wh.

By the uniformly strict quasiconvexity of F̃h, we have

`1

λ2
h

∫
Bs

|V(λhDwh)|2 dy

≤ `1

∫
Bt

(
1 + |λhDψ1,h|

2) p−2
2 |Dψ1,h|

2 dy ≤
∫

Bt

F̃h(Dψ1,h) dy

=

∫
Bt

F̃h(Dwh) dy +

∫
Bt

F̃h(Dwh − Dψ2,h) dy −
∫

Bt

F̃h(Dwh) dy

=

∫
Bt

F̃h(Dwh) dy −
∫

Bt

∫ 1

0
DF̃h(Dwh − θDψ2,h)Dψ2,h dθ dy. (3.19)

We estimate separately the two addends in the right-hand side of the previous chain of inequalities.
We deal with the first addend by means of a rescaling of the minimality condition of (u, E). Using
the change of variable x = xh + rhy, the fact that G ≥ 0 and the minimality of (u, E) with respect to
(u + ϕ, E) for ϕ ∈ W1,p

0 (Brh(xh);RN), we have∫
B1

F(Du(xh + rhy))dy ≤
∫

B1

[
F(Du(xh + rhy)) + 1E∗h

G(Du(xh + rhy))
]
dy

≤

∫
B1

[
F(Du(xh + rhy) + Dϕ(xh + rhy)) + 1E∗h

G(Du(xh + rhy) + Dϕ(xh + rhy))
]
dy,

i.e., by the definitions (3.5) and (3.17) of vh and wh, respectively,∫
B1

F(Ah + λhPh + λhDwh)dy

≤

∫
B1

[
F(Ah + λhPh + λh(Dwh + Dψ)) + 1E∗h

G(Ah + λhPh + λh(Dwh + Dψ)) dy,
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for ψ := ϕ(xh+rhy)
λhrh

∈ W1,p
0 (B1;RN). Therefore, recalling the definitions of F̃h and G̃h in (3.18), we have

that ∫
B1

F̃h(Dwh)dy ≤
∫

B1

[
F̃h(Dwh + Dψ) + 1E∗h

G̃h(Dwh + Dψ)
]
dy

+
1
λ2

h

∫
B1

1E∗h

[
G(Ah + λhPh) + DG(Ah + λhPh)λh(Dwh + Dψ)

]
dy.

Choosing ϕ such that ψ = −ψ1,h, the previous inequality becomes∫
Bt

F̃h(Dwh) dy ≤
∫

Bt

[
F̃h

(
Dwh − Dψ1,h

)
+ 1E∗h

G̃h(Dwh − Dψ1,h)
]
dy (3.20)

+
1
λ2

h

∫
B1

1E∗h

[
G(Ah + λhPh) + DG(Ah + λhPh)λh(Dwh − Dψ1,h)

]
dy

=

∫
Bt\Bs

[
F̃h(Dψ2,h) + 1E∗h

G̃h(Dψ2,h)
]
dy

+
1
λ2

h

∫
B1

1E∗h

[
G(Ah + λhPh) + DG(Ah + λhPh)λhDψ2,h

]
dy

≤
c(p, L1, L2,M)

λ2
h

∫
Bt\Bs

|V(λhDψ2,h)|2 dy + c(n, p, L2,M)
[ |E∗h|
λ2

h

+
1
λh

∫
E∗h

|Dψ2,h| dy
]
,

where we have used Lemma 2.5, the second estimate in (2.1), and the fact that |Ah + λhPh| ≤ M + 1.
By applying Hölder’s and Young’s inequalities, we get

1
λh

∫
E∗h

|Dψ2,h| dy ≤
|E∗h|

p−1
p

λ2
h

( ∫
E∗h∩(Bt\Bs)

|λhDψ2,h|
p dy

) 1
p

≤
1
λ2

h

[
|E∗h| +

∫
E∗h∩(Bt\Bs)

|λhDψ2,h|
p dy

]
≤

1
λ2

h

[
2|E∗h| +

∫
E∗h∩(Bt\Bs)∩{|λhDψ2,h |>1}

|λDψ2,h|
p dy

]
≤

1
λ2

h

[
2|E∗h| +

∫
Bt\Bs

|V(λhDψ2,h))|2 dy
]
.

The previous chain of inequalities combined with (3.20) yields∫
B1

F̃h(Dwh)dy ≤
c(n, p, L1, L2,M)

λ2
h

[ ∫
Bt\Bs

|V(λhDψ2,h)|2 dy + |E∗h|
]
. (3.21)

Now we estimate the second addend in the right-hand side of (3.19). Using the upper bound on DF̃h

in Lemma 2.5,∫
Bt

∫ 1

0
DF̃h(Dwh − θDψ2,h)Dψ2,h dθdy (3.22)

≤ c(p, L1,M)
∫

Bt\Bs

∫ 1

0

(
1 + λ2

h|Dwh − θDψ2,h|
2) p−2

2 |Dwh − θDψ2,h||Dψ2,h|dθdy.
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Regarding the integrand in the latest estimate, we distinguish two cases:

Case 1: |Dψ2,h| ≤ |Dwh − θDψ2,h|. By the definition of V , we have

(
1 + λ2

h|Dwh − θDψ2,h|
2) p−2

2 |Dwh − θDψ2,h||Dψ2,h| ≤ λ
−2
h |V(λh(Dwh − θDψ2,h)|2.

Case 2: |Dwh − θDψ2,h| < |Dψ2,h|. If |Dψ2,h| < 1/λh, using (i) of Lemma 2.2 we get

(
1 + λ2

h|Dwh − θDψ2,h|
2) p−2

2 |Dwh − θDψ2,h||Dψ2,h| ≤ |Dψ2,h|
2 ≤ λ−2

h |V(λhDψ2,h)|2.

If |Dψ2,h| ≥ 1/λh, using again (i) of Lemma 2.2, we deduce that

(
1 + λ2

h|Dwh − θDψ2,h|
2) p−2

2 |Dwh − θDψ2,h||Dψ2,h|

≤ λ
p−2
h |Dwh − θDψ2,h|

p−1|Dψ2,h| ≤ λ
−2
h |λhDψ2,h|

p ≤ λ−2
h |V(λhDψ2,h)|2.

By combining the two previous cases, we can proceed in the estimate (3.22) as follows:∫
Bt

∫ 1

0
DF̃h(Dwh − θDψ2,h)Dψ2,h dθ dy (3.23)

≤
c(p, L1,M)

λ2
h

∫
Bt\Bs

∫ 1

0
D
(
|V(λh(Dwh − θDψ2,h)|2 + |V(λhDψ2,h)|2

)
dθ dy

≤
c(p, L1,M)

λ2
h

∫
Bt\Bs

(
|V(λhDwh)|2 + |V(λhDψ2,h)|2

)
dy.

Hence, combining (3.19) with (3.21) and (3.23), we obtain

`1

λ2
h

∫
Bs

|V(λhDwh)|2 dy

≤
c(n, p, L1, L2,M)

λ2
h

[ ∫
Bt\Bs

(
|V(λhDwh)|2 + |V(λhDψ2,h)|2

)
dy + |E∗h|

]
.

By the definition of ψ2,h and (ii) and (iii) of Lemma 2.2, we infer that

`1

∫
Bs

|V(λhDwh)|2 dy

≤ C̃
[ ∫

Bt\Bs

(
|V(λhDwh)|2 +

∣∣∣∣∣V(
λh

wh

t − s

)∣∣∣∣∣2) dy + |E∗h|
]
,

for some C̃ = C̃(n, p, L1, L2,M)
By adding C̃

∫
Bs
|V(λhDwh)|2 dy to both sides of the previous estimate, dividing by `1 + C̃ and thanks

to Lemma 2.4, we deduce that∫
B ρ

2

|V(λhDwh)|2 dy ≤ c(n, p, `1, L1, L2,M)
( ∫

Bρ

∣∣∣∣∣V(
λh

wh

ρ

)∣∣∣∣∣2 dy + |E∗h|
)
.
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Therefore, by the definition of wh, we conclude that∫
B ρ

2

∣∣∣V(λh(Dvh − (Dvh) ρ
2
)
∣∣∣2 dy

≤ c(n, p, `1, L1, L2,M)
[ ∫

Bρ

∣∣∣∣∣V(λh
(
vh − (vh)ρ − (Dvh) ρ

2
y
)

ρ

)∣∣∣∣∣2 dy + |E∗h|
]

which, by the relative isoperimetric inequality and the hypothesis of this substep, i.e.,

min{|E∗h|, |B1 \ Eh|} = |E∗h|,

yields the estimate (3.16).

Substep 2.b The case min{|E∗h|, |B1 \ Eh|} = |B1 \ Eh|.
Let us fix 0 < ρ

2 < s < t < ρ < 1 and let η ∈ C∞0 (Bt), ph, Ph as in Substep 2.a and define

wh(y) := vh(y) − ph − Phy, ∀y ∈ B1,

and
H̃h := F̃h + G̃h.

We remark that Lemma 2.5 can be applied to H̃h, that is

|H̃h(ξ)| ≤ c(p, L1, L2,M)
(
1 + |λhξ|

2) p−2
2 |ξ|2, ∀ξ ∈ Rn×N ,

and, by the uniformly strict quasiconvexity conditions (F2) and (G2),∫
B1

H̃h(ξ + Dψ) dx ≥
∫

Bt

[
H̃h(ξ) + ˜̀(1 + |λhDψ|2

) p−2
2 |Dψ|2

]
dy, ∀ψ ∈ W1,p

0 (B1;RN), (3.24)

where we have set ˜̀= `1 + `2.

We set again
ψ1,h := ηwh and ψ2,h := (1 − η)wh.

By the quasiconvexity condition (3.24) and since H̃h(0) = 0, we have

˜̀
λ2

h

∫
Bs

|V(λhDwh)|2 dy = ˜̀∫
Bs

(
1 + |λhDwh|

2) p−2
2 |Dwh|

2 dy

≤ ˜̀∫
Bt

(
1 + |λhDψ1,h|

2) p−2
2 |Dψ1,h|

2 dy (3.25)

≤

∫
Bt

H̃h(Dψ1,h) dy =

∫
Bt

H̃h(Dwh − Dψ2,h) dy

=

∫
Bt

H̃h(Dwh) dy +

∫
Bt

H̃h(Dwh − Dψ2,h) dy −
∫

Bt

H̃h(Dwh) dy

=

∫
Bt

H̃h(Dwh) dy −
∫

Bt

∫ 1

0
DH̃h(Dwh − θDψ2,h)Dψ2,h dθ dy.

Mathematics in Engineering Volume 7, Issue 3, 228–263.



244

Similarly to the previous case, we estimate separately the two addends in the right-hand side of the
previous chain of inequalities. Using the minimality condition (3.15) for the rescaled functions vh and
recalling the definition of H̃h, since Dvh = Dwh + Ph, we get∫

B1

H̃h(Dwh)dy ≤
∫

B1

H̃h(Dwh + Dψ) dy

+
L2

λ2
h

∫
(B1\Eh)∩suppψ

(
1 + |Ah + λhPh + λhDwh|

2) p
2 dy. (3.26)

Choosing ψ = −ψ1,h as test function in (3.26) and using the fact that H̃h(0) = 0, we estimate∫
Bt

H̃h(Dwh) dy

≤

∫
Bt

H̃h(Dwh − Dψ1,h) dy +
L2

λ2
h

∫
Bt\Eh

(
1 + |Ah + λhPh + λhDwh|

2) p
2 dy

=

∫
Bt\Bs

H̃h
(
Dψ2,h

)
dy +

L2

λ2
h

∫
Bt\Eh

(
1 + |Ah + λhPh + λhDwh|

2) p
2 dy

≤
c(p, L1, L2,M)

λ2
h

∫
Bt\Bs

∣∣∣V(
λhDψ2,h

)
|2 dy +

L2

λ2
h

∫
Bt\Eh

(
1 + |Ah + λhPh + λhDwh|

2) p
2 dy.

We note that, since |Ah + λhPh| ≤ c(M), for every fixed ε > 0 there exists a constant C = C(p, ε) such
that (

1 + |Ah + λhPh + λhDwh|
2) p

2 ≤ C(p, ε)c(M)p + (1 + ε)λp
h |Dwh|

p.

Summarizing, we get∫
Bt

H̃h(Dwh) dy ≤
c(p, L1, L2,M)

λ2
h

∫
Bt\Bs

∣∣∣V(
λhDψ2,h

)
|2 dy (3.27)

+ (1 + ε)
L2

λ2
h

∫
Bt

1
{|λhDwh |≥1} |λhDwh|

p dy + c(p, L2,M, ε)
|B1 \ Eh|

λ2
h

.

Now we estimate the second addend in the right-hand side of (3.25). Using the upper bound on DH̃h

in Lemma 2.5, we obtain∫
Bt

∫ 1

0
DH̃h(Dwh − θDψ2,h)Dψ2,h dθ dy

≤ c(p, L1, L2,M)
∫

Bt\Bs

∫ 1

0

(
1 + λ2

h|Dwh − θDψ2,h|
2) p−2

2 |Dwh − θDψ2,h||Dψ2,h| dθ dy.

Proceeding exactly as in the estimate (3.23) of the step 2.a, we obtain∫
Bt

∫ 1

0
DH̃h(Dwh − θDψ2,h)Dψ2,h dθ dy (3.28)

≤
c(p, L1, L2,M)

λ2
h

∫
Bt\Bs

(
|V(λhDwh)|2 + |V(λhDψ2,h)|2

)
dy.
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Inserting (3.27) and (3.28) in (3.25), we infer that

˜̀
λ2

h

∫
Bs

|V(λhDwh)|2 dy

≤
c(p, L1, L2,M)

λ2
h

∫
Bt\Bs

(
|V(λhDwh)|2 + |V(λhDψ2,h)|2

)
dy

+ (1 + ε)
L2

λ2
h

∫
Bt

1
{|λhDwh |≥1} |λhDwh|

p dy + c(p, L2,M, ε)
|B1 \ Eh|

λ2
h

≤
c(p, L1, L2,M)

λ2
h

∫
Bt\Bs

|V(λhDwh)|2 dy +
c(p,M, L1, L2)

λ2
h

∫
Bt\Bs

∣∣∣∣∣V(
λh

wh

t − s

)∣∣∣∣∣2 dy

+ (1 + ε)
L2

λ2
h

∫
Bt

|V(λhDwh)|2 dy + c(p, L2,M, ε)
|B1 \ Eh|

λ2
h

.

Taking advantage of the hole filling technique as in the previous case, we obtain∫
Bs

|V(λhDwh)|2 dy

≤
(c(p, L1, L2,M) + (1 + ε)L2)

(c(p,M, L1, L2) + ˜̀)

∫
Bt

|V(λhDwh)|2 dy

+ c(p,M, L1, L2)
∫

Bt\Bs

∣∣∣∣∣V(
λh

wh

t − s

)∣∣∣∣∣2 dy + c(p, L2,M, ε)
|B1 \ Eh|

λ2
h

.

The assumption (H) implies that there exists ε = ε(p, `1, `2, L2) > 0 such that (1+ε)L2
`1+`2

< 1. Therefore we
have

c + (1 + ε)L2

c + ˜̀ =
c + (1 + ε)L2

c + `1 + `2
< 1.

So, by virtue of Lemma 2.4, from the previous estimate we deduce that∫
B ρ

2

|V(λhDwh)|2 dy ≤ c(n, p, `1, `2, L1L2,M)
( ∫

Bρ

∣∣∣∣∣V(
λh

wh

ρ

)∣∣∣∣∣2 dy + |B1 \ Eh|

)
.

By definition of wh and the relative isoperimetric inequality, since |B1 \ Eh| = min{|E∗h|, |B1 \ Eh|}, we
get the estimate (3.16).

Step 3. v solves a linear system in B1.
Let us divide the proof into two cases, depending on which one is the smallest between |E∗h| and

|B1 \ Eh|.

We divide the proof in two substeps.

Substep 3.a The case min{|E∗h|, |B1 \ Eh|} = |E∗h|. We claim that v solves the linear system

∫
B1

D2F(A)DvDψ dy = 0,
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for all ψ ∈ C1
0(B1;RN). Since vh satisfies (3.12), we have that

0 ≤ Ih(vh + sψ) − Ih(vh) +
1
λh

∫
B1

1E∗h
DG(Ah)sDψ dy,

for every ψ ∈ C1
0(B1;RN) and s ∈ (0, 1). Dividing by s and passing to the limit as s → 0, by the

definition of Ih, we get (see [9] or [11, Substep 3.a])

0 ≤
1
λh

∫
B1

(DF(Ah + λhDvh) − DF(Ah))Dψ dy +
1
λh

∫
B1

1E∗h
DG(Ah + λhDvh)Dψ dy. (3.29)

We partition the unit ball as follows:

B1 = B+
h ∪ B−h = {y ∈ B1 : λh|Dvh| > 1} ∪ {y ∈ B1 : λh|Dvh| ≤ 1}.

By (3.6), we get

|B+
h | ≤

∫
B+

h

λ
p
h |Dvh|

p dy ≤ λp
h

∫
B1

|Dvh|
p dy ≤ c(n, p,M)λp

h . (3.30)

We rewrite (3.29) as follows:

0 ≤
1
λh

∫
B+

h

(DF(Ah + λhDvh) − DF(Ah))Dψ dy

+

∫
B−h

∫ 1

0

(
D2F(Ah + tλhDvh) − D2F(A)

)
dtDvhDψ dy

+

∫
B−h

D2F(A)DvhDψ dy +
1
λh

∫
B1

1E∗h
DG(Ah + λhDvh)Dψ dy. (3.31)

By growth condition in (2.1) and Hölder’s inequality, we get

1
λh

∣∣∣∣∣∣
∫

B+
h

(DF(Ah + λhDvh) − DF(Ah))Dψ dy

∣∣∣∣∣∣
≤ c(p, L1,M,Dψ)

[ |B+
h |

λh
+ λ

p−2
h

∫
B+

h

|Dvh|
p−1 dy

]
≤ c(n, p, L1,M,Dψ)

[
λ

p−1
h + λ

p−1
h

(∫
B1

|Dvh|
p dy

) p−1
p ( |B+

h |

λ
p
h

) 1
p
]

≤ c(n, p, L1,M,Dψ)λp−1
h ,

thanks to (3.3), (3.6) and (3.30). Thus

lim
h→∞

1
λh

∣∣∣∣∣ ∫
B+

h

(DF(Ah + λhDvh) − DF(Ah))Dψ dy
∣∣∣∣∣ = 0. (3.32)

By (3.3) and the definition of B−h we have that |Ah + λhDvh| ≤ M + 1 on B−h . Hence we estimate
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∣∣∣∣∣ ∫
B−h

∫ 1

0

(
D2F(Ah + tλhDvh) − D2F(A)

)
dtDvhDψ dy

∣∣∣∣∣
≤

∫
B−h

∣∣∣∣∣∣
∫ 1

0

(
D2F(Ah + tλhDvh) − D2F(A)

)
dt

∣∣∣∣∣∣ |Dvh||Dψ| dy

≤

∫
B−h

∣∣∣∣∣∣
∫ 1

0

(
D2F(Ah + tλhDvh) − D2F(A)

)
dt

∣∣∣∣∣∣
p

p−1

dy


p−1

p

‖Dvh‖Lp(B1) ‖Dψ‖L∞(B1)

≤ c(n, p,M,Dψ)

∫
B−h

∣∣∣∣∣∣
∫ 1

0

(
D2F(Ah + tλhDvh) − D2F(A)

)
dt

∣∣∣∣∣∣
p

p−1

dy


p−1

p

,

where we have used (3.6). Since, by (3.7), λhDvh → 0 a.e. in B1, the uniform continuity of D2F on
bounded sets and the Severini-Egorov’s Theorem implies that

lim
h→∞

∣∣∣∣∣ ∫
B−h

∫ 1

0

(
D2F(Ah + tλhDvh) − D2F(A)

)
dtDvhDψ dy

∣∣∣∣∣ = 0. (3.33)

Note that (3.30) yields that 1B−h → 1B1 in Lr(B1), for every r < ∞. Therefore, by the weak convergence
of Dvh to Dv in Lp(B1), it follows that

lim
h→∞

∫
B−h

D2F(A)DvhDψ dy =

∫
B1

D2F(A)DvDψ dy. (3.34)

By growth condition (2.1), we deduce

1
λh

∣∣∣∣∣∣
∫

B1

1E∗h
[DξG(Ah + λhDvh)Dψ dy

∣∣∣∣∣∣
≤

c(p, L2)
λh

∫
B1

1E∗h

(
1 + |Ah + λhDvh|

2) p−1
2 |Dψ| dy

≤ c(p, L2,M, ||Dψ||∞)
[ 1
λh
|E∗h| + λ

p−2
h

∫
E∗h

|Dvh|
p−1 dy

]
≤ c(p, L2,M, ||Dψ||∞)

[ 1
λh
|E∗h| + λ

p−2+ 2
p

h

(∫
B1

|Dvh|
p dy

) p−1
p ( |E∗h|

λ2
h

) 1
p
]

≤ c(n, p, L2,M, ||Dψ||∞)
[ 1
λh
|E∗h| + λ

p−2+ 2
p

h

( |E∗h|
λ2

h

) 1
p
]
,

where we have used (3.3) and (3.6). Since min{|E∗h|, |B1 \ Eh|} = |E∗h|, by (3.9), we have

lim
h→∞

|E∗h|

λ2
h

= 0,

and so
lim
h→∞

1
λh

∫
B1

1E∗h
DG(Ah + λhDvh)Dψ dy = 0. (3.35)
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By (3.32)–(3.35), passing to the limit as h→ ∞ in (3.31), we get∫
B1

DF(A)DvDψ dy ≥ 0.

Furthermore, plugging −ψ in place of ψ, we get∫
B1

DF(A)DvDψ dy = 0,

i.e., v solves a linear system with constant coefficients.

Substep 3.b The case min{|E∗h|, |B1 \ Eh|} = |B1 \ Eh|.
We claim that v solves the linear system∫

B1

D2(F + G)(A)DvDψ dy = 0,

for all ψ ∈ C1
0(B1;RN).

Arguing as in (3.14) and rescaling, we have that∫
B1

Hh(Dvh)dy

≤

∫
B1

Hh(Dvh + sDψ) +
1
λ2

h

∫
B1\Eh

[G(Ah + λhDvh) −G(Ah + λhDvh + sλhDψ)]dy

=

∫
B1

Hh(Dvh + sDψ) dy +
1
λh

∫
B1\Eh

∫ 1

0
DG(Ah + λhDvh + tsλhDψ)sDψ dt dy

≤

∫
B1

Hh(Dvh + sDψ) dy +
c(p, L2)
λh

∫
B1\Eh

∫ 1

0

(
1 + |Ah + λhDvh + tsλhDψ|2

) p−1
2 s|Dψ| dt dy

≤

∫
B1

Hh(Dvh + sDψ) dy + c(p, L2,M)
[ 1
λh

∫
B1\Eh

s|Dψ| dy

+

∫
B1\Eh

∫ 1

0
λ

p−2
h |Dvh + tsDψ|p−1s|Dψ| dt dy

]
,

for every ψ ∈ C1
0(B1;RN) and for every s ∈ (0, 1). Therefore

0 ≤
∫

B1

∫ 1

0
DHh(Dvh + sθDψ) dθsDψ dy

+ c(p, L2,M)
[ 1
λh

∫
B1\Eh

s|Dψ| dy +

∫
B1\Eh

∫ 1

0
λ

p−2
h |Dvh + tsDψ|p−1s|Dψ| dt dy

]
.

Dividing by s and passing to the limit as s→ 0, by the definition ofHh we get

0 ≤
1
λh

∫
B1

[
D(F + G)(Ah + λhDvh)Dψ − D(F + G)(Ah)Dψ

]
dy (3.36)

+ c(p, L2,M)
[ 1
λh

∫
B1\Eh

|Dψ|dy +

∫
B1\Eh

λ
p−2
h |Dvh|

p−1|Dψ| dy
]
.
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As before, we partition B1 as follows:

B1 = B+
h ∪ B−h = {y ∈ B1 : λh|Dvh| > 1} ∪ {y ∈ B1 : λh|Dvh| ≤ 1}.

We rewrite (3.36) as

0 ≤
1
λh

∫
B+

h

(D(F + G)(Ah + λhDvh) − D(F + G)(Ah))Dψ dy (3.37)

+
1
λh

∫
B−h

(D(F + G)(Ah + λhDvh) − D(F + G)(Ah))Dψ dy

+ c(p, L2,M)
[ 1
λh

∫
B1\Eh

|Dψ|dy +

∫
B1\Eh

λ
p−2
h |Dvh|

p−1|Dψ| dy
]
.

Arguing as in (3.32), we obtain that

lim
h→∞

1
λh

∣∣∣∣∣∣
∫

B+
h

(D(F + G)(Ah + λhDvh) − D(F + G)(Ah))Dψ dy

∣∣∣∣∣∣ = 0, (3.38)

and, as in (3.33) and (3.34),

lim
h→∞

1
λh

∫
B−h

[D(F + G)(Ah + λhDvh) − D(F + G)(Ah)]Dψ dy =

∫
B1

D(F + G)(A)DvDψ dy.

Moreover, we have that

1
λh

∫
B1\Eh

|Dψ|dy +

∫
B1\Eh

λ
p−2
h |Dvh|

p−1|Dψ| dy

≤ c(p,Dψ)
[
|B1 \ Eh|

λh
+ λ

p−2+ 2
p

h

(∫
B1

|Dvh|
p dy

) p−1
p (
|B1 \ Eh|

λ2
h

) 1
p
]

≤ c(n, p,Dψ)
[
|B1 \ Eh|

λh
+ λ

p−2+ 2
p

h

(
|B1 \ Eh|

λ2
h

) 1
p
]
,

where we used (3.6). Since min{|E∗h|, |B1 \ Eh|} = |B1 \ Eh|, by (3.9), we have

lim
h→∞

|B1 \ Eh|

λ2
h

= 0,

and we obtain

lim
h→∞

[
1
λh

∫
B1\Eh

|Dψ|dy +

∫
B1\Eh

λ
p−2
h |Dvh|

p−1|Dψ| dy
]

= 0. (3.39)

By (3.38) and (3.39), passing to the limit as h→ ∞ in (3.37) we conclude that∫
B1

D2(F + G)(A)DvDψ dy ≥ 0

and, with −ψ in place of ψ, we finally get∫
B1

D2(F + G)(A)DvDψ dy = 0,
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as claimed.

Substep 3.c. A decay estimate for Dv.
By Proposition 2.1 and the theory of linear systems (see [30, Theorem 2.1 and Chapter 3]), we

deduce in both cases that v ∈ C∞ and there exists a constant c̃ = c̃(n,N, p, `1, `2, L1, L2) > 0 such that

−

∫
Bτ
|Dv − (Dv)τ|2 ≤ c̃τ2−

∫
B 1

2

|Dv − (Dv) 1
2
|2 dx,

for any τ ∈
(
0, 1

2

)
. Moreover, by Proposition 2.1 again,

−

∫
B 1

2

|Dv − (Dv) 1
2
|2 dx ≤ sup

B 1
2

|Dv|2 ≤ c̃
(
−

∫
B1

|Dv|p dx
)2/p

.

Observing that
‖Dv‖Lp(B1) ≤ lim sup

h
‖Dvh‖Lp(B1) ≤ c(n, p),

it follows that
−

∫
Bτ
|Dv − (Dv)τ|2 ≤ Cτ2, (3.40)

for some fixed C = C(n,N, p, `1, `2, L1, L2).

Step 4. An estimate for the perimeters.
Our aim is to show that there exists a constant c = c(n, p, L2,Λ,M) > 0 such that

P(Eh, Bτ) ≤ c
[1
τ

P(Eh, B1)
n

n−1 + rhτ
n + rhλ

p
h

]
. (3.41)

By the minimality of (u, E) with respect to (u, Ẽ), where Ẽ is a set of finite perimeter such that Ẽ∆E b
Brh(xh) and Brh(xh) are the balls of the contradiction argument, we get∫

Brh (xh)
1EG(Du) +Φ(E; Brh(xh)) ≤

∫
Brh (xh)

1ẼG(Du) +Φ(Ẽ; Brh(xh)).

Using the change of variable x = xh + rhy and dividing by rn−1
h , we have

rh

∫
B1

1EhG(Ah + λhDvh)dy +Φh(Eh; B1) ≤ rh

∫
B1

1Ẽh
G(Ah + λhDvh)dy +Φh(Ẽh; B1),

where
Φh(Eh; V) :=

∫
V∩∂∗Eh

Φ(xh + rhy, νEh(y)) dHn−1(y),

for every Borel set V ⊂ Ω. Assume first that min{|B1 \ Eh|, |E∗h|} = |B1 \ Eh|. Choosing Ẽh := Eh ∪ Bρ,
we get

Φh(Eh; B1) ≤ rh

∫
B1

1BρG(Ah + λhDvh)dy +Φh(Ẽh; B1). (3.42)
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By the coarea formula, the relative isoperimetric inequality, the choice of the representative E(1)
h of Eh,

which is a Borel set, we get∫ 2τ

τ

Hn−1(∂Bρ \ Eh) dρ ≤ |B1 \ Eh| ≤ c(n)P(Eh, B1)
n

n−1 .

Therefore, thanks to Chebyshev’s inequality, we may choose ρ ∈ (τ, 2τ), independent of h, such that,
up to subsequences, it holds

Hn−1(∂∗Eh ∩ ∂Bρ) = 0 and Hn−1(∂Bρ \ Eh) ≤
c(n)
τ

P(Eh, B1)
n

n−1 . (3.43)

We remark that Proposition 2.9 holds also for Φh. Thus, thanks to the choice of ρ, beingHn−1(∂∗Eh ∩

∂Bρ) = 0, we have that

Φh(Ẽh; B1) = Φh(Eh; B(0)
ρ ) +Φh(Bρ; E(0)

h ) +Φh(Eh; {νEh = νBρ})

= Φh(Eh; B1 \ Bρ) +Φh(Bρ; E(0)
h ).

By the choice of the representative of Eh (see Remark 2.7), taking into account (2.10) and the inequality
in (3.43), it follows that

Φh(Ẽh; B1) ≤ Φh(Eh; B1 \ Bρ) + ΛHn−1(∂Bρ ∩ E(0)
h ) (3.44)

≤ Φh(Eh; B1 \ Bρ) + ΛHn−1(∂Bρ \ Eh).

≤ Φh(Eh; B1 \ Bρ) + Λ
c(n)
τ

P(Eh, B1)
n

n−1 .

On the other hand, by (2.10) and the additivity of the measure Φh(Eh, ·) it holds that

1
Λ

P(Eh, Bτ) ≤ Φh(Eh; Bτ) ≤ Φh(Eh; B1) −Φh(Eh; B1 \ Bρ), (3.45)

since ρ > τ. Combining (3.42), (3.44) and (3.45), we obtain

1
Λ

P(Eh, Bτ) ≤ Φh(Eh; B1) −Φh(Eh; B1 \ Bρ) (3.46)

≤ Φh(Ẽh; B1) + rh

∫
B1

1BρG(Ah + λhDvh)dy −Φh(Eh; B1 \ Bρ)

≤ Λ
c(n)
τ

P(Eh, B1)
n

n−1 + rh

∫
B1

1BρG(Ah + λhDvh)dy

≤ Λ
c(n)
τ

P(Eh, B1)
n

n−1 + c(p, L2)rh

∫
B2τ

(1 + |Ah + λhDvh|
2)

p
2 dy

≤ Λ
c(n)
τ

P(Eh, B1)
n

n−1 + c(n, p, L2,M)rhτ
n + c(p, L2)rhλ

p
h

∫
B2τ

|Dvh|
p dy

≤ Λ
c(n)
τ

P(Eh, B1)
n

n−1 + c(n, p, L2,M)rhτ
n + c(n, p, L2)rhλ

p
h ,

where we used (3.6). The previous estimate leads to (3.41). We reach the same conclusion if

min{|B1 \ Eh|, |E∗h|} = |E∗h|,
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choosing Ẽh = Eh \ Bρ as a competitor set.

Step 5. Higher integrability of vh.
We will prove that there exist two positive constants C and δ depending on n, p, `1, `2, L1, L2 such

that for every Br ⊂ B1 it holds

−

∫
B r

2

|V(λhDvh)|2(1+δ) dy ≤ C
[(
−

∫
B1

|V(λhDvh)|2 dy
)1+δ

+ min{|B1 \ Eh|, |E∗h|}
]
. (3.47)

We remark that, using (2.4) in Lemma 2.5 and (iv) of Lemma 2.2,

|Fh(ξ)| + |Gh(ξ)| ≤
c(p, L1, L2,M)

λ2
h

|V(λhξ)|2, ∀ξ ∈ Rn×N , (3.48)

and ∫
B1

Fh(Dφ) dy ≥
`1

λ2
h

∫
B1

|V(λhDφ)|2 dy, ∀φ ∈ C1
c (B1,R

N).

Let r > 0 be such that B3r ⊂ B1, r
2 < s < t < r and η ∈ C1

c (Bt) be such that 0 ≤ η ≤ 1, η = 1 on Bs,
|Dη| ≤ c

t−s , for some positive constant c. We define

φ1 := [vh − (vh)r]η, φ2 := [vh − (vh)r](1 − η).

We deal with the case min{|E∗h|, |B1 \ Eh|} = |E∗h|, the other one is similar. Using the fact that Gh ≥ 0
and the minimality relation (3.12) we deduce

`1

λ2
h

∫
Bt

|V(λhDφ1)|2 dy

≤

∫
Bt

Fh(Dφ1) dy

=

∫
Bt

Fh(Dvh) dy +

∫
Bt\Bs

[Fh(Dvh − Dφ2) − Fh(Dvh)] dy

≤ Ih(vh) +

∫
Bt\Bs

[Fh(Dvh − Dφ2) − Fh(Dvh)] dy

≤ Ih(φ2 + (vh)r) +

∫
Bt\Bs

[Fh(Dvh − Dφ2) − Fh(Dvh)] dy +
1
λh

∫
Bt∩E∗h

DG(Ah)|Dφ1| dy.

Then, using growth condition (3.48) and the fact that Ah is controlled by M, we conclude that

`1

λ2
h

∫
Bt

|V(λhDφ1)|2 dy ≤
c(p, L1, L2,M)

λ2
h

[ ∫
Bt\Bs

[
|V(λhDφ2)|2 + |V(λhDφ1)|2

+ |V(λhDvh)|2
]
dy + λh

∫
Bt∩E∗h

|Dφ1| dy
]
.

By the properties of V , it holds that

|ξ| ≤ C(p)
(
1 + |V(ξ)|

2
p
)
, ∀ξ ∈ Rn×N .
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Thus, using Young’s inequality, it follows that

1
λ2

h

∫
Bt∩E∗h

|λhDφ1| dy ≤
c(p)
λ2

h

[
|E∗h ∩ Bt| +

∫
Bt∩E∗h

V(|λhDφ1|)
2
p dy

]
≤

c(p)
λ2

h

[
c(ε)|E∗h ∩ Bt| + ε

∫
Bt∩E∗h

|V(λhDφ1)|2 dy
]
,

for some ε > 0 to be chosen. Combining the previous two chains of inequalities, we deduce that

`1

λ2
h

∫
Bt

|V(λhDφ1)|2 dy

≤
c(p, L1, L2,M)

λ2
h

[ ∫
Bt\Bs

[
|V(λhDφ2)|2 + |V(λhDφ1)|2 + |V(λhDvh)|2

]
dy

+ c(ε)|E∗h ∩ Bt| + ε

∫
Bt∩E∗h

|V(λhDφ1)|2 dy
]
.

Choosing ε sufficiently small, we absorb the last integral to the left-hand side

1
λ2

h

∫
Bt
|V(λhDφ1)|2 dy ≤ c(p,`1,L1,L2,M)

λ2
h

[ ∫
Bt\Bs

[
|V(λhDφ2)|2 + |V(λhDφ1)|2 + |V(λhDvh)|2

]
dy + |E∗h ∩ Bt|

]
.

By (ii) and (iii) of Lemma 2.2, it follows

∫
Bs
|V(λhDvh)|2 dy ≤ c(p, `1, L1, L2,M)

[ ∫
Bt\Bs
|V(λhDvh)|2 dy +

∫
Bt\Bs

∣∣∣∣∣V(
λh

vh−(vh)r
t−s

)∣∣∣∣∣2 dy + |E∗h ∩ Bt|

]
.

By applying the hole-filling technique, we add c(p, `1, L1, L2,M)
∫

Bs
|V(λhDvh)|2 dy, and we get∫

Bs

|V(λhDvh)|2 dy

≤
c(p, `1, L1, L2,M)

c(p, `1, L1, L2,M) + 1

[ ∫
Bt

|V(λhDvh)|2 dy +

∫
Bt\Bs

∣∣∣∣∣V(
λh

vh − (vh)r

t − s

)∣∣∣∣∣2 dy + |E∗h ∩ Bt|

]
.

Now we can apply Lemma 2.4 and derive∫
Br/2

|V(λhDvh)|2 dy ≤ c(p, `1, L1, L2,M)
[ ∫

Br

∣∣∣∣∣V(
λh

vh − (vh)r

r

)∣∣∣∣∣2 dy +

∫
Br

1E∗h
dy

]
.

Finally, by Hölder’s inequality and Theorem 2.7 we gain

−

∫
Br/2

|V(λhDvh)|2 dy ≤ c(p, `1, L1, L2,M)
{[
−

∫
Br

∣∣∣∣∣V(
λh

vh − (vh)r

r

)∣∣∣∣∣2(1+σ)

dy
] 1

1+σ

+ −

∫
Br

1E∗h
dy

}
≤ c(p, `1, L1, L2,M)

{[
−

∫
B3r

|V(λhDvh)|α dy
] 1

2α

+ −

∫
Br

1E∗h
dy

}
.

We conclude the proof by applying Gehring’s lemma (see [32, Theorem 6.6]).
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Step 6. Conclusion.
By the change of variable x = xh + rhy, inequalities (3.6), (3.7) and (v) of Lemma 2.2, for every

0 < τ < 1
4 , we have

lim sup
h→∞

U∗(xh, τrh)
λ2

h

≤ lim sup
h→∞

−

∫
Bτrh (x0)

∣∣∣V(Du) − V
(
(Du)x0,τrh

)∣∣∣2 dx + lim sup
h→∞

P(E, Bτrh(xh))
λ2

hτ
n−1rn−1

h

+ lim sup
h→∞

τrh

λ2
h

≤ lim sup
h→∞

1
λ2

h

−

∫
Bτ

∣∣∣V(λhDvh + Ah) − V
(
Ah + λh(Dvh)τ

)∣∣∣2 dy + lim sup
h→∞

P(Eh, Bτ)
λ2

hτ
n−1

+ τ

≤ lim sup
h→∞

c(M, n, p)
λ2

h

−

∫
Bτ

∣∣∣V(λh
(
Dvh − (Dvh)τ

)∣∣∣2 dy + lim sup
h→∞

P(Eh, Bτ)
λ2

hτ
n−1

+ τ.

Then, using Caccioppoli inequality in (3.16) and estimate of the perimeter (3.46), we get

lim sup
h→∞

U∗(xh, τrh)
λ2

h

≤ c(n, p, `1, `2, L1, L2,Λ,M)
{

lim sup
h→∞

1
λ2

h

−

∫
B2τ

∣∣∣∣∣V(λh
(
vh − (vh)2τ − (Dvh)τ y

)
2τ

)∣∣∣∣∣2 dy

+
1
τn lim sup

h→∞

P(Eh, B1)
n

n−1

λ2
h

+
1
τn−1 lim sup

h→∞

(
rhτ

n

λ2
h

+
rh

λ2
h

λ
p
h

)
+ τ

}
≤ c(n, p, `1, `2, L1, L2,Λ,M)

{
lim sup

h→∞

1
λ2

h

−

∫
B2τ

∣∣∣∣∣V(λh
(
vh − (vh)2τ − (Dvh)τ y

)
2τ

)∣∣∣∣∣2 dy + τ

}
,

where we have used (3.6), (3.8) and estimate (3.46).
Now we want to prove the following extimate:

lim sup
h→∞

1
λ2

h

∫
B2τ

∣∣∣∣∣V(λh
(
vh − (vh)2τ − (Dvh)τ y

)
2τ

)∣∣∣∣∣2 dy

= lim sup
h→∞

1
λ2

h

∫
B2τ

∣∣∣∣∣V(λh
(
v − (v)2τ − (Dv)τ y

)
2τ

)∣∣∣∣∣2 dy

≤

∫
B2τ

|v − (v)2τ − (Dv)τy|2

τ2 dy.

The last inequality is obtained by using that v and Dv are bounded, λh → 0 and |V(ξ)| ≤ |ξ| for |ξ| ≤ 1.
We observe that proving the equality is equivalent to show

I := lim
h→∞

1
λ2

h

−

∫
B2τ

∣∣∣∣∣V(λh
(
(vh − v) − (vh − v)2τ − (Dvh − Dv)τ y

)
2τ

)∣∣∣∣∣2 dy = 0.

In the sequel σ will denote the exponent given in the Sobolev-Poincaré type inequality of the
Theorem 2.7. We can assume that the higher integrability exponent δ given in the Step 5 is such
that δ < σ.
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Let us choose θ ∈ (0, 1) such that 2θ + 1−θ
1+σ

= 1. Applying Hölder’s inequality, it holds that

0 ≤ I ≤ lim sup
h→∞

1
λ2

h

(
−

∫
B2τ

∣∣∣∣∣V(λh
(
(vh − v) − (vh − v)2τ − (Dvh − Dv)τ y

)
2τ

)∣∣∣∣∣ dy
)2θ

×

(
−

∫
B2τ

∣∣∣∣∣V(λh
(
(vh − v) − (vh − v)2τ − (Dvh − Dv)τ y

)
2τ

)∣∣∣∣∣2(1+σ)

dy
) 1−θ

1+σ

.

Using the fact that |V(ξ)| ≤ |ξ| and (iii) of Lemma 2.2, for the first factor in the previous product, and
using also Theorem 2.7 applied to (vh − v) − (vh − v)2τ − (Dvh − Dv)τ y, we deduce

0 ≤ I ≤ lim sup
h→∞

c
λ2

h

(
λh−

∫
B2τ

(∣∣∣∣∣vh − v
τ

∣∣∣∣∣ +

∣∣∣∣∣ (Dvh − Dv)τ
τ

∣∣∣∣∣) dy
)2θ

×

(
−

∫
B6τ

∣∣∣V(
λh(Dvh − Dv) − λh(Dvh − Dv)τ

)∣∣∣αdy
) 2(1−θ)

α

,

with 2/p < α < 2 given in Theorem 2.7.
In the last term we can increase choosing α = 2, moreover, using again (iii) of Lemma 2.2 we

deduce

0 ≤ I ≤ lim sup
h→∞

c
λ2

h

(
λh−

∫
B2τ

(∣∣∣∣∣vh − v
τ

∣∣∣∣∣ +

∣∣∣∣∣ (Dvh − Dv)τ
τ

∣∣∣∣∣) dy
)2θ

×

(
−

∫
B6τ

∣∣∣V(
λh(Dvh − Dv)

∣∣∣2 +
∣∣∣V(λh((Dvh)τ − (Dv)τ))

∣∣∣2dy
)1−θ

.

In the last term, we observe that the second addend can be estimated by making use of (i) of Lemma 2.2,
the fact that Dvh ⇀ Dv weakly in Lp(B1,R

nN) and λh → 0. In particular, we obtain∣∣∣V(λh((Dvh)τ − (Dv)τ))
∣∣∣2 ≤ cλ2

h.

Regarding the term

−

∫
B6τ

∣∣∣V(
λh(Dvh − Dv)

∣∣∣2dy,

using (3.47) and the definition of vh, we deduce

−

∫
B 1

2

∣∣∣V(
λhDvh

)∣∣∣2(1+δ)
dy ≤ C

[(
−

∫
B1

|V(λhDvh)|2 dy
)1+δ

+ min{|B1 \ Eh|, |E∗h|}
]

= C
[(
−

∫
Brh (xh)

∣∣∣∣∣V(
Du(x) − (Du)xh,rh

)∣∣∣∣∣2 dx
)1+δ

+ min{|B1 \ Eh|, |E∗h|}
]

≤ C
[(
−

∫
Brh (xh)

∣∣∣∣∣V(
Du(x)

)
− V

(
(Du)xh,rh

))∣∣∣∣∣2 dx
)1+δ

+ min{|B1 \ Eh|, |E∗h|}
]

≤ C
[
λ2(1+δ)

h + λ2(1+ε)
h

]
≤ Cλ2(1+δ)

h ,
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where 0 ≤ ε < 1
n−1 . Therefore, by Hölder’s inequality, we have∫

B 1
2

∣∣∣V(
λhDvh

)∣∣∣2dy ≤ C(M)λ2
h.

We conclude that

0 ≤ I ≤ lim
h→∞

c
λ2

h

λ2θ
h

(
−

∫
B2τ

(∣∣∣∣∣vh − v
τ

∣∣∣∣∣ +

∣∣∣∣∣ (Dvh − Dv)τ
τ

∣∣∣∣∣) dy
)2θ

· λ2(1−θ)
h

= lim
h→∞

C
(
−

∫
B2τ

(
|vh − v| + |(Dvh − Dv)τ|

)
dy

)2θ

= 0.

By virtue of (3.6), (3.8), (3.9), the Poincaré-Wirtinger inequality and (3.40), we get

lim sup
h→∞

U∗(xh, τrh)
λ2

h

≤ c(n, p, `1, `2, L2,Λ,M)
{
−

∫
B2τ

|v − (v)2τ − (Dv)τy|2

τ2 dy + τ
}

≤ c(n, p, `1, `2, L2,Λ,M)
{
−

∫
B2τ

|Dv − (Dv)τ|2 dy + τ
}

≤ c(n,N, p, `1, `2, L1, L2,Λ,M)
[
τ2 + τ

]
≤ C(n,N, p, `1, `2, L1, L2,Λ,M)τ.

The contradiction follows, by choosing C∗ such that C∗ > C, since, by (3.4),

lim inf
h

U∗(xh, τrh)
λ2

h

≥ C∗τ.

�

If assumption (H) is not taken into account, it is still possible to establish a decay result for the
excess, analogous to the previous one. However, this requires employing a modified “hybrid” excess,
defined as:

U∗∗(x0, r) := U(x0, r) +

(
P(E, Br(x0))

rn−1

) δ
1+δ

+ rβ,

where U(x0, r) is defined in (3.1), δ is the higher integrability exponent given in the Step 5 of
Proposition 3.1 and 0 < β < δ

1+δ
. The following result still holds true.

Proposition 3.2. Let (u, E) be a local minimizer of I in (1.2) under the assumptions (F1), (F2), (G1),
and (G2). For every M > 0 and 0 < τ < 1

4 , there exist two positive constants ε0 = ε0(τ,M) and
c∗∗ = c∗∗(n, p, `1, `2, L1, L2,Λ, δ,M) for which, whenever Br(x0) b Ω verifies

|(Du)x0,r| ≤ M and U∗∗(x0, r) ≤ ε0,

then
U∗∗(x0, τr) ≤ c∗∗ τβ U∗∗(x0, r).

In order to avoid unnecessary repetition we do not include the proof here, as it is almost identical to
the proof of the Proposition 3.1, with the obvious adjustments, see [9].
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4. Proof of the main theorem

Here we give the proof of Theorem 1.3 through a suitable iteration procedure. It is easy to show the
validity of the following lemma by arguing exactly in the same way as in [11, Lemma 6.1].

Lemma 4.1. Let (u, E) be a local minimizer of the functional I and let c∗ the constant introduced in
Proposition 3.1. For every α ∈ (0, 1) and M > 0 there exists ϑ0 = ϑ0(c∗, α) < 1 such that for ϑ ∈ (0, ϑ0)
there exists a positive constant ε1 = ε1(n, p, `1, `2, L1, L2,M, ϑ) such that, if Br(x0) b Ω,

|Du|x0,r < M and U∗(x0, r) < ε1,

then
|Du|x0,ϑhr < 2M and U∗(x0, ϑ

hr) ≤ ϑhαU∗(x0, r), ∀h ∈ N0. (4.1)

Proof. Let M > 0, α ∈ (0, 1) and ϑ ∈ (0, ϑ0), where ϑ0 < 1. Let ε1 < ε0, where ε0 is the constant
appearing in Proposition 3.1. We first prove by induction that

|Du|x0,ϑhr < 2M, ∀h ∈ N0. (4.2)

If h = 0, the statement holds. Assuming that (4.1) holds for h > 0, applying properties (i) and (vi) of
Lemma 2.2, we compute

|Du|x0,ϑh+1r ≤ |Du|x0,r +

h+1∑
j=1

||Du|x0,ϑ jr − |Du|x0,ϑ j−1r|

≤ M +

h+1∑
j=1

−

∫
B
ϑ jr

|Du − (Du)x0,ϑ j−1r| dx

≤ M + ϑ−n
h+1∑
j=1

[
1

|Bϑ j−1r|

∫
B
ϑ j−1r∩{|Du−(Du)x0 ,ϑ

j−1r |≤1}
|Du − (Du)x0,ϑ j−1r| dx

+
1

|Bϑ j−1r|

∫
B
ϑ j−1r∩{|Du−(Du)x0 ,ϑ

j−1r |>1}
|Du − (Du)x0,ϑ j−1r| dx

]

≤ M + ϑ−n
h+1∑
j=1

[(
−

∫
B
ϑ j−1r

|V(Du − (Du)x0,ϑ j−1r)|2 dx
) 1

2

+

(
−

∫
B
ϑ j−1r

|V(Du − (Du)x0,ϑ j−1r)|2 dx
) 1

p
]

≤ M + c(p,M)ϑ−n
h+1∑
j=1

[
U∗(x0, ϑ

j−1r)
1
2 + U∗(x0, ϑ

j−1r)
1
p
]

≤ M + c(p, c∗,M)ε
1
2
1ϑ
−n

h+1∑
j=1

ϑ
j−1
2 ≤ M + c(p, c∗,M)ε

1
2
1
ϑ−n

1 − ϑ
1
2

≤ 2M,

where we have chosen ε1 = ε1(p, c∗,M, ϑ) > 0 sufficiently small. Now we prove the second inequality
in (4.1). The statement is obvious for h = 0. If h > 0 and (4.1) holds, we have that

U∗(x0, ϑ
hr) ≤ ϑhαU∗(x0, r) < ε1, (4.3)
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by our choice of ϑ and ε1. Thus thanks to (4.2) we can apply Proposition 3.1 with ϑhr in place of r to
deduce that

U∗(x0, ϑ
h+1r) ≤ ϑαU∗(x0, ϑ

hr) ≤ ϑ(h+1)αU∗(x0, r),

where we have chosen ϑ0 = ϑ0(c∗, α) sufficiently small and we have used (4.3). Therefore, the second
inequality in (4.1) is also true for every k ∈ N. �

Analogously, it is possible to prove an iteration lemma for U∗∗.

Lemma 4.2. Let (u, E) be a local minimizer of the functional I and let β be the exponent of
Proposition 3.2. For every M > 0 and ϑ ∈ (0, ϑ0), with ϑ0 < min

{
c∗∗, 1

4

}
, there exist ε1 > 0 and

R > 0 such that, if r < R and x0 ∈ Ω satisfy

Br(x0) b Ω, |Du|x0,r < M and U∗∗(x0, r) < ε1,

where c∗∗ is the constant introduced in Proposition 3.2, then

|Du|x0,ϑhr < 2M and U∗∗(x0, ϑ
kr) ≤ ϑkβU∗∗(x0, r), ∀k ∈ N.

Proof of Theorem 1.3. We consider the set

Ω1 :=
{
x ∈ Ω : lim sup

ρ→0
|(Du)x,ρ| < ∞ and lim sup

ρ→0
U∗(x, ρ) = 0

}
and let x0 ∈ Ω1. For every M > 0 and for ε1 determined in Lemma 4.1 there exists a radius RM,ε1 > 0
such that

|Du|x0,r < M and U∗(x0, r) < ε1,

for every 0 < r < RM,ε1 . Let 0 < ρ < ϑr < R and h ∈ N be such that ϑh+1r < ρ < ϑhr, where ϑ = ϑ0
2

and ϑ0 is the same constant appearing in Lemma 4.1. By Lemma 4.1, we obtain

|Du|x0,ρ ≤
1
ϑn |Du|x0,ϑhr ≤ c(M, c∗, α).

Using the properties of Lemma 2.2 and reasoning as in the proof of Lemma 4.1, we estimate

|V((Du)x0,ϑhr) − V((Du)x0,ρ)|
2

≤ c(n, p)|(Du)x0,ϑhr − (Du)x0,ρ|
2

≤ c(n, p)
(
−

∫
Bρ(x0)

|Du − (Du)x0,ϑhr| dx
)2

≤ c(n, p)ϑ−2n
0

[
1
|Bϑhr|

∫
B
ϑhr∩{|Du−(Du)x0 ,ϑ

hr |≤1}
|Du − (Du)x0,ϑhr| dx

+
1
|Bϑhr|

∫
B
ϑhr∩{|Du−(Du)x0 ,ϑ

hr |>1}
|Du − (Du)x0,ϑhr| dx

]2

≤ c(n, p)ϑ−2n
0

[(
−

∫
B
ϑhr

|V(Du − (Du)x0,ϑhr)|2 dx
) 1

2
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+

(
−

∫
B
ϑhr

|V(Du − (Du)x0,ϑhr)|2 dx
) 1

p
]2

≤ c(n, p,M)ϑ−2n
0

[
U∗(x0, ϑ

hr) + U∗(x0, ϑ
hr)

2
p
]

≤ c(n, p, c∗,M)ϑ−2n
0 ϑhαU∗(x0, r).

Thus, taking the previous chain of inequalities into account, applying again Lemma 4.1, we estimate

U∗(x0, ρ) ≤ 2−
∫

Bρ(x0)
|V(Du) − V((Du)x0,ϑhr)|2 dx + 2|V((Du)x0,ϑhr) − V((Du)x0,ρ)|

2

+
P(E, Bρ(x0))

ρn−1 + ρ

≤ c(n, p,M, c∗ϑ0)
[
−

∫
B
ϑhr(x0)

|V(Du) − V((Du)x0,ϑhr)|2 dx + ϑhαU∗(x0, r)

+
P(E, Bϑhr(x0))

(ϑhr)n−1 + ϑhr
]

≤ c(n, p, c∗,M, ϑ0)
[
U∗(x0, ϑ

hr) + ϑhαU∗(x0, r)
]

≤ c(n, p, c∗,M, ϑ0)
(
ρ

r

)α
U∗(x0, r).

The previous estimate implies that

U(x0, ρ) ≤ C∗
(
ρ

r

)α
U∗(x0, r),

where C∗ = C∗(n, p, c∗,M, ϑ0). Since U∗(y, r) is continuous in y, we have that U∗(y, r) < ε1 for every y
in a suitable neighborhood I of x0. Therefore, for every y ∈ I we have that

U(y, ρ) ≤ C∗
(
ρ

r

)α
U∗(y, r).

The last inequality implies, by the Campanato characterization of Hölder continuous functions (see [32,
Theorem 2.9]), that u is C1,α in I for every 0 < α < 1

2 , and we can conclude that the set Ω1 is open and
the function u has Hölder continuous derivatives in Ω1.

When the assumption (H) is not enforced, the proof goes exactly in the same way provided we use
Lemma 4.2 in place of Lemma 4.1, with

Ω0 :=
{
x ∈ Ω : lim sup

ρ→0
|(Du)x0,ρ| < ∞ and lim sup

ρ→0
U∗∗(x0, ρ) = 0

}
.

�

5. Conclusions

In this paper, we studied the C1,α partial regularity for a wide class of multidimensional vectorial
variational problems involving both bulk and surface energies. The bulk energy densities are uniformly
strictly quasiconvex functions with subquadratic growth p ∈ (1, 2). Since the case p ≥ 2 had been
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addressed in a previous work by the authors, the present paper completes the analysis by covering
the entire range p > 1. The overall strategy of the proof is to establish an excess decay property
for a suitably chosen excess function. The core of the argument - and the main contribution of the
paper - is Proposition 3.1, where a one-step improvement of the excess is established. The proof
proceeds via a contradiction and blow-up argument. The proof of Proposition 3.1 is rather long;
nevertheless, we would like to highlight two fundamental estimates that are pivotal in the proof strategy.
These are the Caccioppoli estimate (3.16) and the higher integrability estimate (3.47) for the blow-up
sequences, in which the influence of the set E appears explicitly. These estimates, together with the
Sobolev–Poincaré inequality (2.7), which is specific to the subquadratic case, constitute the main tools
used to establish the result.

Finally, we would like to mention two possible directions for future research, kindly suggested by
one of the referees. The first concerns the potential extension of the same type of regularity to the
non-uniformly elliptic case. Another intriguing question concerns the double-phase case, which may
be more challenging, but should still be manageable - at least in the situation where the two phases are
separated in the sets E and Ω \ E.
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