Review

The impact of exclusive enteral nutrition on the intestinal microbiota in inflammatory bowel disease

  • Received: 02 April 2018 Accepted: 18 July 2018 Published: 20 July 2018
  • It is increasingly clear that the intestinal microbiota plays key roles in the pathogenesis of the conditions known as Crohn disease and ulcerative colitis (jointly known as the inflammatory bowel diseases). Perturbations of the microbiota, termed dysbiosis, are present at diagnosis and likely reflect earlier environmental influences along with interactions with intestinal immune responses. Over the last two decades, there has been increasing interest in the use of a nutritional therapy to induce remission of active Crohn disease. Amongst a number of recent studies focusing on the putative mechanisms of action of enteral nutrition in Crohn disease, there have been several reports illustrating profound interactions between this nutritional therapy and the intestinal microbiota. Although at present it is still not clear how these changes relate to concurrent improvements in inflammation, it has become an area of increasing interest. This review article focuses on the impacts of nutritional therapy in individuals with active Crohn disease and overviews the most recent data arising from international studies.

    Citation: Andrew S Day. The impact of exclusive enteral nutrition on the intestinal microbiota in inflammatory bowel disease[J]. AIMS Microbiology, 2018, 4(4): 584-593. doi: 10.3934/microbiol.2018.4.584

    Related Papers:

    [1] Manuela Larguinho, José Carlos Dias, Carlos A. Braumann . Pricing and hedging bond options and sinking-fund bonds under the CIR model. Quantitative Finance and Economics, 2022, 6(1): 1-34. doi: 10.3934/QFE.2022001
    [2] Longfei Wei, Lu Liu, Jialong Hou . Pricing hybrid-triggered catastrophe bonds based on copula-EVT model. Quantitative Finance and Economics, 2022, 6(2): 223-243. doi: 10.3934/QFE.2022010
    [3] Sebastian Ferrando, Andrew Fleck, Alfredo Gonzalez, Alexey Rubtsov . Trajectorial asset models with operational assumptions. Quantitative Finance and Economics, 2019, 3(4): 661-708. doi: 10.3934/QFE.2019.4.661
    [4] Amir Ahmad Dar, N. Anuradha . Comparison: Binomial model and Black Scholes model. Quantitative Finance and Economics, 2018, 2(1): 230-245. doi: 10.3934/QFE.2018.1.230
    [5] Yunjae Nam, Changwoo Yoo, Hyundong Kim, Jaewon Hong, Minjoon Bang, Junseok Kim . Accurate computation of Greeks for equity-linked security (ELS) near early redemption dates. Quantitative Finance and Economics, 2025, 9(2): 300-316. doi: 10.3934/QFE.2025010
    [6] Lianzhang Bao, Guangliang Zhao, Zhuo Jin . A new equilibrium trading model with asymmetric information. Quantitative Finance and Economics, 2018, 2(1): 217-229. doi: 10.3934/QFE.2018.1.217
    [7] Wenyan Hao, Claude Lefèvre, Muhsin Tamturk, Sergey Utev . Quantum option pricing and data analysis. Quantitative Finance and Economics, 2019, 3(3): 490-507. doi: 10.3934/QFE.2019.3.490
    [8] Fabrizio Di Sciorio, Raffaele Mattera, Juan Evangelista Trinidad Segovia . Measuring conditional correlation between financial markets' inefficiency. Quantitative Finance and Economics, 2023, 7(3): 491-507. doi: 10.3934/QFE.2023025
    [9] Takashi Kanamura . Supply-side perspective for carbon pricing. Quantitative Finance and Economics, 2019, 3(1): 109-123. doi: 10.3934/QFE.2019.1.109
    [10] Jin Liang, Hong-Ming Yin, Xinfu Chen, Yuan Wu . On a Corporate Bond Pricing Model with Credit Rating Migration Risksand Stochastic Interest Rate. Quantitative Finance and Economics, 2017, 1(3): 300-319. doi: 10.3934/QFE.2017.3.300
  • It is increasingly clear that the intestinal microbiota plays key roles in the pathogenesis of the conditions known as Crohn disease and ulcerative colitis (jointly known as the inflammatory bowel diseases). Perturbations of the microbiota, termed dysbiosis, are present at diagnosis and likely reflect earlier environmental influences along with interactions with intestinal immune responses. Over the last two decades, there has been increasing interest in the use of a nutritional therapy to induce remission of active Crohn disease. Amongst a number of recent studies focusing on the putative mechanisms of action of enteral nutrition in Crohn disease, there have been several reports illustrating profound interactions between this nutritional therapy and the intestinal microbiota. Although at present it is still not clear how these changes relate to concurrent improvements in inflammation, it has become an area of increasing interest. This review article focuses on the impacts of nutritional therapy in individuals with active Crohn disease and overviews the most recent data arising from international studies.


    [1] Lemberg DA, Day AS (2015) Crohn disease and colitis in children: An update for 2014. J Paediatr Child H 51: 266–270. doi: 10.1111/jpc.12685
    [2] McGovern DP, Kugathasan S, Cho JH (2015) Genetics of inflammatory bowel diseases. Gastroenterology 149: 1163–1176. doi: 10.1053/j.gastro.2015.08.001
    [3] Bernstein CN (2017) Review article: changes in the epidemiology of inflammatory bowel disease-clues for aetiology. Aliment Pharm Therap 46: 911–919. doi: 10.1111/apt.14338
    [4] Sairenji T, Collins KL, Evans DV (2017) An update on inflammatory bowel disease. Prim Care 44: 673–692. doi: 10.1016/j.pop.2017.07.010
    [5] Critch J, Day AS, Otley AR, et al. (2012) Clinical report: The utilization of enteral nutrition for the control of intestinal inflammation in pediatric Crohn disease. J Pediatr Gastr Nutr 54: 298–305. doi: 10.1097/MPG.0b013e318235b397
    [6] Day AS, Lopez RN (2015) Exclusive enteral nutrition in children with Crohn disease. World J Gastroenterol 21: 6809–6816. doi: 10.3748/wjg.v21.i22.6809
    [7] Voitk AJ, Echave V, Feller JH, et al. (1973) Experience with elemental diet in the treatment of inflammatory bowel disease. Is this primary therapy? Arch Surg 107: 329–333.
    [8] O'Morain C, Segal AW, Levi AJ (1984) Elemental diet as primary-treatment of acute Crohn's disease-A controlled trial. Brit Med J 288: 1859–1862. doi: 10.1136/bmj.288.6434.1859
    [9] Whitten KE, Leach ST, Bohane TD, et al. (2010) Effect of exclusive enteral nutrition on bone turnover in children with Crohn's disease. J Gastroenterol 45: 399–405. doi: 10.1007/s00535-009-0165-0
    [10] Werkstetter KJ, Schatz SB, Alberer M, et al. (2013) Influence of exclusive enteral nutrition therapy on bone density and geometry in newly diagnosed pediatric Crohn's disease patients. Ann Nutr Metab 63: 10–16. doi: 10.1159/000350369
    [11] Afzal NA, Addai S, Fagbemi A, et al. (2002) Refeeding syndrome with enteral nutrition in children: a case report, literature review and clinical guidelines. Clin Nutr 21: 515–520. doi: 10.1054/clnu.2002.0586
    [12] Akobeng AK, Thomas AG (2010) Refeeding syndrome following exclusive enteral nutritional treatment in Crohn disease. J Pediatr Gastr Nutr 51: 364–366.
    [13] Schulman JM, Pritzker L, Shaoul R (2017) Maintenance of remission with partial enteral nutrition therapy in pediatric Crohn's disease: A retrospective study. Can J Gastroenterol 2017: 5873158.
    [14] Nakahigashi M, Yamamoto T, Sacco R, et al. (2016) Enteral nutrition for maintaining remission in patients with quiescent Crohn's disease: current status and future perspectives. Int J Colorectal Dis 31: 1–7. doi: 10.1007/s00384-015-2348-x
    [15] Hirai F, Ishihara H, Yada S, et al. (2013) Effectiveness of concomitant enteral nutrition therapy and infliximab for maintenance treatment of Crohn's disease in adults. Digest Dis Sci 58: 1329–1334. doi: 10.1007/s10620-012-2374-2
    [16] Yamamoto T, Shiraki M, Nakahigashi M, et al. (2013) Enteral nutrition to suppress postoperative Crohn's disease recurrence: a five-year prospective cohort study. Int J Colorectal Dis 28: 335–340. doi: 10.1007/s00384-012-1587-3
    [17] Day AS (2015) Inflammatory bowel disease and the intestinal microbiota. J Pediatr Biochem 5: 60–64. doi: 10.1055/s-0035-1564576
    [18] McIlroy J, Ianiro G, Mukhopadhya I, et al. (2018) Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management. Aliment Pharm Therap 47: 26–42. doi: 10.1111/apt.14384
    [19] Sokol H, Pigneur B, Watterlot L, et al. (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. P Natl Acad Sci USA 105: 16731–16736. doi: 10.1073/pnas.0804812105
    [20] Quévrain E, Maubert MA, Michon C, et al. (2016) Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease. Gut 65: 415–425. doi: 10.1136/gutjnl-2014-307649
    [21] Madsen KL (2001) Inflammatory bowel disease: lessons from the IL-10 gene-deficient mouse. Clin Invest Med 24: 250–257.
    [22] Rutgeerts P, Goboes K, Peeters M, et al. (1991) Effect of faecal stream diversion on recurrence of Crohn's disease in the neoterminal ileum. Lancet 338: 771–774. doi: 10.1016/0140-6736(91)90663-A
    [23] D'Haens GR, Geboes K, Peeters M, et al. (1998) Early lesions of recurrent Crohn's disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology 114: 262–267. doi: 10.1016/S0016-5085(98)70476-7
    [24] Rutgeerts P, Hiele M, Goboes K, et al. (1995) Controlled trial of metronidazole treatment for prevention of Crohn's recurrence after ileal resection. Gastroenterology 108: 1617–1621. doi: 10.1016/0016-5085(95)90121-3
    [25] de Jong NSH, Leach ST, Day AS (2007) Polymeric formula has direct anti-inflammatory effects on enterocytes in an in vitro model of intestinal inflammation. Digest Dis Sci 52: 2029–2036. doi: 10.1007/s10620-006-9449-x
    [26] Nahidi L, Leach ST, Mitchell HM, et al. (2013) Nutritional therapy modulates inflammation and improves altered barrier function in a mouse model of colitis. Gastroenterology 144: S532.
    [27] Nahidi L, Day AS, Lemberg DA, et al. (2012) Differential effects of nutritional and non-nutritional therapies on intestinal barrier function in an in vitro model. J Gastroenterol 47: 107–117. doi: 10.1007/s00535-011-0471-1
    [28] Pryce-Millar E, Murch SH, Heuschkel RB (2004) Enteral nutrition therapy in Crohn's disease changes the mucosal flora. J Pediatr Gastr Nutr 39: 289.
    [29] Lionetti P, Callegari ML, Ferrai S, et al. (2005) Enteral nutrition and microflora in pediatric Crohn's disease. JPEN-Parenter Enter 29: S173–S175. doi: 10.1177/01486071050290S4S173
    [30] Leach ST, Mitchell HM, Eng WR, et al. (2008) Sustained modulation of intestinal microflora by exclusive enteral nutrition used to treat children with Crohn's disease. Aliment Pharm Therap 28: 724–733. doi: 10.1111/j.1365-2036.2008.03796.x
    [31] Gerasimidis K, Bertz M, Hanske L, et al. (2014) Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn's disease during enteral nutrition. Inflamm Bowel Dis 20: 861–871. doi: 10.1097/MIB.0000000000000023
    [32] Kaakoush NO, Day AS, Leach ST, et al. (2015) Effect of exclusive enteral nutrition on the microbiota of children with newly diagnosed Crohn's disease. Clin Transl Gastroen 6: e71. doi: 10.1038/ctg.2014.21
    [33] Quince C, Ijaz UZ, Loman N, et al. (2015) Extensive modulation of the fecal metagenome in children with Crohn's disease during exclusive enteral nutrition. Am J Gastroenterol 110: 1718–1729. doi: 10.1038/ajg.2015.357
    [34] Lewis JD, Chen EZ, Baldassano RN, et al. (2015) Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn's disease. Cell Host Microbe 18: 489–500. doi: 10.1016/j.chom.2015.09.008
    [35] Schwerd T, Frivolt K, Clavel T, et al. (2016) Exclusive enteral nutrition in active pediatric Crohn disease: Effects on intestinal microbiota and immune regulation. J Allergy Clin Immun 138: 592–596. doi: 10.1016/j.jaci.2015.12.1331
    [36] Dunn KA, Moore-Connors J, MacIntyre B, et al. (2016) Early changes in microbial community structure are associated with sustained remission after nutritional treatment of pediatric Crohn's disease. Inflamm Bowel Dis 22: 2853–2862. doi: 10.1097/MIB.0000000000000956
    [37] Jia W, Whitehead RN, Griffiths L, et al. (2010) Is the abundance of Faecalibacterium prausnitzii relevant to Crohn's disease? FEMS Microbiol Lett 310: 138–144. doi: 10.1111/j.1574-6968.2010.02057.x
    [38] Shiga H, Kajiura T, Shinozaki J, et al. (2012) Changes of faecal microbiota in patients with Crohn's disease treated with an elemental diet and total parenteral nutrition. Digest Liver Dis 44: 736–742. doi: 10.1016/j.dld.2012.04.014
    [39] Berntson L, Hedlund-Treutiger I, Alving K (2016) Anti-inflammatory effect of exclusive enteral nutrition in patients with juvenile idiopathic arthritis. Clin Exp Rheumatol 34: 941–945.
    [40] Berntson L, Agback P, Dicksved J (2016) Changes in fecal microbiota and metabolomics in a child with juvenile idiopathic arthritis (JIA) responding to two treatment periods with exclusive enteral nutrition (EEN). Clin Rheumatol 35: 1501–1506. doi: 10.1007/s10067-016-3238-5
  • This article has been cited by:

    1. Shuyun Jiao, Mingzhan Huang, An SIHR epidemic model of the COVID-19 with general population-size dependent contact rate, 2020, 5, 2473-6988, 6714, 10.3934/math.2020431
    2. Chaofan Qian, Yuhui Hu, Novel stability criteria on nonlinear density-dependent mortality Nicholson’s blowflies systems in asymptotically almost periodic environments, 2020, 2020, 1029-242X, 10.1186/s13660-019-2275-4
    3. Qian Cao, Xiaojin Guo, Anti-periodic dynamics on high-order inertial Hopfield neural networks involving time-varying delays, 2020, 5, 2473-6988, 5402, 10.3934/math.2020347
    4. Manickam Iswarya, Ramachandran Raja, Grienggrai Rajchakit, Jinde Cao, Jehad Alzabut, Chuangxia Huang, Existence, Uniqueness and Exponential Stability of Periodic Solution for Discrete-Time Delayed BAM Neural Networks Based on Coincidence Degree Theory and Graph Theoretic Method, 2019, 7, 2227-7390, 1055, 10.3390/math7111055
    5. Yadan Zhang, Minghui Jiang, Xue Fang, A New Fixed-Time Stability Criterion and Its Application to Synchronization Control of Memristor-Based Fuzzy Inertial Neural Networks with Proportional Delay, 2020, 52, 1370-4621, 1291, 10.1007/s11063-020-10305-9
    6. Qian Cao, Guoqiu Wang, Chaofan Qian, New results on global exponential stability for a periodic Nicholson’s blowflies model involving time-varying delays, 2020, 2020, 1687-1847, 10.1186/s13662-020-2495-4
    7. Hong Zhang, Qian Cao, Hedi Yang, Asymptotically almost periodic dynamics on delayed Nicholson-type system involving patch structure, 2020, 2020, 1029-242X, 10.1186/s13660-020-02366-0
    8. Anbalagan Pratap, Ramachandran Raja, Jehad Alzabut, Jinde Cao, Grienggrai Rajchakit, Chuangxia Huang, Mittag‐Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field, 2020, 43, 0170-4214, 6223, 10.1002/mma.6367
    9. Chaofan Qian, New periodic stability for a class of Nicholson's blowflies models with multiple different delays, 2020, 0020-7179, 1, 10.1080/00207179.2020.1766118
    10. Umesh Kumar, Subir Das, Chuangxia Huang, Jinde Cao, Fixed-time synchronization of quaternion-valued neural networks with time-varying delay, 2020, 476, 1364-5021, 20200324, 10.1098/rspa.2020.0324
    11. Chuangxia Huang, Luanshan Yang, Jinde Cao, Asymptotic behavior for a class of population dynamics, 2020, 5, 2473-6988, 3378, 10.3934/math.2020218
    12. M. Syed Ali, G. Narayanan, Sumit Saroha, Bandana Priya, Ganesh Kumar Thakur, Finite-time stability analysis of fractional-order memristive fuzzy cellular neural networks with time delay and leakage term, 2021, 185, 03784754, 468, 10.1016/j.matcom.2020.12.035
    13. Sudesh Kumari, Renu Chugh, Jinde Cao, Chuangxia Huang, Multi Fractals of Generalized Multivalued Iterated Function Systems in b-Metric Spaces with Applications, 2019, 7, 2227-7390, 967, 10.3390/math7100967
    14. M. Iswarya, R. Raja, G. Rajchakit, J. Cao, J. Alzabut, C. Huang, A perspective on graph theory-based stability analysis of impulsive stochastic recurrent neural networks with time-varying delays, 2019, 2019, 1687-1847, 10.1186/s13662-019-2443-3
    15. Xin Long, Novel stability criteria on a patch structure Nicholson’s blowflies model with multiple pairs of time-varying delays, 2020, 5, 2473-6988, 7387, 10.3934/math.2020473
    16. Lihong Huang, Huili Ma, Jiafu Wang, Chuangxia Huang, GLOBAL DYNAMICS OF A FILIPPOV PLANT DISEASE MODEL WITH AN ECONOMIC THRESHOLD OF INFECTED-SUSCEPTIBLE RATIO, 2020, 10, 2156-907X, 2263, 10.11948/20190409
    17. Xin Yang, Shigang Wen, Xian Zhao, Chuangxia Huang, Systemic importance of financial institutions: A complex network perspective, 2020, 545, 03784371, 123448, 10.1016/j.physa.2019.123448
    18. Wentao Wang, Wei Chen, Persistence and extinction of Markov switched stochastic Nicholson’s blowflies delayed differential equation, 2020, 13, 1793-5245, 2050015, 10.1142/S1793524520500151
    19. Xin Yang, Shigang Wen, Zhifeng Liu, Cai Li, Chuangxia Huang, Dynamic Properties of Foreign Exchange Complex Network, 2019, 7, 2227-7390, 832, 10.3390/math7090832
    20. Qian Cao, Guoqiu Wang, Dynamic analysis on a delayed nonlinear density-dependent mortality Nicholson's blowflies model, 2020, 0020-7179, 1, 10.1080/00207179.2020.1725134
    21. Hong Zhang, Chaofan Qian, Convergence analysis on inertial proportional delayed neural networks, 2020, 2020, 1687-1847, 10.1186/s13662-020-02737-3
    22. Ajendra singh, Jitendra Nath Rai, Stability of Fractional Order Fuzzy Cellular Neural Networks with Distributed Delays via Hybrid Feedback Controllers, 2021, 1370-4621, 10.1007/s11063-021-10460-7
    23. Qian Cao, Xin Long, New convergence on inertial neural networks with time-varying delays and continuously distributed delays, 2020, 5, 2473-6988, 5955, 10.3934/math.2020381
    24. Chuangxia Huang, Xiaoguang Yang, Jinde Cao, Stability analysis of Nicholson’s blowflies equation with two different delays, 2020, 171, 03784754, 201, 10.1016/j.matcom.2019.09.023
    25. Jian Zhang, Chuangxia Huang, Dynamics analysis on a class of delayed neural networks involving inertial terms, 2020, 2020, 1687-1847, 10.1186/s13662-020-02566-4
    26. Qian Wang, Hui Wei, Zhiwen Long, A non-reduced order approach to stability analysis of delayed inertial genetic regulatory networks, 2021, 33, 0952-813X, 227, 10.1080/0952813X.2020.1735531
    27. Jiafu Wang, Su He, Lihong Huang, Limit Cycles Induced by Threshold Nonlinearity in Planar Piecewise Linear Systems of Node-Focus or Node-Center Type, 2020, 30, 0218-1274, 2050160, 10.1142/S0218127420501606
    28. Gang Yang, Qian Cao, Stability for patch structure Nicholson’s blowflies systems involving distinctive maturation and feedback delays, 2020, 0952-813X, 1, 10.1080/0952813X.2020.1836032
    29. Chuangxia Huang, Xin Long, Jinde Cao, Stability of antiperiodic recurrent neural networks with multiproportional delays, 2020, 43, 0170-4214, 6093, 10.1002/mma.6350
    30. Qian Cao, Guoqiu Wang, New findings on global exponential stability of inertial neural networks with both time-varying and distributed delays, 2021, 0952-813X, 1, 10.1080/0952813X.2021.1883744
    31. Ruihan Chen, Song Zhu, Yongqiang Qi, Yuxin Hou, Reachable set bounding for neural networks with mixed delays: Reciprocally convex approach, 2020, 125, 08936080, 165, 10.1016/j.neunet.2020.02.005
    32. Shigang Wen, Yu Tan, Mengge Li, Yunke Deng, Chuangxia Huang, Analysis of Global Remittance Based on Complex Networks, 2020, 8, 2296-424X, 10.3389/fphy.2020.00085
    33. Zhenhua Duan, Changjin Xu, Anti-periodic behavior for quaternion-valued delayed cellular neural networks, 2021, 2021, 1687-1847, 10.1186/s13662-021-03327-7
    34. Yi Wang, Jinde Cao, Gang Huang, Further dynamic analysis for a network sexually transmitted disease model with birth and death, 2019, 363, 00963003, 124635, 10.1016/j.amc.2019.124635
    35. Luogen Yao, Qian Cao, Anti-periodicity on high-order inertial Hopfield neural networks involving mixed delays, 2020, 2020, 1029-242X, 10.1186/s13660-020-02444-3
    36. Anbalagan Pratap, Ramachandran Raja, Jinde Cao, Chuangxia Huang, Michal Niezabitowski, Ovidiu Bagdasar, Stability of discrete‐time fractional‐order time‐delayed neural networks in complex field, 2021, 44, 0170-4214, 419, 10.1002/mma.6745
    37. Luogen Yao, Global exponential stability on anti-periodic solutions in proportional delayed HIHNNs, 2021, 33, 0952-813X, 47, 10.1080/0952813X.2020.1721571
    38. Yanli Xu, Qian Cao, Xiaojin Guo, Stability on a patch structure Nicholson’s blowflies system involving distinctive delays, 2020, 105, 08939659, 106340, 10.1016/j.aml.2020.106340
    39. Yanli Xu, Qian Cao, Global asymptotic stability for a nonlinear density-dependent mortality Nicholson’s blowflies system involving multiple pairs of time-varying delays, 2020, 2020, 1687-1847, 10.1186/s13662-020-02569-1
    40. Sudesh Kumari, Renu Chugh, Jinde Cao, Chuangxia Huang, On the construction, properties and Hausdorff dimension of random Cantor one pth set, 2020, 5, 2473-6988, 3138, 10.3934/math.2020202
    41. A. Pratap, R. Raja, Jinde Cao, J. Alzabut, Chuangxia Huang, Finite-time synchronization criterion of graph theory perspective fractional-order coupled discontinuous neural networks, 2020, 2020, 1687-1847, 10.1186/s13662-020-02551-x
    42. Qian Cao, Guoqiu Wang, Hong Zhang, Shuhua Gong, New results on global asymptotic stability for a nonlinear density-dependent mortality Nicholson’s blowflies model with multiple pairs of time-varying delays, 2020, 2020, 1029-242X, 10.1186/s13660-019-2277-2
    43. Rundong Zhao, Qiming Liu, Meici Sun, Dynamical behavior of a stochastic SIQS epidemic model on scale-free networks, 2021, 1598-5865, 10.1007/s12190-021-01550-9
    44. Xianhui Zhang, Convergence analysis of a patch structure Nicholson’s blowflies system involving an oscillating death rate, 2021, 0952-813X, 1, 10.1080/0952813X.2021.1908433
    45. Roberto Galizia, Petri T. Piiroinen, Regions of Reduced Dynamics in Dynamic Networks, 2021, 31, 0218-1274, 2150080, 10.1142/S0218127421500802
    46. Jian Zhang, Ancheng Chang, Gang Yang, Periodicity on Neutral-Type Inertial Neural Networks Incorporating Multiple Delays, 2021, 13, 2073-8994, 2231, 10.3390/sym13112231
    47. Jiaying Zhou, Yi Zhao, Yong Ye, Yixin Bao, Bifurcation Analysis of a Fractional-Order Simplicial SIRS System Induced by Double Delays, 2022, 32, 0218-1274, 10.1142/S0218127422500687
    48. Shuping Li, Xiaorong Zhao, Ruixia Zhang, Site-bond percolation model of epidemic spreading with vaccination in complex networks, 2022, 85, 0303-6812, 10.1007/s00285-022-01816-1
    49. Lian Duan, Lihong Huang, Chuangxia Huang, Spatial dynamics of a diffusive SIRI model with distinct dispersal rates and heterogeneous environment, 2021, 20, 1534-0392, 3539, 10.3934/cpaa.2021120
    50. Jie Li, Jiu Zhong, Yong-Mao Ji, Fang Yang, A new SEIAR model on small-world networks to assess the intervention measures in the COVID-19 pandemics, 2021, 25, 22113797, 104283, 10.1016/j.rinp.2021.104283
    51. Chaouki Aouiti, Mahjouba Ben Rezeg, Impulsive multidirectional associative memory neural networks: New results, 2021, 14, 1793-5245, 10.1142/S1793524521500601
    52. Hong Zhang, Qian Cao, Hedi Yang, Dynamics analysis of delayed Nicholson-type systems involving patch structure and asymptotically almost periodic environments, 2022, 34, 0952-813X, 725, 10.1080/0952813X.2021.1924869
    53. Reinhard Schlickeiser, Martin Kröger, Determination of a Key Pandemic Parameter of the SIR-Epidemic Model from Past COVID-19 Mutant Waves and Its Variation for the Validity of the Gaussian Evolution, 2023, 5, 2624-8174, 205, 10.3390/physics5010016
    54. Xiaojin Guo, Chuangxia Huang, Jinde Cao, Nonnegative periodicity on high-order proportional delayed cellular neural networks involving $ D $ operator, 2020, 6, 2473-6988, 2228, 10.3934/math.2021135
    55. Qian Cao, Attractivity analysis on a neoclassical growth system incorporating patch structure and multiple pairs of time-varying delays, 2021, 14173875, 1, 10.14232/ejqtde.2021.1.76
    56. Reinhard Schlickeiser, Martin Kröger, Key Epidemic Parameters of the SIRV Model Determined from Past COVID-19 Mutant Waves, 2023, 3, 2673-8112, 592, 10.3390/covid3040042
    57. Shixiang Han, Guanghui Yan, Huayan Pei, Wenwen Chang, Dynamical Analysis of an Improved Bidirectional Immunization SIR Model in Complex Network, 2024, 26, 1099-4300, 227, 10.3390/e26030227
    58. Guangyu Li, Haifeng Du, Jiarui Fan, Xiaochen He, Wenhua Wang, The Effect of Fangcang Shelter Hospitals under Resource Constraints on the Spread of Epidemics, 2023, 20, 1660-4601, 5802, 10.3390/ijerph20105802
    59. Chuangxia Huang, Jiafu Wang, Lihong Huang, Asymptotically almost periodicity of delayed Nicholson-type system involving patch structure, 2020, 2020, 1072-6691, 61, 10.58997/ejde.2020.61
    60. 德玉 郭, Construction and Dynamic Analysis of a Class of Hepatitis C Model with Population Heterogeneity, 2023, 12, 2324-7991, 4665, 10.12677/AAM.2023.1211458
    61. Guojin Wang, Wei Yao, An application of small-world network on predicting the behavior of infectious disease on campus, 2024, 9, 24680427, 177, 10.1016/j.idm.2023.12.007
    62. Bingjie Wu, Liang’an Huo, Studying the impact of individual emotional states on the co-evolution of information, behavior and disease in multiplex networks, 2025, 03784371, 130480, 10.1016/j.physa.2025.130480
    63. Samuel Lopez, Natalia L. Komarova, An optimal network that promotes the spread of an advantageous variant in an SIR epidemic, 2025, 00225193, 112095, 10.1016/j.jtbi.2025.112095
    64. Ruomu Miao, Qingxuan Wang, Cross-cultural communication and the micro-spread of internet rumors: mechanisms and predictions, 2025, 2197-4233, 10.1007/s40636-025-00340-3
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5476) PDF downloads(910) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog