Research article

An enhanced triclustering $ \delta $-Trimax method with fuzzy cuckoo search based on Lévy flight and Gaussian distribution for gene expression data

  • Published: 06 January 2026
  • The triclustering method employed in this study integrates the $ \delta $-Trimax approach with the fuzzy cuckoo search (FCS), thereby leveraging the Lévy flight and Gaussian distribution to analyze gene expression data in three dimensions. In this framework, the initial triclusters produced by $ \delta $-Trimax are further optimized using FCS, where the Lévy flight enhances global exploration and the Gaussian distribution intensifies local exploitation, thus achieving a balanced search for optimal solutions. Each tricluster set is evaluated using the tricluster quality index (TQI) to ensure coherence across genes, conditions, and time points. The method was applied to gene expression datasets from primary fibroblast cells and heart disease samples. In the fibroblast dataset, the best tricluster set was obtained with $ \delta = 0.015 $ and yielded the lowest average TQI value. For the heart disease dataset, the most optimal solution was achieved with $ \delta = 0.026 $, which yielded the lowest average TQI, and the best tricluster showed large gene coverage across multiple time points. A functional analysis of the selected triclusters using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways uncovered significant enrichment in pathways such as the NF-$ \kappa $B signaling pathway (hsa04064), TGF-$ \beta $ signaling pathway (hsa04350), and calcium signaling pathway (hsa04020), all of which are mechanistically relevant to immune modulation, extracellular matrix organization, and cardiac muscle function. These findings highlight the utility of the proposed hybrid framework in uncovering biologically meaningful gene modules and provide valuable insights into the molecular mechanisms underlying fibrotic and cardiovascular diseases.

    Citation: Titin Siswantining, Muhamad Ido Raskapati, Nisa Nurul Hidayah, Gianinna Ardaneswari, Saskya Mary Soemartojo, Siti Nurrohmah, Devvi Sarwinda, Setia Pramana. An enhanced triclustering $ \delta $-Trimax method with fuzzy cuckoo search based on Lévy flight and Gaussian distribution for gene expression data[J]. Mathematical Biosciences and Engineering, 2026, 23(2): 366-387. doi: 10.3934/mbe.2026015

    Related Papers:

  • The triclustering method employed in this study integrates the $ \delta $-Trimax approach with the fuzzy cuckoo search (FCS), thereby leveraging the Lévy flight and Gaussian distribution to analyze gene expression data in three dimensions. In this framework, the initial triclusters produced by $ \delta $-Trimax are further optimized using FCS, where the Lévy flight enhances global exploration and the Gaussian distribution intensifies local exploitation, thus achieving a balanced search for optimal solutions. Each tricluster set is evaluated using the tricluster quality index (TQI) to ensure coherence across genes, conditions, and time points. The method was applied to gene expression datasets from primary fibroblast cells and heart disease samples. In the fibroblast dataset, the best tricluster set was obtained with $ \delta = 0.015 $ and yielded the lowest average TQI value. For the heart disease dataset, the most optimal solution was achieved with $ \delta = 0.026 $, which yielded the lowest average TQI, and the best tricluster showed large gene coverage across multiple time points. A functional analysis of the selected triclusters using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways uncovered significant enrichment in pathways such as the NF-$ \kappa $B signaling pathway (hsa04064), TGF-$ \beta $ signaling pathway (hsa04350), and calcium signaling pathway (hsa04020), all of which are mechanistically relevant to immune modulation, extracellular matrix organization, and cardiac muscle function. These findings highlight the utility of the proposed hybrid framework in uncovering biologically meaningful gene modules and provide valuable insights into the molecular mechanisms underlying fibrotic and cardiovascular diseases.



    加载中


    [1] R. Wang, L. Li, M. Chen, X. Li, Y. Liu, Z. Xue, et al., Gene expression insights: Chronic stress and bipolar disorder: A bioinformatics investigation, Math. Biosci. Eng., 21 (2024), 392–414, https://doi.org/10.3934/mbe.2024018 doi: 10.3934/mbe.2024018
    [2] L. Nguyen-Ngoc, Q. Nguyen-Huu, G. de Roeck, T. Bui-Tien, M. Abdel-Wahab, Deep neural network and evolved optimization algorithm for damage assessment in a truss bridge, Mathematics, 12 (2024), 2300. https://doi.org/10.3390/math12152300 doi: 10.3390/math12152300
    [3] Y. Li, H.-L. Minh, M. Cao, X. Qian, M. A. Wahab, An integrated surrogate model-driven and improved termite life cycle optimizer for damage identification in dams, Mech. Syst. Signal Process., 208 (2024), 110986, https://doi.org/10.1016/j.ymssp.2023.110986 doi: 10.1016/j.ymssp.2023.110986
    [4] N. Narmadha, R. Rathipriya, Greedy two way K-means clustering for optimal coherent tricluster, Int. J. Sci. Technol. Res., 8 (2019), 10.
    [5] T. Siswantining, N. Saputra, D. Sarwinda, H. S. Al-Ash, Triclustering discovery using the $\delta$-Trimax method on microarray gene expression data, Symmetry, 13 (2021), 437. https://doi.org/10.3390/sym13030437 doi: 10.3390/sym13030437
    [6] X. S. Yang, S. Deb, Cuckoo search via Lévy flights, in 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), IEEE, 2009,210–214, https://doi.org/10.1109/NABIC.2009.5393690
    [7] S. Palaniswamy, P. Kandhasamy, Rough fuzzy cuckoo search for triclustering microarray gene expression data, Turk. J. Electr. Eng. Comput. Sci.s, 27 (2019), 4328–4339, https://doi.org/10.3906/elk-1809-86 doi: 10.3906/elk-1809-86
    [8] S. Ghosh, S. K. Dubey, Comparative analysis of K-means and fuzzy C-means algorithms, Int. J. Adv. Comput. Sci. Appl., 4 (2013), 35–39. https://doi.org/10.14569/IJACSA.2013.040406 doi: 10.14569/IJACSA.2013.040406
    [9] L. Khrissi, N. El Akkad, H. Satori, K. Satori, An efficient image clustering technique based on fuzzy C-means and cuckoo search algorithm, Int. J. Adv. Comput. Sci. Appl., 12 (2021), 423–432. https://doi.org/10.14569/IJACSA.2021.0120647 doi: 10.14569/IJACSA.2021.0120647
    [10] T. Siswantining, A. Bustamam, D. Sarwinda, S. M. Soemartojo, M. A. Latief, E. A. Octaria, et al., Triclustering method for finding biomarkers in human immunodeficiency virus-1 gene expression data, Math. Biosci. Eng., 19 (2022), 6743–6763. https://doi.org/10.3934/mbe.2022318 doi: 10.3934/mbe.2022318
    [11] T. Siswantining, M. A. S. Istianingrum, S. M. Soemartojo, D. Sarwinda, N. Saputra, S. Pramana, Triclustering implementation using hybrid $\delta$-trimaxparticle swarm optimization and gene ontology analysis on three-dimensional gene expression data, Mathematics, 11 (2023), 4219, https://doi.org/10.3390/math11194219 doi: 10.3390/math11194219
    [12] A. Bhar, M. Haubrock, A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, E. Wingender, $\delta$-TRIMAX: Extracting triclusters and analysing coregulation in time series gene expression data, in Algorithms in Bioinformatics, Springer, Berlin, Heidelberg, (2012), 165–177. https://doi.org/10.1007/978-3-642-33122-0_13
    [13] A. M. Kamoona, J. C. Patra, A. Stojcevski, An enhanced cuckoo search algorithm for solving optimization problems, in 2018 IEEE Congress on Evolutionary Computation (CEC), (2018), 1–6, https://doi.org/10.1109/CEC.2018.8477784
    [14] A. Y. Gital, M. Hamada, K. Haruna, M. Hassan, F. Shittu, S. Y. Ilu, et al., Hybrid of cuckoo search algorithm with Lévy flight and neural network for crude oil prices prediction, J. Comput. Theor. Nanosci., 16 (2019), 4092–4104. https://doi.org/10.1166/jctn.2019.8611 doi: 10.1166/jctn.2019.8611
    [15] M. A. Al-Abaji, Cuckoo search algorithm: Review and its application, Tikrit J. Pure Sci., 26 (2021), 137–144. https://doi.org/10.25130/tjps.v26i2.130 doi: 10.25130/tjps.v26i2.130
    [16] C. Ouyang, X. Liu, D. Zhu, Y. Zheng, C. Zhou, C. Zou, A multi-strategy hybrid cuckoo search algorithm with specular reflection based on a population linear decreasing strategy, Int. J. Mach. Learn. Cybern., 15 (2024), 5683–5723. https://doi.org/10.1007/s13042-024-02273-6 doi: 10.1007/s13042-024-02273-6
    [17] R. Salgotra, S. Singh, P. Verma, L. Abualigah, A. H. Gandomi, Mutation adaptive cuckoo search hybridized naked mole rat algorithm for industrial engineering problems, Sci. Rep., 15 (2025), 19655. https://doi.org/10.1038/s41598-025-01033-y doi: 10.1038/s41598-025-01033-y
    [18] D. F. Soares, R. Henriques, S. C. Madeira, Comprehensive assessment of triclustering algorithms for three-way temporal data analysis, Pattern Recognit., 150 (2024), 110303. https://doi.org/10.1016/j.patcog.2024.110303 doi: 10.1016/j.patcog.2024.110303
    [19] S. Palaniswamy, K. Premalatha, TrioCuckoo: A multi objective cuckoo search algorithm for triclustering microarray gene expression data, J. Inf. Sci. Eng., 34 (2018), 1617–1631. https://doi.org/10.6688/JISE.201811_34(6).0014 doi: 10.6688/JISE.201811_34(6).0014
    [20] M. Pomaznoy, B. Ha, B. Peters, GOnet: A tool for interactive gene ontology analysis, BMC Bioinf., 19 (2018), 1–8. https://doi.org/10.1186/s12859-018-2533-3 doi: 10.1186/s12859-018-2533-3
    [21] A. Alexa, J. Rahnenfuhrer, F. Marini, Gene set enrichment analysis with TopGO, (2019). Available from: https://bioconductor.statistik.tu-dortmund.de/packages/3.9/bioc/vignettes/topGO/inst/doc/topGO.pdf.
    [22] S. Bhattacharyya, F. Fang, W. Tourtellotte, J. Varga, Egr-1: New conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis), J. Pathol., 229 (2013), 286–297. https://doi.org/10.1002/path.4131 doi: 10.1002/path.4131
    [23] W. A. N. Daeng, T. Siswantining, A. Bustamam, P. Anki, $\delta$-TRIMAX method with silhouette coefficient on microarray gene expression data for early detection of heart failure, in 2022 5th International Conference on Information and Communications Technology (ICOIACT), (2022), 412–416, https://doi.org/10.1109/ICOIACT55506.2022.9971865
    [24] H. Zheng, Y. Zhou, A novel cuckoo search optimization algorithm based on Gauss distribution, J. Comput. Inf. Syst., 8 (2012), 4193–4200.
    [25] J. Liu, M. Zeng, Y. Ge, C. Wu, X. Wang, Improved Cuckoo Search algorithm for numerical function optimization, J. Ind. Manage. Optim., 16 (2020), 103–115. https://doi.org/10.3934/jimo.2018142 doi: 10.3934/jimo.2018142
    [26] EMBL-EBI, QuickGO: Gene Ontology Browser. Available from: https://www.ebi.ac.uk/QuickGO/.
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(231) PDF downloads(14) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog