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Abstract: The triclustering method employed in this study integrates the 6-Trimax approach with the
fuzzy cuckoo search (FCS), thereby leveraging the Lévy flight and Gaussian distribution to analyze
gene expression data in three dimensions. In this framework, the initial triclusters produced by J-
Trimax are further optimized using FCS, where the Lévy flight enhances global exploration and
the Gaussian distribution intensifies local exploitation, thus achieving a balanced search for optimal
solutions. Each tricluster set is evaluated using the tricluster quality index (TQI) to ensure coherence
across genes, conditions, and time points. The method was applied to gene expression datasets from
primary fibroblast cells and heart disease samples. In the fibroblast dataset, the best tricluster set was
obtained with 6 = 0.015 and yielded the lowest average TQI value. For the heart disease dataset,
the most optimal solution was achieved with 6 = 0.026, which yielded the lowest average TQI, and
the best tricluster showed large gene coverage across multiple time points. A functional analysis of
the selected triclusters using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways uncovered significant enrichment in pathways such as the NF-«B signaling pathway
(hsa04064), TGF-g signaling pathway (hsa04350), and calcium signaling pathway (hsa04020), all
of which are mechanistically relevant to immune modulation, extracellular matrix organization, and
cardiac muscle function. These findings highlight the utility of the proposed hybrid framework in
uncovering biologically meaningful gene modules and provide valuable insights into the molecular
mechanisms underlying fibrotic and cardiovascular diseases.

Keywords: fuzzy cuckoo search; gene expression data; gene ontology; triclustering quality index;
triclustering analysis
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1. Introduction

Data serves as a critical foundation for planning, decision-making, and rule-establishing in various
domains. The process of extracting meaningful information from the data is known as data mining,
where clustering techniques are frequently employed. However, due to certain limitations in
clustering methods, the concepts of biclustering and triclustering have been introduced. Biclustering
enables simultaneous clustering across observations and attributes, thus offering a nuanced view of
data relationships. Triclustering further extends this capability by accommodating three-dimensional
data, thereby encompassing observations, attributes, and the context dimension. These methodologies
are particularly pivotal in bioinformatics, thereby facilitating the analysis of microarray technology
data. Additionally, recent studies have emphasized the importance of advanced computational
frameworks to identify gene modules that are specific to both condition and time in complex diseases,
thus highlighting the growing role of integrated optimization strategies in biomedical research [1].
Moreover, recent optimization-driven studies demonstrated the utility of hybrid metaheuristics for
complex inference and diagnostics in applied domains [2, 3]. In response to this challenge, we
propose a novel triclustering framework that aims to overcome these limitations. Our method seeks to
achieve two main objectives: (1) enhance the homogeneity of the initial tricluster population to better
reflect meaningful biological patterns; and (2) improve the optimization process for discovering
high-quality triclusters, particularly by managing the uncertainty that is characteristic of gene
expression measurements.

This allows for a deeper understanding of gene relationships within specific conditions and
timeframes, thus enhancing our grasp of complex biological processes. However, traditional
clustering and biclustering techniques often fall short in capturing the intricate, multi-dimensional
structures inherent in biological datasets, especially gene expression data involving varying
conditions and time points. Therefore, there is a critical need for more sophisticated approaches that
can simultaneously consider multiple dimensions while addressing uncertainty and heterogeneity in
the data. The increasing complexity of biological datasets in recent years further underscores this
need, as demonstrated by contemporary applications of mathematical modeling and integrative
analyses in genomic and biomedical contexts [1]. Compared with other established triclustering
schemes (e.g., Trimax variants with random or greedy initializations, particle swarm optimization
(PSO)/cuckoo search (CS)—based optimizers, or tensor factorization families), 6-Trimax offers a
principled control of homogeneity via an mean square residual (MSR) threshold (6), thus producing
an initial population with very low residue. This design reduces the sensitivity to noisy genes and
improves the downstream optimization stability. In our setting, o-Trimax outperformed
random/greedy initializations in both compactness and downstream tricluster quality index (TQI).

The integration of 6-Trimax and the FCS was designed to synergize their respective strengths:
o-Trimax’s ability to construct highly homogeneous initial tricluster populations and the FCS’s
capacity for a robust global search and uncertainty management through fuzzy logic and probabilistic
exploration (Gaussian distribution and Lévy flight). This hybrid approach is intended to surpass the
performance of previous methods that solely rely on either heuristic optimization or simple random
initialization. This study introduces a novel tricluster analysis method that integrates the FCS
algorithm, thereby leveraging the Gaussian distribution, with the ¢ -Trimax algorithm, and combines
o-Trimax with an FCS based on the Lévy flight. Initially, the §-Trimax algorithm is utilized to form
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the early tricluster population, which is then optimized using the FCS algorithm, thereby drawing on
the Gaussian distribution. This approach marks an advance from Narmadha’s work, which applied the
Greedy Two-Way K-means algorithm for the initial population setup, followed by optimization
through the PSO algorithm [4]. The FCS method, which is an evolution of the cuckoo search strategy,
incorporates fuzzy logic for the evaluation of cluster fitness. Inspired by the parasitic nature of certain
cuckoo species that lay their eggs in the nests of other birds, the FCS employs fuzzy C-means as its
objective function and utilizes the Lévy flight for tricluster formation. A replacement of suboptimal
clusters from previous processes is executed using a local random walk. This design choice aligns
with contemporary evidence that evolved metaheuristics improve the search efficiency and solution
quality in high-dimensional settings [2, 3].

Unlike the straightforward CS algorithm that initiates with a randomly encoded initial tricluster
population, the proposed algorithm leverages the nodes deletion algorithm in ¢-Trimax for the initial
population creation. Implementing the nodes deletion strategy within 6-Trimax aims to achieve an
initial tricluster population characterized by significant homogeneity. This could enhance the efficiency
in identifying the optimal tricluster solutions [4]. The ¢-Trimax algorithm’s principle of setting a &
threshold as the upper limit for the MSR facilitates obtaining MSR values below this threshold, nearing
zero, which signifies a high degree of tricluster homogeneity [5].

The basic CS employs the Lévy flight to explore the search space [6]. However, the proposed CS
algorithm utilizes a Gaussian distribution random walk, which was shown to produce significantly
better tricluster solutions with a higher level of convergence compared to the basic CS algorithm [7].
This results in the Gaussian distribution-based CS finding optimal tricluster solutions more effectively
and efficiently. The proposed FCS algorithm is an advancement of the CS algorithm, thereby
incorporating fuzzy concepts with fuzzy C-means (FCM) as the objective function to evaluate the
tricluster suitability. The FCS algorithm uses fuzzy memberships to handle uncertainty in
high-dimensional data [7-9].

Both the Lévy flight and Gaussian distribution strategies aim to generate new candidate solutions
by random perturbation, though they significantly differ in their step-size behavior. The Lévy flight
introduces a heavy-tailed probability distribution, enabling occasional large jumps, which enhances
the global exploration. In contrast, the Gaussian distribution promotes smaller, normally distributed
perturbations, thus supporting local exploitation. In addition, the Lévy flight strategy often
incorporates a Lévy constant to govern the jump scale, while Gaussian-based methods may adjust
membership functions using sigmoid transformations to better model the uncertainty in the fuzzy
optimization processes.

This research employs a hybrid triclustering analysis method that combines the J-Trimax and FCS
algorithms, based on the Lévy flight and Gaussian distribution, to analyze gene expression data from
fibroblast cells and heart disease. The initial phase involves forming a homogenous tricluster
population using the J-Trimax method. The ¢ threshold value for running the algorithm within
o-Trimax is determined using the silhouette coefficient method, which was chosen for its ability to
better identify and handle outliers compared to other methods. The subsequent phase is the
optimization phase using the FCS method based on the Lévy flight and Gaussian distribution. This
triclustering formation phase aims to identify the optimal tricluster set. The TQI method is used to
evaluate the tricluster results, where a lower TQI value indicates a better tricluster quality [10, 11].
Furthermore, an advanced analysis using GO will be employed. In the GO evaluation, the tricluster
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results are further analyzed to understand the relationships of the genes within the tricluster to
biological processes, molecular functions, and cellular components. Through this integrated
methodology, we aim to provide a more reliable and biologically meaningful analysis of gene
expression data, thus potentially contributing to deeper insights into gene regulation mechanisms
under specific biological contexts.

2. Materials and methods

2.1. Perfect shifting triclustering

A perfect shifting triclustering analysis is used to identify genes that are co-regulated in response
to specific treatments or conditions over an observed period. Suppose there is a tricluster 7(P, Q, R) =
tpgr, where p € P, g € Q, r € R represents a perfect shifting tricluster if the elements of the tricluster
T can be expressed in an equation as follows:

togr = A+, + B, + 1, 2.1)

where A is the tricluster constant, and «,, 5,, and 7, are the shifting factors from the p-th gene, the g-th
condition, and the r-th time, respectively. The equations to calculate the average value at each node
can be expressed as follows:

1
for = —— Loars (2.2)
TolT qG;ER e

1
t = 1 rs (23)
" |PIIR] pePZJER e

1
t = T oA t rs (24)
TZ] p;qu r

where #,0r 1s the average value for the p-th gene, 7p. 1s the average value for the g-th condition, and
tpor 18 the average value for the r-th time. The tricluster constant and the shifting factors from the p-th
gene, the g-th condition, and the r-th time can be expressed as follows:

1
A= = —— 2.
tror = TR 2t 3)

pePgeQ,reR

where 1,,, is the value in the data for the p-th gene, the g-th condition, and the r-th time point, |P]| is the
number of genes, |Q| is the number of conditions, |R| is the number of time points, and A is the average
value of the tricluster.

The described elements are linked with the previously discussed equations, thus leading to the
formulation of the following three additional equations:

@p =Ip0r — IpoR, (26)

By = tpqr — tPoR; 2.7
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nr = tpor — IPQRs (2.8)

where «,, represents the difference between the average value of the p-th gene and the tricluster’s
average value, S, is the difference between the average value of the g-th condition and the tricluster’s
average value, and 7, is the difference between the average value of the r-th time point and the
tricluster’s average value. The perfect shifting triclustering 7,,, for each element 7,,, can be expressed
in the following equation:

qur = tpor + tpgr + tpor — ZIPQR. (2.9)

2.2. MSR

MSR measures the difference between the estimated value from the tricluster model and the actual
value in the three-dimensional data. The smaller the MSR value on the data, the better the result
indicates. To obtain the MSR value, it’s necessary to calculate the residual value of each gene,
condition, and time element, which is computed using the following equation:

Spar = toar = fpar (2.10)
= tpgr — (tpor + tpgr + tpor — 2tpoRr) (2.11)
= fpgr — tpor — tpqr — tPor + 2tpog. (2.12)

Once the residual values for each gene, condition, and time element, represented by s,,., are
obtained, the calculation to derive the MSR can be expressed through the following equation:

1
MSRyy = ———— 52 (2.13)
IPIIQIIRI pepﬁq%,,e,e v
1
=— (tpar — toor — tPar — tror + 2tpoR)*- (2.14)
IPIQIR] pep,q%,,e,e por - peR e T R

2.3. 6-Trimax

The 6-Trimax method is employed to form an initial set of homogeneous triclusters with minimal
MSR values. The 6-Trimax algorithm used in this study incorporates both multiple nodes deletion and
single node deletion algorithms because the process of node removal with these algorithms is capable
of achieving minimal MSR values. The multiple nodes deletion algorithm sets a parameter value
A > 0 that serves as a threshold to control the amount of deletion performed [11]. This algorithm is
executed if the number of dimensions for the genes, conditions, or time exceeds 50 [12]. The deletions
in the multiple nodes’ deletion algorithm for each gene, condition, and time can be expressed in the
following equations:

1 2
m Z (tpqr — Ipor — Ipgr — Ipor + ZIPQR) > AS, (2.15)
qeQ,reR
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1 2
m Z (tpqr = Ipor — Ipgr — Ipor + 2tPQR) > AS, (2.16)
PEP,reR
1 2
P— Z (tpqr - thR - tqu —Ipor + 2tPQR) > AS, (217)
PIOI 44,

where 1, represents the gene data value, 1,or being is the average value of the p-th gene, tp. is the
average value of the g-th condition, #po, is the average value of the r-th time point, and #ppg is the
average value of all elements within the tricluster. Here, S denotes the current MSR of the tricluster,
with § = MSR,,, as defined in Eq (2.13) and A is a scale value in multiple nodes deletion that is
greater than 0. The p-th gene will be removed if it satisfies a certain condition, the g-th condition
will be removed if it satisfies another condition, and the r-th time point will be removed if it satisfies
yet another condition. The single node deletion algorithm plays a role in removing nodes one by one
when the tricluster’s MSR value is greater than 6. The removal is done on genes, conditions, or time
points that have the highest u value. The calculation of the u value for each gene, condition, and time
is expressed through the following equations.

1 2
Hop) = TAmmr Z (tpqr —Ipor = tpgr — tpor + 2tPQR) ) (2.18)
QIR 54,
1 2
H@) = Tonml Z (qur —Ipor — Ipqr — Ipor + 2fPQR) ; (2.19)
IPIRl &=,
1 2
By = i > (tpar = tor = trgr = tror + 2tpor) - (2.20)
1Pl £,

24. FCS

The FCS is an optimization algorithm that combines the FCM objective function with the
metaheuristic CS algorithm based on the Lévy flight. The FCM is an unsupervised clustering
algorithm applied to problems related to feature analyses, clustering, and grouping design [8]. The
FCM method within the FCS serves to address uncertainty in data through the membership values of
objects to be in a particular cluster. This objective function is calculated by considering the fuzzy
membership values of each generated solution [6]. The FCS algorithm uniquely combines the global
optimization capabilities of the CS [13, 14] with the uncertainty management strength of the FCM
clustering approach [8]. By integrating fuzzy logic into the CS framework, the FCS enables a more
flexible and robust search process, which is particularly suitable for noisy and high-dimensional data
such as gene expression profiles. The use of the Lévy flight enhances the exploration capability of the
algorithm, thus allowing it to escape the local optima and efficiently explore the search space.
Moreover, recent studies have demonstrated the effectiveness of CS and its variants in handling
complex optimization problems and biomedical data analyses [15], thus highlighting the suitability of
the FCS for tasks that require both precision and adaptability. These findings are further supported by
recent advancements in hybrid and adaptive CS algorithms for high-dimensional and real-time
optimization tasks [16—18], thus reinforcing the relevance and scalability of the FCS approach in
modern data-intensive domains.
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The FCM starts with constructing a membership matrix G containing g;;, which represents the
membership weight of each object j in cluster i. The calculation to obtain the initial membership
weight matrix values is expressed in the following equation:

tcij .
, ift i > 0
gy = | her DU (2.21)
O, if l’C,’j = O,
where f¢;; represents the value of the i-th tricluster for the j-th object. The next step involves calculating

the value of the center of the i-th cluster (c;), which is expressed in the following equation:

n m X
o= Z{,‘:l gij'x]
=Ty om0

Zj:l gl]

where g;; is the membership weight of the j-th object in the i-th cluster, x; is the value of the j-th object
in the data, m is the fuzzifier, and C is the number of clusters. The next step involves calculating the
value of k;;, which represents the distance of the j-th object from the center of the i-th cluster, which is
expressed in the following equation:

(2.22)

kij = J(xj - ci)?, (2.23)

where x; is the value of the j-th object, and ¢; is the center of the i-th cluster. After determining the
distance of the j-th object from the center of the i-th cluster, the membership matrix g;; is updated with
the following equation:

cij

1
_ ) se (Gepdip? )
8i i = =1 ki

0, tCij =0.

, tCij >0
(2.24)

2.5. TQI

The results from the data processing using a triclustering analysis need to be evaluated to assess
the quality of the generated triclusters using the TQI. The calculation of the TQI value for the n-th
tricluster is formulated in the previous equation as follows [19]:

MS Rdatan

TQI, =
0 7

(2.25)
The TQI value is derived from the division of the n-th MSR by the volume of the n-th tricluster.
A low TQI value indicates that the members of the tricluster have a close relationship in the three-

dimensional space and can be relied upon to explain data patterns. To find the volume of the n-th
tricluster, the following equation is used:

Vi = |Pu] X [Qn] X IRy (2.26)
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2.6. GO

GO is a controlled hierarchical vocabulary that is used to describe molecular functions, biological
processes, and cellular components [20]. Within the context of triclustering, GO is utilized to conduct a
biological analysis of tricluster results. The aim of a biological analysis is to understand, measure, and
compare biological characteristics, responses, or effects. A GO analysis is carried out by associating
groups of genes with specific biological processes, molecular functions, and cellular components using
gene ontology [21]. This analysis is performed using algorithms or software such as GOnet to calculate
p-values to determine the significance of the associations within the gene groups.

2.7. Proposed method

A triclustering analysis which uses the combined o-Trimax and FCS method begins with
determining the 6 parameter (via the silhouette coefficient) to run o-Trimax and obtain a
homogeneous set of seed triclusters with a low MSR. We adopt 6-Trimax for the initialization because
its explicit MSR threshold concentrates the search on biologically coherent regions and reduces the
noise sensitivity, which we found to be more effective than random/greedy starts or a direct CS or
PSO [4,5]. Then, the resulting seeds are refined with the FCS, where Lévy flights support global
exploration and Gaussian steps support local exploitation, while fuzzy memberships accommodate
uncertainty in high-dimensional expression data [7,9]. Empirically, this design yields consistently
lower TQI and competitive runtimes.

The workflow of the FCS triclustering method based on a Lévy flight is as follows:

1) Determine the ¢ scale value using the silhouette coefficient;

2) Find an initial homogeneous tricluster solution using the J-Trimax node deletion method,
specifically multiple nodes deletion and a single node deletion;

3) Encode the initial tricluster into binary form;

4) Search for the tricluster solution using the FCS method based on a Lévy flight;

5) Compare the objective function values of the initial tricluster with that of the FCS-derived
tricluster based on a Lévy flight and retain the best solution;

6) Discover the optimal tricluster solution using a Local Random Walk;

7) Compare the objective function values of the tricluster obtained from FCS based on a Lévy flight
with the tricluster from local random walk and retain the best solution;

8) Continue with the best solution using the TQI; and

9) The best tricluster solution is analyzed using GO.

The combined method of the FCS based on a Gaussian distribution and d-Trimax consists of two
stages: the initial population formation stage and the optimization stage. The aim of the initial
population formation is to obtain a homogenous initial population with the minimum MSR to reduce
the computational burden during the optimization stage. Initially, the population is formed using the
nodes deletion algorithm in §-Trimax.

The ¢-Trimax algorithm consists of three processes: multiple nodes deletion, single nodes deletion,
and nodes addition. However, in the proposed method, only multiple nodes deletion and a single
node deletion are used because these processes are already capable of producing a tricluster with the
minimum MSR value that meets the criteria as an initial population for the combined method of the
FCS based on a Gaussian distribution with 6-Trimax.
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During the optimization phase of the combined method of the FCS based on a Gaussian
distribution with ¢-Trimax, the FCS algorithm will be utilized. Previously obtained solutions will be
optimized using the FCS algorithm. The search for new solutions will employ a Gaussian distribution.
Each solution will be compared based on its objective function value, and the solution with the
smaller objective function value will be retained in the next generation until the maximum number of
generations is reached. As illustrated in Figure 1, the stages of research encompass the flow from data
input through the steps of the process to the output results.

Find an initial homogeneous Conducting a search for

Input Dataset tricluster solution the tricluster solution Based on Lévy Flight

Three-dimensional . Fuzzy Cuckoo Search

Gene Expression Data §-Trimax Method method
Based on Gaussian
Distribution
Identifying the Optimal

Output Final Selection Solution

Gene Ontology . . Triclustering Quality

Analysis Results Best tricluster solution Index (TQI) Analysis

Figure 1. Stages of research. This diagram describes the flow of research from data input,
steps of process, and output results.

3. Results

This section presents the results of the triclustering analysis using a hybrid framework that
combines the 6-Trimax triclustering method with the FCS optimization algorithm. Two FCS-based
approaches were applied, one with the Lévy flight and the other with Gaussian distribution. Each
method was applied to two three-dimensional gene expression datasets: GSE35671 (human heart
disease), obtained from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35671, and
GSE27165 (primary fibroblast cells), obtained from
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27165. The structure of each dataset is
shown in Table 1 and Table 2, respectively.

Table 1 presents gene expression data collected during the differentiation of human induced
pluripotent stem cells (HiPSCs) in patients with cardiomyopathy, a disease which affects heart muscle
function. HiPSCs, derived from somatic cells, have the potential to develop into various cell types and
are widely used in regenerative therapies for conditions such as heart disease. The gene expression
data obtained from the observation of messenger-RNA during the HiPSC differentiation process is
comprised of a total of 48,803 gene types. The temporal observation points span twelve distinct time
stages: days 0, 3, 7, 10, 14, 20, 28, 35, 45, 60, 90, and 120. Biological replications were performed on
three conditions: fetal human heart tissue, adult human heart tissue, and hypertensive heart tissue.
Day O reflects baseline gene expression prior to differentiation. The mRNA expression values in this
dataset indicate the activity level of genes during HiPSC differentiation: the higher the expression
level, the more actively the gene is involved in the differentiation process and potentially in the
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pathology of heart disease.

Table 1. Three-dimensional gene expression data of HiPSC differentiation in patients with
heart disease (GSE35671).

No. ID REF Time 1 -+« Time 12

Replication 1 ~ Replication 2 Replication 3 Replication I  Replication 2 Replication 3
1 ILMN_1343291  15.4995 15.454 15.604 <o 14.8468 14.5664 15.5351
2 ILMN_1343295 13.5282 13.8069 13.5797 <o 135482 14.0758 13.7023
3 ILMN_1651199 6.7394 6.99508 6.89129 <o 6.8638 6.85294 6.95208
4 ILMN_1651209  7.04935 7.03753 7.04918 -+ 7.03632 7.10975 7.02113
48803 ILMN_2416019  6.84598 6.81435 6.85623 <o 698417 6.73951 6.78274

Table 2 presents the three-dimensional gene expression data of primary fibroblast cells subjected to
different treatments. The dataset consists of gene expression levels measured after exposure to three
conditions: Egr-1, Tgf-81, and a control group (CG) that received no treatment. Each condition
includes two biological replicates and was measured at two time points: 24 and 48 hours
post-treatment. Egr-1 and Tgf-81 are critical regulators of gene expression and fibroblast activity,
which can influence both normal tissue repair and the abnormal accumulation of the extracellular
matrix. Such dysregulation may lead to fibrosis, one of the key pathological features of systemic
sclerosis (SSc) [22]. The dataset is comprised of gene expression values for 22,184 gene types.

Table 2. Gene expression data of primary fibroblast cells (GSE27165).

No. Gene 24 Hours 48 Hours
CG CG Egr-1  Egr-1 Tef-p1  Tgf-1  CG CG Egr-1 Egr-1 Tgf-f1  Tgf-p1
1 2 1 2 1 2 1 2 1 2 1 2
1 80.01 103.07 8239 125.77 127.11 119.51  69.90 98.76 73.49 60.70  97.81 98.83
2 26299 28099 267.87 376.94 456.83 31571 34551 42256 34596 24797 536.02 633.53
3 155.11 21998 116.67 155.00 302.59 18434 120.18 188.00 10592 64.07 238.09 284.65
4

0.22 0.12 -0.03 -0.02 0.16 0.17 0.03 1.20 0.04 0.00 0.10 -0.09

22184 1080.65 1196.02 995.11 1177.88 1503.41 1277.12 1278.96 1652.99 1131.87 954.25 1659.01 1925.71

The evaluation focuses on the quality of the generated triclusters and their biological relevance,
which was assessed through a GO enrichment analysis. In the following subsections, we present the
results for each method and dataset combination.

3.1. 6-Trimax triclustering with FCS based on Lévy flight

This subsection presents the outcomes of implementing the integrated o-Trimax triclustering
method with the FCS based on a Lévy flight to both the GSE35671 and GSE27165 datasets. The
analysis aimed to discover coherent triclusters across gene-condition-time dimensions. Several
simulations were executed using combinations of ¢ and 6 scale values to generate a population of
tricluster candidates. The key parameters used in the combined method are summarized in Table 3.
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Table 3. Parameter configurations used in the combined 6-Trimax and FCS method based on

Lévy flight.
Parameter Description Value(s) Reference / Note
w Number of triclusters 24 4]
A Threshold for multiple node deletions 1.2 [5]
0 Threshold for single node deletions 0.022, 0.026, 0.030  [23]
% Lévy flight scaling constant 1.2,1.5,1.7 [7]
m Fuzzifier for FCS 2 [7]
a Step size for Lévy flight 1 [7]
P, Probability of egg detection by host 0.25 [7]
NUMGer Optimization iterations 20 Based on computational feasibility

The best tricluster results from each simulation on the GSE35671 dataset were evaluated using the
TQI, which quantifies the compactness and relevance of the resulting triclusters. Table 4 presents a
comparison of the TQI values for all combinations of ¢ and 6 parameters. The lowest TQI value, which
indicates the best result, was obtained using 6 = 0.026 and 6 = 1.7.

Table 4. TQI values from simulation results on the GSE35671 dataset across different 6 and
0 parameter combinations.

Lévy Constant 0

0 1.2 1.5 1.7

0.022 3.16002 x 1077 2.95390 x 1077 3.39531 x 107/
0.026 3.11333 x 1077 3.56250 x 1077 2.74610 x 1077
0.030 2.88158 x 1077 3.34843 x 1077 3.67394 x 1077

Table 5 displays the TQI values for 24 triclusters obtained from the simulation using 6 = 0.026 and
0=17.

Tricluster 8 from Table 5 was further analyzed using a GO analysis to investigate the biological
relevance of the genes in relation to human heart disease. The gene set in Tricluster 8 was submitted to
the GOnet application to explore its associated biological processes, molecular functions, and cellular
components. The results below show the most significant GO terms (based on the lowest p-values)
for each GO category (see Tables 6-8). P-values returned as 0 by the software (numerical underflow)
are reported as < 1.0 x 107", Multiple testing was controlled using the Benjamini-Hochberg false
discovery rate (FDR) procedure (¢ < 0.05).

To gain biological insight into the gene expression patterns identified through the oJ-Trimax
triclustering method combined with the FCS based on a Lévy flight, we performed a functional
enrichment analysis on the resulting gene sets using the KEGG database. The analysis was conducted
on the triclusters extracted from the GSE27165 dataset, which profiles gene expression in primary
fibroblasts under Egr-1 and Tgf-S1 stimulation (fibrosis-relevant context). Several genes within the
most significant tricluster were mapped to relevant KEGG pathways, particularly those involved in
signal transduction, cellular transport, and immune response mechanisms. These enriched pathways
suggest coordinated regulatory mechanisms that may underlie disease progression and highlight
potential biomarkers or therapeutic targets in fibrosis and extracellular matrix remodeling.
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Table 5. TQI values for 24 triclusters with the lowest TQI result on the GSE35671 dataset.

Tricluster - i MSR Volume (Genesx Conditionsx Time) TQI

1 0.078637795 294813 2.66738 x 1077
2 0.097940099 122255 8.01113 x 1077
3 0.117452325 440982 2.66343 x 1077
4 0.124714453 339836 3.66984 x 1077
5 0.086972051 366075 2.37580 x 1077
6 0.098276945 196968 4.98949 x 1077
7 0.104882531 195008 5.37837 x 1077
8 0.109929535 730890 1.50450 x 1077
9 0.105133849 518448 2.02786 x 1077
10 0.114625951 661041 1.73402 x 1077
11 0.114937032 441432 2.60373 x 1077
12 0.088891470 512610 1.73410 x 1077
13 0.107796470 342342 3.14879 x 1077
14 0.069207420 220473 3.13904 x 1077
15 0.104204048 340494 3.06038 x 1077
16 0.093736293 587496 1.59552 x 1077
17 0.113299756 734340 1.54288 x 1077
18 0.098325824 511812 1.92113 x 1077
19 0.117200257 442260 2.65003 x 1077
20 0.118122384 584976 2.01297 x 1077
21 0.103725442 662175 1.51649 x 1077
22 0.099664130 583632 1.70765 x 1077
23 0.098954278 389712 2.53916 x 1077
24 0.108854355 657018 1.65679 x 1077

Table 6. GO biological process analysis results for tricluster 8 (GSE35671).

No GO_term_ID Definition P-value Num of genes
1 GO0:0010604 positive regulation of macromolecule metabolic process <1.0x107P 1964
2 GO0:0023051 regulation of signaling <1.0x1075 2071
3 GO:0070887 cellular response to organic substance <1.0x1075 1426

Table 7. GO molecular function analysis results for Tricluster 8 (GSE35671).

No. GO_term_ID Definition P-value Num of genes
1 G0:0050839 cell adhesion molecule binding 1.26 x 10~ 321
2 GO0:0045296 cadherin binding 1.73 x 107 219
3 G0:0019899 enzyme binding 3.98 x 107 1299

Table 8. GO cellular component analysis results for tricluster 8 (GSE35671).

No. GO_term_ID Definition P-value Num of genes
1 G0:0005912 adherens junction 9.26 x 107* 351

Table 9 presents the enriched KEGG pathways alongside their corresponding genes. A pathway
enrichment analysis of the genes identified in the most informative tricluster derived from J-Trimax
Triclustering with the FCS based on a Lévy flight, applied to the GSE27165 dataset, revealed several
biologically relevant patterns. A subset of genes, including TIAM1, RASGRF2, RASGRP4, and
NTRKI1, were found to be consistently involved in the Ras and MAPK signaling cascades (hsa04014,
hsa04010), thus suggesting a potential convergence of signal transduction mechanisms associated
with cell proliferation, survival, and inflammation. The presence of SQSTMI, a key regulator of
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autophagy and mitophagy, within multiple stress-response pathways (e.g., hsa04140, hsa04137,
hsa04218) indicates the relevance of intracellular quality control processes in the disease context.
Additionally, genes such as ARFGAP1 and PSD2 were mapped to the endocytosis pathway
(hsa04144), thus highlighting vesicle-mediated transport as a potentially dysregulated mechanism.
The enrichment of transport-related pathways, particularly ABC transporters (hsa02010), was
supported by the inclusion of ABCA6 and ABCD1. Notably, NTRK1 was annotated across a broad
spectrum of pathways, including calcium signaling, PI3K-Akt, neurotrophin signaling, and
cancer-related pathways, thus underscoring its multifunctional role in cellular signaling and disease
progression. These findings suggest that the triclustered genes are not only co-expressed under
specific experimental conditions, but also converge on key regulatory networks involved in signaling,
transport, and cellular stress, thus potentially contributing to the pathophysiology of coronary
heart disease.

Table 9. Annotated KEGG pathways of genes in tricluster from GSE27165.

PROBEID ENTREZID Gene Name KEGG Pathway(s)

ILMN_1777794 5589 PRKCSH hsa04141: Protein processing in endoplasmic reticulum

ILMN_1675709 55738 ARFGAPI1 hsa04144: Endocytosis

ILMN_1701551 23460 ABCAG6 hsa02010: ABC transporters

ILMN_1707741 353149 TBC1D26 -

ILMN_1655577 7074 TIAM1 hsa04014, hsa04015, hsa04024, hsa04062, hsa04530, hsa04810,
hsa05205

ILMN_1658684 374868 ATP9B -

ILMN_1753377 5924 RASGRF2 hsa04010, hsa04014

ILMN_1662963 84249 PSD2 hsa04144: Endocytosis

ILMN_1708093 7984 ARHGEF5 -

ILMN_1806979 6579 SLCO1A2 hsa04976: Bile secretion

ILMN_1703856 8878 SQSTM1 hsa04137, hsa04140, hsa04217, hsa04218, hsa04380, hsa05014,
hsa05022, hsa05131, hsa05418

ILMN_1770307 4914 NTRK1 hsa04010, hsa04014, hsa04020, hsa04151, hsa04210, hsa04722,
hsa04750, hsa05200, hsa05202, hsa05216, hsa05230

ILMN_1691272 10641 NPRL2 hsa04150: mTOR signaling pathway

ILMN_1713438 55937 APOM -

ILMN_1714650 115727 RASGRP4 hsa04010, hsa04014, hsa05200

ILMN_1809925 117289 TAGAP -

ILMN_1770224 10611 PDLIMS hsa04820: Cytoskeleton in muscle cells

ILMN_1772189 215 ABCDI hsa02010: ABC transporters, hsa04146: Peroxisome

3.2. 6-Trimax triclustering with the FCS based on a Gaussian distribution

This subsection presents the outcomes of implementing the integrated o-Trimax triclustering
method with FCS based on Gaussian distribution to both the GSE35671 and GSE27165 datasets. The
hybrid method combining the FCS based on a Gaussian distribution with 6-Trimax consists of two
phases: the initial population formation phase and the optimization phase. In each phase, the
triclustering analysis algorithm operates with several required scale parameters. All the utilized scale
values can be seen in Table 10.

From the experimentally determined scale values, several simulation scenarios will be conducted.
Each simulation scenario is repeated 3 times to observe the consistency of the results. The simulation
results and TQI values can be seen in Table 11.
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Table 10. Parameter values used in the 6-Trimax triclustering with FCS based on Gaussian

distribution.

Scale Value Description Value Reference

w Number of Triclusters 24 [4]

A Threshold for Multiple Nodes Deletion 1.2 [5]
0.015

0 Threshold for Single Node Deletion 0.014 MSR value dataset of 0.015022
0.013

m Fuzzifier 2 [7]

i Constant Value 0.0001 [24]
0.15

o) Constant value 0.30 Solution probability considerations
0.50

a Cuckoo step 1 [7]

P, Probability of cuckoo egg detection 0.25 [7]

NUM ey Number of optimization phase iterations 15 Computational time considerations

Table 11. Average TQI values obtained from the GSE27165 dataset for different
combinations of § and o.
B oy =0.15

7o =0.30 oo =0.50

0.015 1.52906 x 1077 1.57042 x 10~ 1.33142 x 1077
1.74490 x 1077 1.56290 x 1077 1.22454 x 1077
1.56892 x 1077 1.43333 x 1077 1.26101 x 1077
0.014 1.57573 x 1077 1.45873 x 1077 1.29908 x 1077
1.63733 x 1077 1.39758 x 1077 1.24109 x 1077
1.52830 x 1077 1.58310 x 107”7 1.28889 x 1077
0.013 1.60854 x 1077 1.57022 x 1077 1.30461 x 1077

1.55891 x 1077
1.62758 x 1077

1.51850 x 1077
1.43664 x 1077

1.32976 x 1077
1.28873 x 1077

The result obtained with 6 = 0.015 and oy = 0.50 yields the lowest T QI value of 1.22454 x
1077, which indicates that this combination produces the most optimal tricluster set. Accordingly, this
parameter setting is adopted for the interpretation of the triclustering analysis results. The optimal
tricluster set derived from the simulations, thereby employing the triclustering method that integrates
the 6-Trimax and FCS algorithms based on a Gaussian distribution, is presented in Table 12. There are
six conditions based on the data available, where conditions k; and k, involve two subjects not treated
with either Egr-1 or Tgf-1. Conditions k3 and k4 involve two subjects treated with Egr-1, while ks and
ke involve two subjects treated with Tgf-G1. The time point ¢, either indicates a short-term response
or 24 hours, and t, indicates either a long-term response or 48 hours. The symbol “X” in each condition
and time point indicates that the condition or time point is included in the tricluster. The size in the
table indicates the number of genes, conditions, or time points included in a tricluster. The table shows
that the TQI value for each generated tricluster is quite small, ranging from 6.961x 1078 to 1.805x 107",

The purpose of conducting a triclustering analysis on this data is to find groups of genes that respond
well to the administration of Egr-1 and Tgf-81. Triclusters containing these gene groups are marked by
having four subject conditions treated with Egr-1 and Tgf-81, namely k3, k4, ks, and k¢ only. Based on
Table 12, tricluster 12 contains a group of genes that show a significant response to the administration
of Egr-1 and Tgf-£1 in primary fibroblast cell cultures. This tricluster can be used as a reference for
further research on the role of Egr-1 and Tgf-£1 in controlling the fibroblast cell activity. The response
shown by these gene groups occurs at both short (24 hours) and long (48 hours) time points. This
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indicates that Egr-1 and Tgf-£1 can be effective at all observed
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Figure 2. DAG of Selected GO Terms for GSE27165 dataset, generated with QuickGO

(EMBL-EBI).

Tricluster 12 contains 13,755 genes, and the GO analysis was conducted on three aspects: biological
process, molecular function, and cellular component. Each of these GO aspects was tested using
Fisher’s exact test with a significance level of 0.05 and corrected with the false discovery rate. There
were 219 GO Terms from the biological process aspect, 28 GO Terms from the molecular function
aspect, and 52 GO Terms from the cellular component aspect that were significant. The directed
acyclic graph (DAG) of 3 GO Terms from each aspect with the highest fold enrichment is shown in

Figure 2 [26].

As summarized in Table 13, the KEGG pathway annotation of genes extracted from the most
prominent tricluster identified by the d-Trimax triclustering method with the FCS based on a Gaussian
distribution reveals extensive involvement in immune regulation, oncogenic signaling, and metabolic
pathways. One of the most functionally pleiotropic genes in the cluster, MDM?2, is annotated across
more than twenty KEGG pathways, including key cancer-related and regulatory pathways such as the

Mathematical Biosciences and Engineering

Volume 23, Issue 2, 366-387.



381

p53 signaling pathway (hsa04115), PI3K-Akt signaling pathway (hsa04151), and FoxO signaling
pathway (hsa04068), as well as diverse virus-related and tumor-specific pathways (e.g., hsa05203,
hsa05214, hsa05220). Similarly, SYK demonstrates a broad connectivity with immune signaling
mechanisms, thereby appearing in B cell receptor signaling (hsa04662), Fc receptor pathways
(hsa04664, hsa04666), and natural killer cell-mediated cytotoxicity (hsa04650), thus underscoring its
role in both innate and adaptive immune responses. Other immune-relevant genes include INPP5D
and NLRC4, which are linked to phosphatidylinositol signaling and NOD-like receptor pathways,
respectively, while RUNXI1 is involved in hematologic malignancies such as acute and chronic
myeloid leukemia (hsa05220, hsa05221). Additional genes, such as ABCC10 and CYP4F3, are
associated with the ABC transporter (hsa02010) and arachidonic acid metabolism (hsa00590)
pathways, thus indicating a role in cellular detoxification and inflammatory lipid signaling. Overall,
the pathway enrichment pattern in Table 13 points to a co-regulated gene module implicated in
inflammation, immune dysfunction, and tumor-related processes, which are potentially relevant to the
molecular underpinnings of coronary heart disease represented in the GSE35671 dataset.

Table 12. The most optimal tricluster set for GSE27165 dataset. The tricluster selected for
Gene Ontology analysis is shown in bold.

Tricluster Size (Genes X TQI Condition Time points
Conditions x Time
points)

ki ko k3 ks ks ke 1 123
1 16841 x 6 x 2 6.961 x 1078 X X X X X X X X
2 13991 x 6 x 2 9.146 x 1078 X X X X X X X X
3 13984 x 6 x 2 9.611x 1078 X X X X X X
4 14173 x4 x 2 9.326 x 1078 X X X X X X
5 13960 x 6 x 2 9.236 x 1078 X X X X X X X X
6 14008 x 5 x 2 1.218 x 1077 X X X X X X X
7 13839 x4 x 2 1.049 x 1077 X X X X X X
8 13969 x 6 x 2 9.166 x 1078 X X X X X X X X
9 13709 x 5 x 1 1.596 x 1077 X X X X X X
10 13735 x4 x 2 1.328 x 1077 X X X X X X
11 13833 x5x%x2 1.153 x 1077 X X X X X X X
12 13755 x 4 x 2 1.277 x 1077 X X X X X X
13 13935 x4 x 1 1.481 x 1077 X X X X X
14 13791 x 6 x 2 9.216 x 1078 X X X X X X X X
15 13859 x4 x 1 1.433 x 1077 X X X X X
16 13790 x 5 x 2 1.168 x 1077 X X X X X X X
17 13968 x 4 x 1 1.805 x 1077 X X X X X
18 13948 x 5 x 2 1.328 x 1077 X X X X X X
19 13809 x 3 x 2 1.769 x 1077 X X X X X
20 13845 x5 x 1 1.154 x 1077 X X X X X X
21 13849 x 5 x 2 1.037 x 1077 X X X X X X X
22 13881 x5 x 2 1.204 x 1077 X X X X X X X
23 13889 x 4 x 2 1.610 x 1077 X X X X X X
24 13910 x4 x 1 1.515x 1077 X X X X X

4. Discussion

This study presents a hybrid triclustering framework that combines the §-Trimax method with FCS
optimization, thereby leveraging two distinct randomization strategies—the Lévy flight and Gaussian
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Table 13. Annotated KEGG pathways of genes in tricluster from GSE35671 identified by
o-Trimax triclustering with FCS based on Gaussian distribution.

Probe_Id Entrez_Gene_ ID Gene Name KEGG Pathway(s)
ILMN_1776119 89845 ABCCI10 hsa02010
ILMN_1814208 4193 MDM2 hsa01522, hsa01524, hsa04068, hsa04110, hsa04115,

hsa04120, hsa04144, hsa04151, hsa04218, hsa04625,
hsa04919, hsa05131, hsa05163, hsa05165, hsa05169,
hsa05200, hsa05202, hsa05203, hsa05205, hsa05206,
hsa05214, hsa05215, hsa05218, hsa05219, hsa05220

ILMN_1744212 3635 INPP5D hsa00562, hsa01100, hsa04070, hsa04662, hsa04664,
hsa04666

ILMN_1787518 2934 GSN hsa04666, hsa04810, hsa05203

ILMN_1796976 58484 NLRC4 hsa04621, hsa05131, hsa05132, hsa05134, hsa05135

ILMN_2059549 6850 SYK hsa04064, hsa04072, hsa04151, hsa04380, hsa04611,

hsa04613, hsa04625, hsa04650, hsa04662, hsa04664,
hsa04666, hsa05152, hsa05167, hsa05168, hsa05169,
hsa05171, hsa05203

ILMN_2331163 8451 CUL4A hsa03420, hsa04120, hsa05170

ILMN_2089484 4051 CYP4F3 hsa00590, hsa01100

ILMN_1730797 861 RUNXI1 hsa04530, hsa04659, hsa05200, hsa05202, hsa05220,
hsa(05221

ILMN_1774739 4323 MMP14 hsa04668, hsa04912, hsa04928

ILMN_1689160 64174 DPEP2 -

distribution. To our knowledge, this is the first work to integrate 6-Trimax with a dual-strategy
metaheuristic search in the context of temporal and a condition-specific gene expression analysis. The
proposed approach not only surpasses existing improved CS algorithms in tricluster quality (as
measured by a TQI), but also achieves competitive computational efficiency across two biologically
distinct datasets. By capturing both localized, highly coherent modules and broader pathway-enriched
clusters, this framework addresses a critical gap in a transcriptomic analysis where static clustering
often overlooks condition- and time-dependent gene regulation.

The application of the integrated 6-Trimax triclustering algorithm with FCS optimization, using
both the Lévy flight and Gaussian distribution, enabled the identification of biologically meaningful
gene-condition-time clusters across two distinct datasets: heart-disease—related (GSE35671) and
fibroblast stimulation (GSE27165). The comparative use of the Lévy flight and Gaussian-based
randomization strategies within the FCS provided valuable insights into the influence of search
dynamics on the quality and interpretability of the resulting triclusters.

In both datasets, the implementation of the Lévy flight-based search strategy yielded triclusters
enriched in well-characterized signaling pathways. For instance, in GSE27165, several Ras- and
MAPK-associated genes were clustered together, including TIAM1, RASGRF2, NTRKI, and
RASGRP4, all of which are central to signal transduction and immune regulation. Similarly, in
GSE35671, the Lévy-based approach identified co-regulated genes involved in autophagy, the cellular
stress response, and vesicle-mediated transport, such as SOSTMI and PRKCSH. These findings
underscore the method’s effectiveness in capturing condition- and time-specific regulatory modules
relevant to the inflammatory and metabolic processes.

Conversely, the Gaussian-distributed FCS variant produced triclusters with a broader pathway
coverage, particularly in GSE35671. Genes such as MDM?2 and SYK prominently appeared, thus
contributing to diverse oncogenic, immune, and virus-associated pathways, including p53, PI3K-Akt,
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B cell receptor, and viral carcinogenesis. This suggests that the Gaussian-based search may favor the
inclusion of multifunctional hub genes involved in multiple pathways, thereby enhancing the
interpretability in the context of complex diseases such as coronary heart disease. Notably, the same
method applied to GSE27165 revealed coherent clusters enriched in Ras/MAPK signaling, ABC
transporters, and cell adhesion pathways, thus aligning with key mechanisms underlying
cardiovascular inflammation and remodeling.

The complementary results obtained across the two optimization strategies and datasets
demonstrate the robustness of the integrated J-Trimax—FCS framework. The Lévy flight tends to
promote a deeper exploration of localized clusters with strong biological coherence, while the
Gaussian-distributed search tends to capture broader, pathway-enriched modules with a higher gene
overlap. Together, these approaches provide a flexible and powerful means to extract biologically
relevant triclusters in transcriptomic studies, particularly those that involve temporally and
conditionally structured data such as cardiovascular disease expression profiles. These findings align
with recent studies that highlighted the advantages of hybrid metaheuristic—clustering approaches in
capturing both localized and broad biological patterns in high-dimensional data [18]. Furthermore,
our findings are consistent with recent reports where hybrid metaheuristics enhanced both the
accuracy and computational feasibility on engineering-scale problems [2, 3].

Table 14. Comparison of TQI values between the proposed method and other improved CS
baselines across both datasets. Lower TQI indicates better tricluster quality.

Method GSE35671 (TQI) GSE27165 (TQI)
6-Trimax + FCS (Gaussian) 1.01823 x 1077 1.22454 x 1077
o-Trimax + FCS (Lévy flight) 1.50450 x 1077 1.33142 x 1077
Enhanced CS [13] 2.10 x 1077 1.85x 1077
Improved CS [25] 1.95x 1077 1.77 x 1077

CS + FCM [9] 2.35%x 1077 2.02 x 1077

As summarized in Table 14, both variants of the proposed 6-Trimax + FCS method outperformed
three popular baselines: Enhanced CS [13], Improved CS [25], and CS + FCM [9]. The Gaussian-
based variant consistently achieved the lowest TQI on both datasets, while the Lévy flight variant
remained competitive and superior to the baselines. This performance gain demonstrates the benefit
of combining §-Trimax [5] with the optimization capabilities of the FCS [6, 19] to refine the search
space and enhance the biological relevance. All baselines were re-implemented with matched stopping
criteria and evaluated on the same workstation.

Table 15. Average running time of the proposed and other improved CS methods
across datasets.

Method GSE35671 GSE27165
o-Trimax + FCS (Gaussian) 17 min 16 min
o-Trimax + FCS (Lévy flight) 20 min 19 min
Enhanced CS [13] 24 min 22 min
Improved CS [25] 22 min 20 min
CS + FCM [9] 26 min 24 min

Beyond accuracy, the proposed methods were also efficient (Table 15). The Gaussian-based variant
was the fastest, followed by the Lévy flight, while the three baselines (Enhanced CS [13], Improved
CS [25], and CS + FCM [9]) took longer under matched criteria. The runtime difference between the
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two proposed variants can be attributed to the exploratory nature of the Lévy flight, which performs a
broader global search compared to the more localized Gaussian strategy. These results underscore that
the proposed framework not only improves the tricluster quality but also reduces the computational
cost, thus making it suitable for large-scale transcriptomic studies.

While several identified pathways, such as Ras/MAPK and PI3K-Akt signaling, are
well-documented in cardiovascular disease, the contribution of our method lies in uncovering
co-expression structures that vary according to specific conditions and time points. For example, the
grouping of MDM?2 and SYK with other immune-regulatory genes under specific conditions suggests
coordinated transcriptional regulation linked to immune modulation and the endothelial response.
Although these pathways are not entirely novel, our approach reveals new combinatorial gene sets and
temporal dynamics not previously reported in these datasets, thus offering a richer context for
hypothesis generation and experimental validation. Future work may extend this approach to
multiomics integration and cross-species transcriptomic analyses to further validate
its generalizability.

5. Conclusions

This study presented an integrated optimization framework for triclustering three-dimensional
gene expression data by combining the 6-Trimax method with an enhanced FCS algorithm utilizing
both the Lévy flight and Gaussian distribution strategies. The hybrid approach achieved substantial
improvements in identifying coherent gene-condition-time modules within complex biological
datasets while maintaining the computational efficiency.

Applied to two gene expression datasets, one associated with human heart disease and the other
with primary fibroblast cells, the framework successfully extracted biologically meaningful triclusters
characterized by consistent expression dynamics across multiple conditions and time points. The
Gaussian-based variant achieved the lowest TQI values for both datasets, whereas the Lévy flight
variant excelled in uncovering deeply coherent clusters in the heart disease dataset.

In the heart disease dataset, optimal results were obtained with the FCS-Lévy flight variant
(6 = 0.026, & = 1.7), thereby producing the most coherent tricluster (TQI = 1.50450 x 10~7) that
contained 24,363 genes consistently expressed across three experimental conditions and ten time
points, excluding baseline (day 0). For the primary fibroblast dataset, the Gaussian-based variant
achieved an average TQI of 1.2245 x 1077, thereby capturing sustained gene responses to Egr-1 and
Tgf-B1 stimulation over both 24 h and 48 h intervals.

A GO enrichment analysis confirmed the biological relevance of the identified clusters, with
significant terms spanning biological processes, molecular function, and cellular component, all
validated using Fisher’s exact test with an FDR correction at a 0.05 threshold. Compared to existing
improved CS algorithms, this is the first application of 6-Trimax combined with dual FCS search
strategies to temporal gene expression data, thus achieving both a superior tricluster quality and a
reduced runtime. The framework offers a valuable tool to extract temporally and conditionally
coherent gene modules, thus providing mechanistic insights into gene regulation in cardiovascular and
fibrotic diseases and paving the way for future studies on biomarker discovery and therapeutic
target identification.
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