The paper is concerned with development of an accurate and effective positivity-preserving high-order compact difference method for solving the Keller-Segel chemotaxis model, which is a kind of nonlinear parabolic-parabolic system in mathematical biology. Firstly, a stiffly-stable five-step fourth-order fully implicit compact difference scheme is proposed. The new scheme not only has fourth-order accuracy in the spatial direction, but also has fourth-order accuracy in the temporal direction, and the computational strategy for the nonlinear chemotaxis term is provided. Then, a positivity-preserving numerical algorithm is presented, which ensures the non-negativity of cell density at all time without accuracy loss. And a time advancement algorithm is established. Finally, the proposed method is applied to the numerical simulation for chemotaxis phenomena, and the accuracy, stability and positivity-preserving of the new scheme are validated with several numerical examples.
Citation: Lin Zhang, Yongbin Ge, Zhi Wang. Positivity-preserving high-order compact difference method for the Keller-Segel chemotaxis model[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 6764-6794. doi: 10.3934/mbe.2022319
[1] | Kenji Itao, Fumiya Omata, Yoshitaka Nishikawa, Tetsuro Oda, Toshiharu Sasaki, Cherri Zhang, John Solomon Maninang, Takayuki Yamaguchi . Threshold phenomena with respect to the initiation of depopulation in a simple model of foot-and-mouth disease. Mathematical Biosciences and Engineering, 2019, 16(5): 5931-5946. doi: 10.3934/mbe.2019297 |
[2] | Yangjun Ma, Maoxing Liu, Qiang Hou, Jinqing Zhao . Modelling seasonal HFMD with the recessive infection in Shandong, China. Mathematical Biosciences and Engineering, 2013, 10(4): 1159-1171. doi: 10.3934/mbe.2013.10.1159 |
[3] | Yong Li, Meng Huang, Li Peng . A multi-group model for estimating the transmission rate of hand, foot and mouth disease in mainland China. Mathematical Biosciences and Engineering, 2019, 16(4): 2305-2321. doi: 10.3934/mbe.2019115 |
[4] | Lei Shi, Hongyong Zhao, Daiyong Wu . Modelling and analysis of HFMD with the effects of vaccination, contaminated environments and quarantine in mainland China. Mathematical Biosciences and Engineering, 2019, 16(1): 474-500. doi: 10.3934/mbe.2019022 |
[5] | Chenxi Dai, ZhiWang, Weiming Wang, Yongqin Li, Kaifa Wang . Epidemics and underlying factors of multiple-peak pattern on hand, foot and mouth disease inWenzhou, China. Mathematical Biosciences and Engineering, 2019, 16(4): 2168-2188. doi: 10.3934/mbe.2019106 |
[6] | Muhammad Z. Ul Haque, Peng Du, Leo K. Cheng . A combined functional dorsal nerve model of the foot. Mathematical Biosciences and Engineering, 2022, 19(9): 9321-9334. doi: 10.3934/mbe.2022433 |
[7] | Chayu Yang, Jin Wang . A mathematical model for frogeye leaf spot epidemics in soybean. Mathematical Biosciences and Engineering, 2024, 21(1): 1144-1166. doi: 10.3934/mbe.2024048 |
[8] | Sheree L. Arpin, J. M. Cushing . Modeling frequency-dependent selection with an application to cichlid fish. Mathematical Biosciences and Engineering, 2008, 5(4): 889-903. doi: 10.3934/mbe.2008.5.889 |
[9] | Amar Nath Chatterjee, Fahad Al Basir, Yasuhiro Takeuchi . Effect of DAA therapy in hepatitis C treatment — an impulsive control approach. Mathematical Biosciences and Engineering, 2021, 18(2): 1450-1464. doi: 10.3934/mbe.2021075 |
[10] | Cunjuan Dong, Changcheng Xiang, Wenjin Qin, Yi Yang . Global dynamics for a Filippov system with media effects. Mathematical Biosciences and Engineering, 2022, 19(3): 2835-2852. doi: 10.3934/mbe.2022130 |
The paper is concerned with development of an accurate and effective positivity-preserving high-order compact difference method for solving the Keller-Segel chemotaxis model, which is a kind of nonlinear parabolic-parabolic system in mathematical biology. Firstly, a stiffly-stable five-step fourth-order fully implicit compact difference scheme is proposed. The new scheme not only has fourth-order accuracy in the spatial direction, but also has fourth-order accuracy in the temporal direction, and the computational strategy for the nonlinear chemotaxis term is provided. Then, a positivity-preserving numerical algorithm is presented, which ensures the non-negativity of cell density at all time without accuracy loss. And a time advancement algorithm is established. Finally, the proposed method is applied to the numerical simulation for chemotaxis phenomena, and the accuracy, stability and positivity-preserving of the new scheme are validated with several numerical examples.
[1] |
J. T. Bonner, M. E. Hoffman, Evidence for a substance responsible for the spacing pattern of aggregation and fruiting in the cellular slime molds, J. Embryol. Exp. Morphol., 11 (1963), 571–589. https://doi.org/10.1242/dev.11.3.571 doi: 10.1242/dev.11.3.571
![]() |
[2] |
C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys, 15 (1953), 311–338. https://doi.org/10.1007/BF02476407 doi: 10.1007/BF02476407
![]() |
[3] |
E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5
![]() |
[4] |
E. F. Keller, L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225–234. https://doi.org/10.1016/0022-5193(71)90050-6 doi: 10.1016/0022-5193(71)90050-6
![]() |
[5] |
E. F. Keller, L. A. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theor. Biol., 30 (1971), 235–248. https://doi.org/10.1016/0022-5193(71)90051-8 doi: 10.1016/0022-5193(71)90051-8
![]() |
[6] |
L. A. Segel, B. Stoeckly, Instability of a layer of chemostatic cells, attractant and degrading enzymes, J. Theor. Biol., 37 (1972), 561–585. https://doi.org/10.1016/0022-5193(72)90091-4 doi: 10.1016/0022-5193(72)90091-4
![]() |
[7] |
S. Childress, J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 217–237. https://doi.org/10.1016/0025-5564(81)90055-9 doi: 10.1016/0025-5564(81)90055-9
![]() |
[8] |
X. F. Chen, J. H. Hao, X. F. Wang, Y. P. Wu, Y. J. Zhang, Stability of spiky solution of Keller-Segel's minimal chemotaxis model, J. Differ. Equations, 257 (2014), 3102–3134. https://doi.org/10.1016/j.jde.2014.06.008 doi: 10.1016/j.jde.2014.06.008
![]() |
[9] |
T. Hillen, K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183–217. https://doi.org/10.1007/s00285-008-0201-3 doi: 10.1007/s00285-008-0201-3
![]() |
[10] |
T. Hashira, S. Ishida, T. Yokota, Finite time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differ. Equations, 264 (2018), 6459–6485. https://doi.org/10.1016/j.jde.2018.01.038 doi: 10.1016/j.jde.2018.01.038
![]() |
[11] |
L. Wang, Y. Li, C. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 34 (2014), 789–802. http://dx.doi.org/10.3934/dcds.2014.34.789 doi: 10.3934/dcds.2014.34.789
![]() |
[12] |
J. I. Tello, M. Winkler, A chemotaxis system with logistic source, Commun. Partial Differ. Equations, 32 (2007), 849–877. https://doi.org/10.1080/03605300701319003 doi: 10.1080/03605300701319003
![]() |
[13] | D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences Ⅰ, Jahresber. Dtsch. Math. Ver, 105 (2003), 103–165. |
[14] | D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences Ⅰ, Jahresber. Dtsch. Math. Ver, 106 (2004), 51–69. |
[15] |
G. Arumugam, J. Tyagi, Keller-Segel chemotaxis models: a review, Acta Appl. Math., 171 (2021), 1–82. https://doi.org/10.1007/s10440-020-00374-2 doi: 10.1007/s10440-020-00374-2
![]() |
[16] |
A. Chertock, A. Kurganov, A second-order positivity preserving central-upwind scheme for chemo-taxis and haptotaxis models, Numer. Math., 111 (2008), 169–205. https://doi.org/10.1007/s00211-008-0188-0 doi: 10.1007/s00211-008-0188-0
![]() |
[17] |
A. Chertock, Y. Epshteyn, H. Hu, A. Kurganov, High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems, Adv. Comput. Math., 44 (2018), 327–350. https://doi.org/10.1007/s10444-017-9545-9 doi: 10.1007/s10444-017-9545-9
![]() |
[18] |
A. Adler, Chemotaxis in bacteria, Ann. Rev. Biochem, 44 (1975), 341–356. https://doi.org/10.1146/annurev.bi.44.070175.002013 doi: 10.1146/annurev.bi.44.070175.002013
![]() |
[19] |
E. O. Budrene, H. C. Berg, Complex patterns formed by motile cells of escherichia coli, Nature, 349 (1991), 630–633, https://doi.org/10.1038/349630a0 doi: 10.1038/349630a0
![]() |
[20] |
E. O. Budrene, H. C. Berg, Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 376 (1995), 49–53. https://doi.org/10.1038/376049a0 doi: 10.1038/376049a0
![]() |
[21] |
M. H. Cohen, A. Robertson, Wave propagation in the early stages of aggregation of cellular slime molds, J. Theor. Biol., 31 (1971), 101–118. https://doi.org/10.1016/0022-5193(71)90124-X doi: 10.1016/0022-5193(71)90124-X
![]() |
[22] |
V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, J. Theor. Biol., 42 (1973), 63–105. https://doi.org/10.1016/0022-5193(73)90149-5 doi: 10.1016/0022-5193(73)90149-5
![]() |
[23] |
X. Wang, Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly's compactness theorem, J. Math. Biol., 66 (2013), 1241–1266. https://doi.org/10.1007/s00285-012-0533-x doi: 10.1007/s00285-012-0533-x
![]() |
[24] |
E. Feireisl, P. Laurençot, H. Petzeltová, On convergence to equilibria for the Keller-Segel chemotaxis model, J. Differ. Equations, 236 (2007), 551–569. https://doi.org/10.1016/j.jde.2007.02.002 doi: 10.1016/j.jde.2007.02.002
![]() |
[25] |
T. Hillen, A. Potapov, The one-dimensional chemotaxis model global existence and asymptotic profile, Math. Method Appl. Sci., 27 (2004), 1783–1801. https://doi.org/10.1002/mma.569 doi: 10.1002/mma.569
![]() |
[26] | K. Osaki, A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcialaj Ekvacioj, 44 (2001), 441–469. |
[27] |
X. F. Xiao, X. L. Feng, Y. N. He, Numerical simulations for the chemotaxis models on surfaces via a novel characteristic finite element method, Comput. Math. Appl., 78 (2019), 20–34. https://doi.org/10.1016/j.camwa.2019.02.004 doi: 10.1016/j.camwa.2019.02.004
![]() |
[28] |
X. Li, C. W. Shu, Y. Yang, Local discontinuous Galerkin method for the Keller-Segel chemotaxis model, J. Sci. Comput., 73 (2017), 943–967. https://doi.org/10.1007/s10915-016-0354-y doi: 10.1007/s10915-016-0354-y
![]() |
[29] |
L. Guo, X. Li, Y. Yang, Energy dissipative local discontinuous Galerkin methods for Keller-Segel chemotaxis model, J. Sci. Comput., 78 (2019), 1387–1404. https://doi.org/10.1007/s10915-018-0813-8 doi: 10.1007/s10915-018-0813-8
![]() |
[30] |
Y. Epshteyn, A. Izmirlioglu, Fully discrete analysis of a discontinuous finite element method for the Keller-Segel chemotaxis model, J. Sci. Comput., 40 (2009), 211–256. https://doi.org/10.1007/s10915-009-9281-5 doi: 10.1007/s10915-009-9281-5
![]() |
[31] |
Y. Epshteyn, A. Kurganov, New interior penalty discontinuous galerkin methods for the Keller-Segel chemotaxis model, SIAM J. Numer. Anal., 47 (2008), 386–408. https://doi.org/10.1137/07070423X doi: 10.1137/07070423X
![]() |
[32] |
M. Sulman, T. Nguyen, A positivity preserving moving mesh finite element method for the Keller-Segel chemotaxis model, J. Sci. Comput., 80 (2019), 649–666. https://doi.org/10.1007/s10915-019-00951-0 doi: 10.1007/s10915-019-00951-0
![]() |
[33] |
C. Qiu, Q. Liu, J. Yan, Third order positivity-preserving direct discontinuous Galerkin method with interface correction for chemotaxis Keller-Segel equations, J. Comput. Phys., 433 (2021), 110191. https://doi.org/10.1016/j.jcp.2021.110191 doi: 10.1016/j.jcp.2021.110191
![]() |
[34] |
F. Filbet, A finite volume scheme for the Patlak-Keller-Segel chemotaxis model, Numerisch Math., 104 (2006), 457–488. https://doi.org/10.1007/s00211-006-0024-3 doi: 10.1007/s00211-006-0024-3
![]() |
[35] |
A. Kurganov, E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160 (2000), 241–282. https://doi.org/10.1006/jcph.2000.6459 doi: 10.1006/jcph.2000.6459
![]() |
[36] |
Y. Epshteyn, Upwind-difference potentials method for Patlak-Keller-Segel chemotaxis model, J. Sci. Comput., 53 (2012), 689–713. https://doi.org/10.1007/s10915-012-9599-2 doi: 10.1007/s10915-012-9599-2
![]() |
[37] |
R. Tyson, L. G. Stern, R. J. LeVeque, Fractional step methods applied to a chemotaxis model, J. Math. Biol., 41 (2000), 455–475. https://doi.org/10.1007/s002850000038 doi: 10.1007/s002850000038
![]() |
[38] |
D. Manoussaki, A mechanochemical model of angiogenesis and vasculogenesis, Math. Model. Numer. Anal., 37 (2003), 581–599. https://doi.org/10.1007/10.1051/m2an:2003046 doi: 10.1007/10.1051/m2an:2003046
![]() |
[39] |
N. Saito, T. Suzuki, Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis, Appl. Math. Comput., 171 (2005), 72–90. https://doi.org/10.1016/j.amc.2005.01.037 doi: 10.1016/j.amc.2005.01.037
![]() |
[40] | N. Saito, Conservative numerical schemes for the Keller-Segel system and numerical results, RIMS Kôkyûroku Bessatsu, 15 (2009), 125–146. |
[41] |
A. Acrivos, Heat transfer at high Pclet number from a small sphere freely rotating in a simple shear field, J. Fluid Mech., 46 (2006), 233–240. https://doi.org/10.1017/S0022112071000508 doi: 10.1017/S0022112071000508
![]() |
[42] |
D. Liu, H. L. Han, Y. L. Zheng, A high-order method for simulating convective planar Poiseuille flow over a heated rotating sphere, Int. J. Numer. Methods Heat Fluid Flow, 28 (2018), 1892–1929. https://doi.org/10.1108/HFF-12-2017-0525 doi: 10.1108/HFF-12-2017-0525
![]() |
[43] | C. Gear, Numerical initial value problems in ordinary differential equations, Prentice Hall, 1971. |
[44] |
G. H. Gao, Z. Z. Sun, Compact difference schemes for heat equation with Neumann boundary conditions Ⅰ, Numer. Method Partial Differ. Equations, 29 (2013), 1459–1486. https://doi.org/10.1002/num.21760 doi: 10.1002/num.21760
![]() |
[45] |
X. D. Liu, S. Osher, Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes Ⅰ, SIAM J. Numer. Anal., 33 (1996), 760–779. https://doi.org/10.1137/0733038 doi: 10.1137/0733038
![]() |
[46] |
X. Zhang, C. W. Shu, Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments, Proc. R. Soc. A, 467 (2011), 2752–2776. https://doi.org/10.1098/rspa.2011.0153 doi: 10.1098/rspa.2011.0153
![]() |
[47] |
S. A. Orszag, M. Israelt, Numerical Simulation of Viscous Incompressible Flows, Ann. Rev. Fluid Mech., 6 (1974), 281–318. https://doi.org/10.1146/annurev.fl.06.010174.001433 doi: 10.1146/annurev.fl.06.010174.001433
![]() |
[48] |
S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103 (1992), 16–42. https://doi.org/10.1016/0021-9991(92)90324-R doi: 10.1016/0021-9991(92)90324-R
![]() |
[49] |
T. Wang, T. G. Liu, A consistent fourth-order compact scheme for solving convection-diffusion equation, Math. Numerica Sinica, 38 (2016), 391–404. https://doi.org/10.12286/jssx.2016.4.391 doi: 10.12286/jssx.2016.4.391
![]() |
[50] | L. H. Thomas, Elliptic problems in linear difference equations over a network, Watson Sci. Comput. Lab. Columbia Univ., 1 (1949). |
1. | Mlyashimbi Helikumi, Moatlhodi Kgosimore, Dmitry Kuznetsov, Steady Mushayabasa, Backward Bifurcation and Optimal Control Analysis of a Trypanosoma brucei rhodesiense Model, 2019, 7, 2227-7390, 971, 10.3390/math7100971 | |
2. | Tinashe B. Gashirai, Senelani D. Hove-Musekwa, Steady Mushayabasa, Dynamical analysis of a fractional-order foot-and-mouth disease model, 2021, 15, 2008-1359, 65, 10.1007/s40096-020-00372-3 | |
3. | Tinashe B. Gashirai, Senelani D. Musekwa-Hove, Paride O. Lolika, Steady Mushayabasa, Global stability and optimal control analysis of a foot-and-mouth disease model with vaccine failure and environmental transmission, 2020, 132, 09600779, 109568, 10.1016/j.chaos.2019.109568 | |
4. | Junyuan Yang, Xiaoyan Wang, Kelu Li, Temporal-spatial analysis of a foot-and-mouth disease model with spatial diffusion and vaccination, 2022, 9, 2297-1769, 10.3389/fvets.2022.952382 | |
5. | Gui-Quan Sun, Hong-Tao Zhang, Li-Li Chang, Zhen Jin, Hao Wang, Shigui Ruan, On the Dynamics of a Diffusive Foot-and-Mouth Disease Model with Nonlocal Infections, 2022, 82, 0036-1399, 1587, 10.1137/21M1412992 | |
6. | Xiaoyan Wang, Hongquan Sun, Junyuan Yang, Temporal-spatial analysis of an age-space structured foot-and-mouth disease model with Dirichlet boundary condition, 2021, 31, 1054-1500, 053120, 10.1063/5.0048282 | |
7. | Ivan Sseguya, Joseph Y.T. Mugisha, Betty Nannyonga, Outbreak and control of Foot and Mouth Disease within and across adjacent districts—A mathematical perspective, 2022, 6, 26667207, 100074, 10.1016/j.rico.2021.100074 | |
8. | Junyuan Yang, Meijia Gong, Gui-Quan Sun, Asymptotical profiles of an age-structured foot-and-mouth disease with nonlocal diffusion on a spatially heterogeneous environment, 2023, 377, 00220396, 71, 10.1016/j.jde.2023.09.001 | |
9. | Umanga Gunasekera, Kimberly VanderWaal, Jonathan Arzt, Andres Perez, Foot-and-mouth disease reproduction number: a scoping review, 2025, 12, 2297-1769, 10.3389/fvets.2025.1576974 |