Mathematically modeling the biological properties of gliomas: A review

  • Received: 01 May 2014 Accepted: 29 June 2018 Published: 01 April 2015
  • MSC : Primary: 58F15, 58F17; Secondary: 53C35.

  • Although mathematical modeling is a mainstay for industrial and many scientific studies, such approaches have found little application in neurosurgery. However, the fusion of biological studies and applied mathematics is rapidly changing this environment, especially for cancer research. This review focuses on the exciting potential for mathematical models to provide new avenues for studying the growth of gliomas to practical use. In vitro studies are often used to simulate the effects of specific model parameters that would be difficult in a larger-scale model. With regard to glioma invasive properties, metabolic and vascular attributes can be modeled to gain insight into the infiltrative mechanisms that are attributable to the tumor's aggressive behavior. Morphologically, gliomas show different characteristics that may allow their growth stage and invasive properties to be predicted, and models continue to offer insight about how these attributes are manifested visually. Recent studies have attempted to predict the efficacy of certain treatment modalities and exactly how they should be administered relative to each other. Imaging is also a crucial component in simulating clinically relevant tumors and their influence on the surrounding anatomical structures in the brain.

    Citation: Nikolay L. Martirosyan, Erica M. Rutter, Wyatt L. Ramey, Eric J. Kostelich, Yang Kuang, Mark C. Preul. Mathematically modeling the biological properties of gliomas: A review[J]. Mathematical Biosciences and Engineering, 2015, 12(4): 879-905. doi: 10.3934/mbe.2015.12.879

    Related Papers:

    [1] Christian Engwer, Markus Knappitsch, Christina Surulescu . A multiscale model for glioma spread including cell-tissue interactions and proliferation. Mathematical Biosciences and Engineering, 2016, 13(2): 443-460. doi: 10.3934/mbe.2015011
    [2] Baba Issa Camara, Houda Mokrani, Evans K. Afenya . Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences and Engineering, 2013, 10(3): 565-578. doi: 10.3934/mbe.2013.10.565
    [3] Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar . The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences and Engineering, 2009, 6(3): 547-559. doi: 10.3934/mbe.2009.6.547
    [4] Avner Friedman, Yangjin Kim . Tumor cells proliferation and migration under the influence of their microenvironment. Mathematical Biosciences and Engineering, 2011, 8(2): 371-383. doi: 10.3934/mbe.2011.8.371
    [5] Sonam Saluja, Munesh Chandra Trivedi, Ashim Saha . Deep CNNs for glioma grading on conventional MRIs: Performance analysis, challenges, and future directions. Mathematical Biosciences and Engineering, 2024, 21(4): 5250-5282. doi: 10.3934/mbe.2024232
    [6] Leibo Wang, Xuebin Zhang, Jun Liu, Qingjun Liu . RETRACTED ARTICLE: Kinesin family member 15 can promote the proliferation of glioblastoma. Mathematical Biosciences and Engineering, 2022, 19(8): 8259-8272. doi: 10.3934/mbe.2022384
    [7] Hakan Özcan, Bülent Gürsel Emiroğlu, Hakan Sabuncuoğlu, Selçuk Özdoğan, Ahmet Soyer, Tahsin Saygı . A comparative study for glioma classification using deep convolutional neural networks. Mathematical Biosciences and Engineering, 2021, 18(2): 1550-1572. doi: 10.3934/mbe.2021080
    [8] Peter Hinow, Philip Gerlee, Lisa J. McCawley, Vito Quaranta, Madalina Ciobanu, Shizhen Wang, Jason M. Graham, Bruce P. Ayati, Jonathan Claridge, Kristin R. Swanson, Mary Loveless, Alexander R. A. Anderson . A spatial model of tumor-host interaction: Application of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 521-546. doi: 10.3934/mbe.2009.6.521
    [9] Sonam Saluja, Munesh Chandra Trivedi, Shiv S. Sarangdevot . Advancing glioma diagnosis: Integrating custom U-Net and VGG-16 for improved grading in MR imaging. Mathematical Biosciences and Engineering, 2024, 21(3): 4328-4350. doi: 10.3934/mbe.2024191
    [10] Xiaowei Zhang, Jiayu Tan, Xinyu Zhang, Kritika Pandey, Yuqing Zhong, Guitao Wu, Kejun He . Aggrephagy-related gene signature correlates with survival and tumor-associated macrophages in glioma: Insights from single-cell and bulk RNA sequencing. Mathematical Biosciences and Engineering, 2024, 21(2): 2407-2431. doi: 10.3934/mbe.2024106
  • Although mathematical modeling is a mainstay for industrial and many scientific studies, such approaches have found little application in neurosurgery. However, the fusion of biological studies and applied mathematics is rapidly changing this environment, especially for cancer research. This review focuses on the exciting potential for mathematical models to provide new avenues for studying the growth of gliomas to practical use. In vitro studies are often used to simulate the effects of specific model parameters that would be difficult in a larger-scale model. With regard to glioma invasive properties, metabolic and vascular attributes can be modeled to gain insight into the infiltrative mechanisms that are attributable to the tumor's aggressive behavior. Morphologically, gliomas show different characteristics that may allow their growth stage and invasive properties to be predicted, and models continue to offer insight about how these attributes are manifested visually. Recent studies have attempted to predict the efficacy of certain treatment modalities and exactly how they should be administered relative to each other. Imaging is also a crucial component in simulating clinically relevant tumors and their influence on the surrounding anatomical structures in the brain.


    [1] Multiscale Modeling & Simulation, 3 (2005), 440-475.
    [2] Journal of Neurosurgery, 75 (1991), 337-338.
    [3] Physical Biology, 3 (2006), p93.
    [4] Cancer Research, 69 (2009), 4493-4501.
    [5] Physics in Medicine and Biology, 53 (2008), p879.
    [6] Cell Proliferation, 33 (2000), 219-229.
    [7] Journal of Mathematical Biology, 58 (2009), 723-763.
    [8] Cell Proliferation, 34 (2001), 115-134.
    [9] Cell Proliferation, 42 (2009), 511-528.
    [10] Physical Review E, 65 (2002), 021907, 8pp.
    [11] The Journal of Experimental Medicine, 138 (1973), 745-753.
    [12] New Journal of Physics, 15 (2013), 055001, 10pp.
    [13] Neuroimage, 37 (2007), S59-S70.
    [14] Cancer Research, 66 (2006), 1597-1604.
    [15] Applicable Analysis, 92 (2013), 1379-1392.
    [16] Cancer Research, 63 (2003), 3847-3854.
    [17] Journal of Theoretical Biology, 243 (2006), 517-531.
    [18] Molecular Cell, 37 (2010), 620-632.
    [19] IEEE Transactions on Medical Imaging, 18 (1999), 875-884.
    [20] Mathematical Medicine and Biology, 29 (2012), 49-65.
    [21] {Mathematical Models and Methods in Applied Sciences}, 15 (2005), 1779-1794.
    [22] Physics in Medicine and Biology, 52 (2007), p6893.
    [23] Journal of Mathematical Biology, 56 (2008), 793-825.
    [24] Oncogene, 18 (1999), 5356-5362.
    [25] Science, 284 (1999), 1994-1998.
    [26] Magnetic Resonance in Medicine, 54 (2005), 616-624.
    [27] Stereotactic and functional neurosurgery, 92 (2014), 306-314.
    [28] Journal of Theoretical Biology, 203 (2000), 367-382.
    [29] Frontiers in Oncology, 3 (2013), p53.
    [30] Journal of Theoretical Biology, 260 (2009), 359-371.
    [31] Discrete & Continuous Dynamical Systems-Series B, 18 (2013), 969-1015.
    [32] PloS {ONE}, 6 (2011), e28293.
    [33] Journal of Theoretical Biology, 245 (2007), 112-124.
    [34] in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2007, Springer, 4791 (2007), 549-556.
    [35] IEEE Transactions on Medical Imaging, 29 (2010), 77-95.
    [36] Biology Direct, 6 (2011), p64.
    [37] IEEE Transactions on Medical Imaging, 18 (1999), 580-592.
    [38] Bulletin of Mathematical Biology, 74 (2012), 2875-2896.
    [39] in Mathematical Models and Methods in Biomedicine, eds Ledzewicz U., Schattler H., Friedman A., Kashdan E., Springer, Berlin, (2013), 233-262.
    [40] in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2005, Springer, 3749 (2005), 400-408.
    [41] Journal of Biological Dynamics, 6 (2012), 118-127.
    [42] Theoretical Biology and Medical Modelling, 10 (2013), p47.
    [43] Journal of Theoretical Biology, 213 (2001), 315-331.
    [44] Physics in Medicine and Biology, 52 (2007), p3291.
    [45] The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques, 25 (1998), 13-22.
    [46] Journal of Mathematical Biology, 58 (2009), 561-578.
    [47] Physical Review E, 66 (2002), 051901.
    [48] The Canadian Journal of Neurological Sciences, 36 (2009), 696-706.
    [49] Journal of neurosurgery, 116 (2012), 1172-1181.
    [50] 1810-1815.
    [51] IEEE Transactions on Biomedical Engineering, 53 (2006), 1467-1477.
    [52] The British Journal of Radiology, 79 (2004), 389-400.
    [53] Biophysical Journal, 92 (2007), 356-365.
    [54] Applied Optics, 46 (2007), 5110-5118.
    [55] New England Journal of Medicine, 352 (2005), 987-996.
    [56] Cancer and Metastasis Reviews, 26 (2007), 319-331.
    [57] Cell Proliferation, 33 (2000), 317-330.
    [58] Clinical Oncology, 20 (2008), 301-308.
    [59] Cancer Research, 71 (2011), 7366-7375.
    [60] Cancer Research, 69 (2009), 4502-4509.
    [61] Journal of Neuro-oncology, 91 (2009), 287-293.
    [62] Cell Proliferation, 28 (1995), 17-31.
    [63] Journal of Theoretical Biology, 216 (2002), 85-100.
    [64] Methods, 37 (2005), 208-215.
    [65] Cancer Research, 69 (2009), 9133-9140.
    [66] Journal of Theoretical Biology, 253 (2008), 524-543.
    [67] Applicable Analysis, 92 (2013), 1541-1558.
    [68] IEEE Transactions on Biomedical Engineering, 55 (2008), 1233-1236.
    [69] Bulletin of Mathematical Biology, 67 (2005), 211-259.
  • This article has been cited by:

    1. Martina Conte, Luca Gerardo-Giorda, Maria Groppi, Glioma invasion and its interplay with nervous tissue and therapy: A multiscale model, 2020, 486, 00225193, 110088, 10.1016/j.jtbi.2019.110088
    2. Elif Ozdemir-Kaynak, Amina A. Qutub, Ozlem Yesil-Celiktas, Advances in Glioblastoma Multiforme Treatment: New Models for Nanoparticle Therapy, 2018, 9, 1664-042X, 10.3389/fphys.2018.00170
    3. Pietro Mascheroni, Juan Carlos López Alfonso, Maria Kalli, Triantafyllos Stylianopoulos, Michael Meyer-Hermann, Haralampos Hatzikirou, On the Impact of Chemo-Mechanically Induced Phenotypic Transitions in Gliomas, 2019, 11, 2072-6694, 716, 10.3390/cancers11050716
    4. Huaming Yan, Mónica Romero-López, Lesly I. Benitez, Kaijun Di, Hermann B. Frieboes, Christopher C.W. Hughes, Daniela A. Bota, John S. Lowengrub, 3D Mathematical Modeling of Glioblastoma Suggests That Transdifferentiated Vascular Endothelial Cells Mediate Resistance to Current Standard-of-Care Therapy, 2017, 77, 0008-5472, 4171, 10.1158/0008-5472.CAN-16-3094
    5. Ayako Nakanishi, Yoshito Hirata, Practically scheduling hormone therapy for prostate cancer using a mathematical model, 2019, 478, 00225193, 48, 10.1016/j.jtbi.2019.06.012
    6. Ahmed Elazab, Yousry M. Abdulazeem, Ahmed M. Anter, Qingmao Hu, Tianfu Wang, Baiying Lei, Macroscopic Cerebral Tumor Growth Modeling From Medical Images: A Review, 2018, 6, 2169-3536, 30663, 10.1109/ACCESS.2018.2839681
    7. Yongjiang Zheng, Jiguang Bao, Qiyi Zhao, Tianshou Zhou, Xiaoqiang Sun, A Spatio-Temporal Model of Macrophage-Mediated Drug Resistance in Glioma Immunotherapy, 2018, 17, 1535-7163, 814, 10.1158/1535-7163.MCT-17-0634
    8. Hamdy M. Youssef, Alaa A. El-Bary, Voltage and Time Required for Irreversible Thermal Damage of Tumor Tissues during Electrochemotherapy under Thomson Effect, 2020, 8, 2227-7390, 1488, 10.3390/math8091488
    9. J. C. L. Alfonso, K. Talkenberger, M. Seifert, B. Klink, A. Hawkins-Daarud, K. R. Swanson, H. Hatzikirou, A. Deutsch, The biology and mathematical modelling of glioma invasion: a review, 2017, 14, 1742-5689, 20170490, 10.1098/rsif.2017.0490
    10. Víctor M. Pérez-García, V. Volpert, J. Clairambault, Mathematical models for low-grade gliomas predict alternative radiotherapy fractionations with improved survival, 2015, 5, 2271-2097, 00006, 10.1051/itmconf/20150500006
    11. Martin Burger, Patricia Friele, Jan-Frederik Pietschmann, On a Reaction-Cross-Diffusion System Modeling the Growth of Glioblastoma, 2020, 80, 0036-1399, 160, 10.1137/18M1194559
    12. Stelios Angeli, Kyrre E. Emblem, Paulina Due-Tonnessen, Triantafyllos Stylianopoulos, Towards patient-specific modeling of brain tumor growth and formation of secondary nodes guided by DTI-MRI, 2018, 20, 22131582, 664, 10.1016/j.nicl.2018.08.032
    13. Tracy L. Stepien, Erica M. Rutter, Yang Kuang, Traveling Waves of a Go-or-Grow Model of Glioma Growth, 2018, 78, 0036-1399, 1778, 10.1137/17M1146257
    14. Pawan Kumar, Christina Surulescu, A Flux-Limited Model for Glioma Patterning with Hypoxia-Induced Angiogenesis, 2020, 12, 2073-8994, 1870, 10.3390/sym12111870
    15. Yang Kuang, Erica M. Rutter, Tracy L. Stepien, A data-motivated density-dependent diffusion model of in vitro glioblastoma growth, 2015, 12, 1551-0018, 1157, 10.3934/mbe.2015.12.1157
    16. Xinzeng Feng, David A. Hormuth, Thomas E. Yankeelov, An adjoint-based method for a linear mechanically-coupled tumor model: application to estimate the spatial variation of murine glioma growth based on diffusion weighted magnetic resonance imaging, 2019, 63, 0178-7675, 159, 10.1007/s00466-018-1589-2
    17. Vladimir Kalinin, Cell – extracellular matrix interaction in glioma growth. In silico model, 2020, 17, 1613-4516, 10.1515/jib-2020-0027
    18. Erica M. Rutter, Tracy L. Stepien, Barrett J. Anderies, Jonathan D. Plasencia, Eric C. Woolf, Adrienne C. Scheck, Gregory H. Turner, Qingwei Liu, David Frakes, Vikram Kodibagkar, Yang Kuang, Mark C. Preul, Eric J. Kostelich, Mathematical Analysis of Glioma Growth in a Murine Model, 2017, 7, 2045-2322, 10.1038/s41598-017-02462-0
    19. Aimilia Nousi, Maria Tangen Søgaard, Mélanie Audoin, Liselotte Jauffred, Single-cell tracking reveals super-spreading brain cancer cells with high persistence, 2021, 28, 24055808, 101120, 10.1016/j.bbrep.2021.101120
    20. Aisha Tursynkozha, Ardak Kashkynbayev, Bibinur Shupeyeva, Erica M. Rutter, Yang Kuang, Traveling wave speed and profile of a “go or grow” glioblastoma multiforme model, 2023, 118, 10075704, 107008, 10.1016/j.cnsns.2022.107008
    21. Samet Y. Kadioglu, Ersin Ozugurlu, A Jacobian-Free Newton–Krylov Method to Solve Tumor Growth Problems with Effective Preconditioning Strategies, 2023, 13, 2076-3417, 6579, 10.3390/app13116579
    22. Sandesh Athni Hiremath, Christina Surulescu, Data driven modeling of pseudopalisade pattern formation, 2023, 87, 0303-6812, 10.1007/s00285-023-01933-5
    23. Duane C. Harris, Changhan He, Mark C. Preul, Eric J. Kostelich, Yang Kuang, Critical Patch Size of a Two-Population Reaction Diffusion Model Describing Brain Tumor Growth, 2023, 0036-1399, S249, 10.1137/22M1509631
    24. Francesca Ballatore, Giulio Lucci, Andrea Borio, Chiara Giverso, 2023, Chapter 5, 978-3-031-35714-5, 131, 10.1007/978-3-031-35715-2_5
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4736) PDF downloads(791) Cited by(24)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog