Loading [Contrib]/a11y/accessibility-menu.js

Mathematical modeling of glioma therapy using oncolytic viruses

  • Received: 01 June 2012 Accepted: 29 June 2018 Published: 01 April 2013
  • MSC : Primary: 92C37, 35B35; Secondary: 35B40.

  • Diffuse infiltrative gliomas are adjudged to be the most common primary brain tumors in adults and theytend to blend in extensively in the brain micro-environment. This makes it difficult for medicalpractitioners to successfully plan effective treatments. In attempts to prolong the lengths of survivaltimes for patients with malignant brain tumors, novel therapeutic alternatives such as gene therapy withoncolytic viruses are currently being explored. Based on such approaches and existing work, a spatio-temporal model that describes interaction between tumor cells and oncolytic viruses is developed.Conditions that lead to optimal therapy in minimizing cancer cell proliferation and otherwise areanalytically demonstrated. Numerical simulations are conducted with the aim of showing the impact ofvirotherapy on proliferation or invasion of cancer cells and of estimating survival times.

    Citation: Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses[J]. Mathematical Biosciences and Engineering, 2013, 10(3): 565-578. doi: 10.3934/mbe.2013.10.565

    Related Papers:

    [1] Dominik Wodarz . Computational modeling approaches to studying the dynamics of oncolytic viruses. Mathematical Biosciences and Engineering, 2013, 10(3): 939-957. doi: 10.3934/mbe.2013.10.939
    [2] Taeyong Lee, Adrianne L. Jenner, Peter S. Kim, Jeehyun Lee . Application of control theory in a delayed-infection and immune-evading oncolytic virotherapy. Mathematical Biosciences and Engineering, 2020, 17(3): 2361-2383. doi: 10.3934/mbe.2020126
    [3] G. V. R. K. Vithanage, Hsiu-Chuan Wei, Sophia R-J Jang . Bistability in a model of tumor-immune system interactions with an oncolytic viral therapy. Mathematical Biosciences and Engineering, 2022, 19(2): 1559-1587. doi: 10.3934/mbe.2022072
    [4] Zizi Wang, Zhiming Guo, Hal Smith . A mathematical model of oncolytic virotherapy with time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 1836-1860. doi: 10.3934/mbe.2019089
    [5] Prathibha Ambegoda, Hsiu-Chuan Wei, Sophia R-J Jang . The role of immune cells in resistance to oncolytic viral therapy. Mathematical Biosciences and Engineering, 2024, 21(5): 5900-5946. doi: 10.3934/mbe.2024261
    [6] Lu Gao, Yuanshun Tan, Jin Yang, Changcheng Xiang . Dynamic analysis of an age structure model for oncolytic virus therapy. Mathematical Biosciences and Engineering, 2023, 20(2): 3301-3323. doi: 10.3934/mbe.2023155
    [7] Ana Costa, Nuno Vale . Strategies for the treatment of breast cancer: from classical drugs to mathematical models. Mathematical Biosciences and Engineering, 2021, 18(5): 6328-6385. doi: 10.3934/mbe.2021316
    [8] Donggu Lee, Aurelio A. de los Reyes V, Yangjin Kim . Optimal strategies of oncolytic virus-bortezomib therapy via the apoptotic, necroptotic, and oncolysis signaling network. Mathematical Biosciences and Engineering, 2024, 21(3): 3876-3909. doi: 10.3934/mbe.2024173
    [9] Elzbieta Ratajczyk, Urszula Ledzewicz, Maciej Leszczynski, Avner Friedman . The role of TNF-α inhibitor in glioma virotherapy: A mathematical model. Mathematical Biosciences and Engineering, 2017, 14(1): 305-319. doi: 10.3934/mbe.2017020
    [10] Khaphetsi Joseph Mahasa, Rachid Ouifki, Amina Eladdadi, Lisette de Pillis . A combination therapy of oncolytic viruses and chimeric antigen receptor T cells: a mathematical model proof-of-concept. Mathematical Biosciences and Engineering, 2022, 19(5): 4429-4457. doi: 10.3934/mbe.2022205
  • Diffuse infiltrative gliomas are adjudged to be the most common primary brain tumors in adults and theytend to blend in extensively in the brain micro-environment. This makes it difficult for medicalpractitioners to successfully plan effective treatments. In attempts to prolong the lengths of survivaltimes for patients with malignant brain tumors, novel therapeutic alternatives such as gene therapy withoncolytic viruses are currently being explored. Based on such approaches and existing work, a spatio-temporal model that describes interaction between tumor cells and oncolytic viruses is developed.Conditions that lead to optimal therapy in minimizing cancer cell proliferation and otherwise areanalytically demonstrated. Numerical simulations are conducted with the aim of showing the impact ofvirotherapy on proliferation or invasion of cancer cells and of estimating survival times.


    [1] in "The Pathology of the Aging Human Nervous System" (ed. S. Duckett), Lea and Fabiger, Philadelphia, (1991), 210-286.
    [2] Virology, 156 (1987), 107-121.
    [3] PLoS Comput. Biol., 7 (2011), e1001085.
    [4] AJNR Am. J. Neuroradiol, 16 (1995), 1001-1012.
    [5] J. Neurosurg, 68 (1988), 698-704.
    [6] Abstract and Applied Analysis, (ID 590326), (2012), 1-13.
    [7] Cell Cycle, 5 (2006), 2244-2252.
    [8] Acta Neuropathol, 114 (2007), 443-458.
    [9] Am. J. Roentgenol. Radium Ther. Nucl. Med., 84 (1960), 99-107.
    [10] J. Neurooncol, 67 (2004), 83-93.
    [11] Am. J. Respir. Cell Mol. Biol., 32 (2005), 498-503.
    [12] Phys. Lett. A, 277 (2000), 212-218.
    [13] J. Math. Biol., 47 (2003), 391-423.
    [14] American Control Conference, (2009), 2904-2909.
    [15] J. Neuropathol. Exp. Neurol., 66 (2007), 1-9.
    [16] Hum. Gene. Ther., 12 (2001), 1323-1332.
    [17] J. Neurosurg., 66 (1987), 865-874.
    [18] Curr. Opin. Mol. Ther., 5 (2003), 618-624.
    [19] Clin. Cancer Res., 9 (2003), 693-702.
    [20] Ann. Neurol., 53 (2003), 524-528.
    [21] 3rd edition, Springer-Verlag, New York, 2003.
    [22] Biology Direct, 1 (2006), 1-18.
    [23] Neurol. Res., 28 (2006), 518-522.
    [24] Ann. Neurol., 60 (2006), 380-383.
    [25] Brain Pathol., 9 (1999), 241-245.
    [26] Phys. Med. Biol., 55 (2010), 3271-3285.
    [27] Neurosurgery, 36 (1995), 275-282.
    [28] J. Neurosurg., 86 (1997), 525-531.
    [29] J. Neurolog. Sci., 216 (2003), 1-10.
    [30] Br. J. Cancer, 98 (2008), 113-119.
    [31] Microbiol. Immunol., 45 (2001), 709-715.
    [32] Science in China Series A: Mathematics, 51 (2008), 2315-2329.
    [33] J. Math. Analysis and Applications, 254 (2001), 138-153.
    [34] World Scientific Publishing Company, Singapore, 2005.
    [35] Cancer Res., 61 (2001), 3501-3507.
    [36] PLoS ONE, 4 (2009), e4271.
    [37] Bull. Math. Biol., 63 (2001), 731-768.
    [38] Bull. Math. Biol., 66 (2004), 605-625.
    [39] J. Theor. Biol., 245 (2007), 1-8.
  • This article has been cited by:

    1. Talal Alzahrani, Raluca Eftimie, Dumitru Trucu, Multiscale moving boundary modelling of cancer interactions with a fusogenic oncolytic virus: The impact of syncytia dynamics, 2020, 323, 00255564, 108296, 10.1016/j.mbs.2019.108296
    2. Talal Alzahrani, Raluca Eftimie, Dumitru Trucu, Multiscale modelling of cancer response to oncolytic viral therapy, 2019, 310, 00255564, 76, 10.1016/j.mbs.2018.12.018
    3. Teekam Singh, Sandip Banerjee, Spatiotemporal dynamics of immunogenic tumors, 2020, 13, 1793-5245, 2050044, 10.1142/S1793524520500448
    4. Johannes P. W. Heidbuechel, Daniel Abate-Daga, Christine E. Engeland, Heiko Enderling, 2020, Chapter 21, 978-1-4939-9793-0, 307, 10.1007/978-1-4939-9794-7_21
    5. A. Diouf, H. Mokrani, D. Ngom, M. Haque, B.I. Camara, Detection and computation of high codimension bifurcations in diffuse predator–prey systems, 2019, 516, 03784371, 402, 10.1016/j.physa.2018.10.027
    6. Urszula Ledzewicz, Behrooz Amini, Heinz Schättler, Dynamics and control of a mathematical model for metronomic chemotherapy, 2015, 12, 1551-0018, 1257, 10.3934/mbe.2015.12.1257
    7. Dominik Wodarz, Computational modeling approaches to the dynamics of oncolytic viruses, 2016, 8, 19395094, 242, 10.1002/wsbm.1332
    8. YOUSHAN TAO, MICHAEL WINKLER, A critical virus production rate for efficiency of oncolytic virotherapy, 2021, 32, 0956-7925, 301, 10.1017/S0956792520000133
    9. Subhas Khajanchi, Sandip Banerjee, Influence of multiple delays in brain tumor and immune system interaction with T11 target structure as a potent stimulator, 2018, 302, 00255564, 116, 10.1016/j.mbs.2018.06.001
    10. Abdulhamed Alsisi, Raluca Eftimie, Dumitru Trucu, Non-local multiscale approach for the impact of go or grow hypothesis on tumour-viruses interactions, 2021, 18, 1551-0018, 5252, 10.3934/mbe.2021267
    11. B. I. Camara, H. Mokrani, A. Diouf, I. Sané, A. S. Diallo, Stochastic model analysis of cancer oncolytic virus therapy: estimation of the extinction mean times and their probabilities, 2022, 107, 0924-090X, 2819, 10.1007/s11071-021-07074-y
    12. H. Lefraich, 2022, Chapter 16, 978-3-031-12514-0, 287, 10.1007/978-3-031-12515-7_16
    13. Subhas Khajanchi, Juan J. Nieto, Spatiotemporal dynamics of a glioma immune interaction model, 2021, 11, 2045-2322, 10.1038/s41598-021-00985-1
    14. Pantea Pooladvand, Peter S. Kim, Modelling oncolytic virus diffusion in collagen-dense tumours, 2022, 2, 2674-0702, 10.3389/fsysb.2022.903512
    15. Abdulhamed Alsisi, Raluca Eftimie, Dumitru Trucu, Nonlocal multiscale modelling of tumour-oncolytic viruses interactions within a heterogeneous fibrous/non-fibrous extracellular matrix, 2022, 19, 1551-0018, 6157, 10.3934/mbe.2022288
    16. M. Kabong Nono, E.B. Megam Ngouonkadi, S. Bowong, H.B. Fotsin, Spatiotemporal dynamics and optimal control of glioma virotherapy enhanced by MEK Inhibitors, 2022, 7, 26667207, 100101, 10.1016/j.rico.2022.100101
    17. Iordanka Panayotova, Maila Hallare, 2023, Chapter 23, 978-3-031-21483-7, 247, 10.1007/978-3-031-21484-4_23
    18. Deivasundari P, M Kabong Nono, E B Megam Ngouonkadi, H B Fotsin, Anitha Karthikeyan, Bistability and chaotic behaviors in a 4D cancer oncolytic Virotherapy mathematical model: Pspice and FPGA implementations, 2024, 99, 0031-8949, 035227, 10.1088/1402-4896/ad25cb
    19. Arwa Abdulla Baabdulla, Thomas Hillen, Oscillations in a Spatial Oncolytic Virus Model, 2024, 86, 0092-8240, 10.1007/s11538-024-01322-z
    20. Dayong Qi, Xueyan Tao, Jiashan Zheng, Boundedness of the solution to a higher-dimensional triply haptotactic cross-diffusion system modeling oncolytic virotherapy, 2025, 25, 1424-3199, 10.1007/s00028-024-01040-y
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3448) PDF downloads(654) Cited by(20)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog