Citation: Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses[J]. Mathematical Biosciences and Engineering, 2013, 10(3): 565-578. doi: 10.3934/mbe.2013.10.565
[1] | Dominik Wodarz . Computational modeling approaches to studying the dynamics of oncolytic viruses. Mathematical Biosciences and Engineering, 2013, 10(3): 939-957. doi: 10.3934/mbe.2013.10.939 |
[2] | Taeyong Lee, Adrianne L. Jenner, Peter S. Kim, Jeehyun Lee . Application of control theory in a delayed-infection and immune-evading oncolytic virotherapy. Mathematical Biosciences and Engineering, 2020, 17(3): 2361-2383. doi: 10.3934/mbe.2020126 |
[3] | G. V. R. K. Vithanage, Hsiu-Chuan Wei, Sophia R-J Jang . Bistability in a model of tumor-immune system interactions with an oncolytic viral therapy. Mathematical Biosciences and Engineering, 2022, 19(2): 1559-1587. doi: 10.3934/mbe.2022072 |
[4] | Zizi Wang, Zhiming Guo, Hal Smith . A mathematical model of oncolytic virotherapy with time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 1836-1860. doi: 10.3934/mbe.2019089 |
[5] | Prathibha Ambegoda, Hsiu-Chuan Wei, Sophia R-J Jang . The role of immune cells in resistance to oncolytic viral therapy. Mathematical Biosciences and Engineering, 2024, 21(5): 5900-5946. doi: 10.3934/mbe.2024261 |
[6] | Lu Gao, Yuanshun Tan, Jin Yang, Changcheng Xiang . Dynamic analysis of an age structure model for oncolytic virus therapy. Mathematical Biosciences and Engineering, 2023, 20(2): 3301-3323. doi: 10.3934/mbe.2023155 |
[7] | Ana Costa, Nuno Vale . Strategies for the treatment of breast cancer: from classical drugs to mathematical models. Mathematical Biosciences and Engineering, 2021, 18(5): 6328-6385. doi: 10.3934/mbe.2021316 |
[8] | Donggu Lee, Aurelio A. de los Reyes V, Yangjin Kim . Optimal strategies of oncolytic virus-bortezomib therapy via the apoptotic, necroptotic, and oncolysis signaling network. Mathematical Biosciences and Engineering, 2024, 21(3): 3876-3909. doi: 10.3934/mbe.2024173 |
[9] | Elzbieta Ratajczyk, Urszula Ledzewicz, Maciej Leszczynski, Avner Friedman . The role of TNF-α inhibitor in glioma virotherapy: A mathematical model. Mathematical Biosciences and Engineering, 2017, 14(1): 305-319. doi: 10.3934/mbe.2017020 |
[10] | Khaphetsi Joseph Mahasa, Rachid Ouifki, Amina Eladdadi, Lisette de Pillis . A combination therapy of oncolytic viruses and chimeric antigen receptor T cells: a mathematical model proof-of-concept. Mathematical Biosciences and Engineering, 2022, 19(5): 4429-4457. doi: 10.3934/mbe.2022205 |
[1] | in "The Pathology of the Aging Human Nervous System" (ed. S. Duckett), Lea and Fabiger, Philadelphia, (1991), 210-286. |
[2] | Virology, 156 (1987), 107-121. |
[3] | PLoS Comput. Biol., 7 (2011), e1001085. |
[4] | AJNR Am. J. Neuroradiol, 16 (1995), 1001-1012. |
[5] | J. Neurosurg, 68 (1988), 698-704. |
[6] | Abstract and Applied Analysis, (ID 590326), (2012), 1-13. |
[7] | Cell Cycle, 5 (2006), 2244-2252. |
[8] | Acta Neuropathol, 114 (2007), 443-458. |
[9] | Am. J. Roentgenol. Radium Ther. Nucl. Med., 84 (1960), 99-107. |
[10] | J. Neurooncol, 67 (2004), 83-93. |
[11] | Am. J. Respir. Cell Mol. Biol., 32 (2005), 498-503. |
[12] | Phys. Lett. A, 277 (2000), 212-218. |
[13] | J. Math. Biol., 47 (2003), 391-423. |
[14] | American Control Conference, (2009), 2904-2909. |
[15] | J. Neuropathol. Exp. Neurol., 66 (2007), 1-9. |
[16] | Hum. Gene. Ther., 12 (2001), 1323-1332. |
[17] | J. Neurosurg., 66 (1987), 865-874. |
[18] | Curr. Opin. Mol. Ther., 5 (2003), 618-624. |
[19] | Clin. Cancer Res., 9 (2003), 693-702. |
[20] | Ann. Neurol., 53 (2003), 524-528. |
[21] | 3rd edition, Springer-Verlag, New York, 2003. |
[22] | Biology Direct, 1 (2006), 1-18. |
[23] | Neurol. Res., 28 (2006), 518-522. |
[24] | Ann. Neurol., 60 (2006), 380-383. |
[25] | Brain Pathol., 9 (1999), 241-245. |
[26] | Phys. Med. Biol., 55 (2010), 3271-3285. |
[27] | Neurosurgery, 36 (1995), 275-282. |
[28] | J. Neurosurg., 86 (1997), 525-531. |
[29] | J. Neurolog. Sci., 216 (2003), 1-10. |
[30] | Br. J. Cancer, 98 (2008), 113-119. |
[31] | Microbiol. Immunol., 45 (2001), 709-715. |
[32] | Science in China Series A: Mathematics, 51 (2008), 2315-2329. |
[33] | J. Math. Analysis and Applications, 254 (2001), 138-153. |
[34] | World Scientific Publishing Company, Singapore, 2005. |
[35] | Cancer Res., 61 (2001), 3501-3507. |
[36] | PLoS ONE, 4 (2009), e4271. |
[37] | Bull. Math. Biol., 63 (2001), 731-768. |
[38] | Bull. Math. Biol., 66 (2004), 605-625. |
[39] | J. Theor. Biol., 245 (2007), 1-8. |
1. | Talal Alzahrani, Raluca Eftimie, Dumitru Trucu, Multiscale moving boundary modelling of cancer interactions with a fusogenic oncolytic virus: The impact of syncytia dynamics, 2020, 323, 00255564, 108296, 10.1016/j.mbs.2019.108296 | |
2. | Talal Alzahrani, Raluca Eftimie, Dumitru Trucu, Multiscale modelling of cancer response to oncolytic viral therapy, 2019, 310, 00255564, 76, 10.1016/j.mbs.2018.12.018 | |
3. | Teekam Singh, Sandip Banerjee, Spatiotemporal dynamics of immunogenic tumors, 2020, 13, 1793-5245, 2050044, 10.1142/S1793524520500448 | |
4. | Johannes P. W. Heidbuechel, Daniel Abate-Daga, Christine E. Engeland, Heiko Enderling, 2020, Chapter 21, 978-1-4939-9793-0, 307, 10.1007/978-1-4939-9794-7_21 | |
5. | A. Diouf, H. Mokrani, D. Ngom, M. Haque, B.I. Camara, Detection and computation of high codimension bifurcations in diffuse predator–prey systems, 2019, 516, 03784371, 402, 10.1016/j.physa.2018.10.027 | |
6. | Urszula Ledzewicz, Behrooz Amini, Heinz Schättler, Dynamics and control of a mathematical model for metronomic chemotherapy, 2015, 12, 1551-0018, 1257, 10.3934/mbe.2015.12.1257 | |
7. | Dominik Wodarz, Computational modeling approaches to the dynamics of oncolytic viruses, 2016, 8, 19395094, 242, 10.1002/wsbm.1332 | |
8. | YOUSHAN TAO, MICHAEL WINKLER, A critical virus production rate for efficiency of oncolytic virotherapy, 2021, 32, 0956-7925, 301, 10.1017/S0956792520000133 | |
9. | Subhas Khajanchi, Sandip Banerjee, Influence of multiple delays in brain tumor and immune system interaction with T11 target structure as a potent stimulator, 2018, 302, 00255564, 116, 10.1016/j.mbs.2018.06.001 | |
10. | Abdulhamed Alsisi, Raluca Eftimie, Dumitru Trucu, Non-local multiscale approach for the impact of go or grow hypothesis on tumour-viruses interactions, 2021, 18, 1551-0018, 5252, 10.3934/mbe.2021267 | |
11. | B. I. Camara, H. Mokrani, A. Diouf, I. Sané, A. S. Diallo, Stochastic model analysis of cancer oncolytic virus therapy: estimation of the extinction mean times and their probabilities, 2022, 107, 0924-090X, 2819, 10.1007/s11071-021-07074-y | |
12. | H. Lefraich, 2022, Chapter 16, 978-3-031-12514-0, 287, 10.1007/978-3-031-12515-7_16 | |
13. | Subhas Khajanchi, Juan J. Nieto, Spatiotemporal dynamics of a glioma immune interaction model, 2021, 11, 2045-2322, 10.1038/s41598-021-00985-1 | |
14. | Pantea Pooladvand, Peter S. Kim, Modelling oncolytic virus diffusion in collagen-dense tumours, 2022, 2, 2674-0702, 10.3389/fsysb.2022.903512 | |
15. | Abdulhamed Alsisi, Raluca Eftimie, Dumitru Trucu, Nonlocal multiscale modelling of tumour-oncolytic viruses interactions within a heterogeneous fibrous/non-fibrous extracellular matrix, 2022, 19, 1551-0018, 6157, 10.3934/mbe.2022288 | |
16. | M. Kabong Nono, E.B. Megam Ngouonkadi, S. Bowong, H.B. Fotsin, Spatiotemporal dynamics and optimal control of glioma virotherapy enhanced by MEK Inhibitors, 2022, 7, 26667207, 100101, 10.1016/j.rico.2022.100101 | |
17. | Iordanka Panayotova, Maila Hallare, 2023, Chapter 23, 978-3-031-21483-7, 247, 10.1007/978-3-031-21484-4_23 | |
18. | Deivasundari P, M Kabong Nono, E B Megam Ngouonkadi, H B Fotsin, Anitha Karthikeyan, Bistability and chaotic behaviors in a 4D cancer oncolytic Virotherapy mathematical model: Pspice and FPGA implementations, 2024, 99, 0031-8949, 035227, 10.1088/1402-4896/ad25cb | |
19. | Arwa Abdulla Baabdulla, Thomas Hillen, Oscillations in a Spatial Oncolytic Virus Model, 2024, 86, 0092-8240, 10.1007/s11538-024-01322-z | |
20. | Dayong Qi, Xueyan Tao, Jiashan Zheng, Boundedness of the solution to a higher-dimensional triply haptotactic cross-diffusion system modeling oncolytic virotherapy, 2025, 25, 1424-3199, 10.1007/s00028-024-01040-y |