Loading [Contrib]/a11y/accessibility-menu.js

The dynamics of tumor growth and cells pattern morphology

  • Received: 01 July 2008 Accepted: 29 June 2018 Published: 01 June 2009
  • MSC : 92C15, 82C31, 92C50.

  • The mathematical modeling of tumor growth is an approach to explain the complex nature of these systems. A model that describes tumor growth was obtained by using a mesoscopic formalism and fractal dimension. This model theoretically predicts the relation between the morphology of the cell pattern and the mitosis/apoptosis quotient that helps to predict tumor growth from tumoral cells fractal dimension. The relation between the tumor macroscopic morphology and the cell pattern morphology is also determined. This could explain why the interface fractal dimension decreases with the increase of the cell pattern fractal dimension and consequently with the increase of the mitosis/apoptosis relation. Indexes to characterize tumoral cell proliferation and invasion capacities are proposed and used to predict the growth of different types of tumors. These indexes also show that the proliferation capacity is directly proportional to the invasion capacity. The proposed model assumes: i) only interface cells proliferate and invade the host, and ii) the fractal dimension of tumoral cell patterns, can reproduce the Gompertzian growth law.

    Citation: Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar. The dynamics of tumorgrowth and cells pattern morphology[J]. Mathematical Biosciences and Engineering, 2009, 6(3): 547-559. doi: 10.3934/mbe.2009.6.547

    Related Papers:

    [1] Elena Izquierdo-Kulich, José Manuel Nieto-Villar . Morphogenesis of the tumor patterns. Mathematical Biosciences and Engineering, 2008, 5(2): 299-313. doi: 10.3934/mbe.2008.5.299
    [2] Elena Izquierdo-Kulich, José Manuel Nieto-Villar . Mesoscopic model for tumor growth. Mathematical Biosciences and Engineering, 2007, 4(4): 687-698. doi: 10.3934/mbe.2007.4.687
    [3] H. J. Alsakaji, F. A. Rihan, K. Udhayakumar, F. El Ktaibi . Stochastic tumor-immune interaction model with external treatments and time delays: An optimal control problem. Mathematical Biosciences and Engineering, 2023, 20(11): 19270-19299. doi: 10.3934/mbe.2023852
    [4] Avner Friedman, Yangjin Kim . Tumor cells proliferation and migration under the influence of their microenvironment. Mathematical Biosciences and Engineering, 2011, 8(2): 371-383. doi: 10.3934/mbe.2011.8.371
    [5] Peter Hinow, Philip Gerlee, Lisa J. McCawley, Vito Quaranta, Madalina Ciobanu, Shizhen Wang, Jason M. Graham, Bruce P. Ayati, Jonathan Claridge, Kristin R. Swanson, Mary Loveless, Alexander R. A. Anderson . A spatial model of tumor-host interaction: Application of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 521-546. doi: 10.3934/mbe.2009.6.521
    [6] Marcelo E. de Oliveira, Luiz M. G. Neto . Directional entropy based model for diffusivity-driven tumor growth. Mathematical Biosciences and Engineering, 2016, 13(2): 333-341. doi: 10.3934/mbe.2015005
    [7] Yangjin Kim, Hans G. Othmer . Hybrid models of cell and tissue dynamics in tumor growth. Mathematical Biosciences and Engineering, 2015, 12(6): 1141-1156. doi: 10.3934/mbe.2015.12.1141
    [8] Christian Engwer, Markus Knappitsch, Christina Surulescu . A multiscale model for glioma spread including cell-tissue interactions and proliferation. Mathematical Biosciences and Engineering, 2016, 13(2): 443-460. doi: 10.3934/mbe.2015011
    [9] Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, José Manuel Nieto-Villar . Morphogenesis and aggressiveness of cervix carcinoma. Mathematical Biosciences and Engineering, 2011, 8(4): 987-997. doi: 10.3934/mbe.2011.8.987
    [10] Yan Fu, Tian Lu, Meng Zhou, Dongwei Liu, Qihang Gan, Guowei Wang . Effect of color cross-correlated noise on the growth characteristics of tumor cells under immune surveillance. Mathematical Biosciences and Engineering, 2023, 20(12): 21626-21642. doi: 10.3934/mbe.2023957
  • The mathematical modeling of tumor growth is an approach to explain the complex nature of these systems. A model that describes tumor growth was obtained by using a mesoscopic formalism and fractal dimension. This model theoretically predicts the relation between the morphology of the cell pattern and the mitosis/apoptosis quotient that helps to predict tumor growth from tumoral cells fractal dimension. The relation between the tumor macroscopic morphology and the cell pattern morphology is also determined. This could explain why the interface fractal dimension decreases with the increase of the cell pattern fractal dimension and consequently with the increase of the mitosis/apoptosis relation. Indexes to characterize tumoral cell proliferation and invasion capacities are proposed and used to predict the growth of different types of tumors. These indexes also show that the proliferation capacity is directly proportional to the invasion capacity. The proposed model assumes: i) only interface cells proliferate and invade the host, and ii) the fractal dimension of tumoral cell patterns, can reproduce the Gompertzian growth law.


  • This article has been cited by:

    1. Morphogenesis and aggressiveness of cervix carcinoma, 2011, 8, 1551-0018, 987, 10.3934/mbe.2011.8.987
    2. Antonio Rafael Selva Castañeda, Erick Ramírez Torres, Narciso Antonio Villar Goris, Maraelys Morales González, Juan Bory Reyes, Victoriano Gustavo Sierra González, María Schonbek, Juan Ignacio Montijano, Luis Enrique Bergues Cabrales, Fabio Rapallo, New formulation of the Gompertz equation to describe the kinetics of untreated tumors, 2019, 14, 1932-6203, e0224978, 10.1371/journal.pone.0224978
    3. Abicumaran Uthamacumaran, Hector Zenil, A Review of Mathematical and Computational Methods in Cancer Dynamics, 2022, 12, 2234-943X, 10.3389/fonc.2022.850731
    4. Yan Fu, Tian Lu, Meng Zhou, Dongwei Liu, Qihang Gan, Guowei Wang, Effect of color cross-correlated noise on the growth characteristics of tumor cells under immune surveillance, 2023, 20, 1551-0018, 21626, 10.3934/mbe.2023957
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3006) PDF downloads(568) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog