Modeling colony collapse disorder in honeybees as a contagion

  • Received: 01 March 2014 Accepted: 29 June 2018 Published: 01 September 2014
  • MSC : Primary: 92D30, 92D40; Secondary: 37F99.

  • Honeybee pollination accounts annually for over $14 billion in United States agriculture alone. Within the past decade there has been a mysterious mass die-off of honeybees, an estimated 10 million beehives and sometimes as much as 90% of an apiary. There is still no consensus on what causes this phenomenon, called Colony Collapse Disorder, or CCD. Several mathematical models have studied CCD by only focusing on infection dynamics. We created a model to account for both healthy hive dynamics and hive extinction due to CCD, modeling CCD via a transmissible infection brought to the hive by foragers. The system of three ordinary differential equations accounts for multiple hive population behaviors including Allee effects and colony collapse. Numerical analysis leads to critical hive sizes for multiple scenarios and highlights the role of accelerated forager recruitment in emptying hives during colony collapse.

    Citation: Christopher M. Kribs-Zaleta, Christopher Mitchell. Modeling colony collapse disorder in honeybees as a contagion[J]. Mathematical Biosciences and Engineering, 2014, 11(6): 1275-1294. doi: 10.3934/mbe.2014.11.1275

    Related Papers:

    [1] Jun Chen, Gloria DeGrandi-Hoffman, Vardayani Ratti, Yun Kang . Review on mathematical modeling of honeybee population dynamics. Mathematical Biosciences and Engineering, 2021, 18(6): 9606-9650. doi: 10.3934/mbe.2021471
    [2] Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen . Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999. doi: 10.3934/mbe.2023486
    [3] Eduardo Liz, Alfonso Ruiz-Herrera . Delayed population models with Allee effects and exploitation. Mathematical Biosciences and Engineering, 2015, 12(1): 83-97. doi: 10.3934/mbe.2015.12.83
    [4] Juan Ye, Yi Wang, Zhan Jin, Chuanjun Dai, Min Zhao . Dynamics of a predator-prey model with strong Allee effect and nonconstant mortality rate. Mathematical Biosciences and Engineering, 2022, 19(4): 3402-3426. doi: 10.3934/mbe.2022157
    [5] Kawkab Al Amri, Qamar J. A Khan, David Greenhalgh . Combined impact of fear and Allee effect in predator-prey interaction models on their growth. Mathematical Biosciences and Engineering, 2024, 21(10): 7211-7252. doi: 10.3934/mbe.2024319
    [6] Moitri Sen, Malay Banerjee, Yasuhiro Takeuchi . Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator model. Mathematical Biosciences and Engineering, 2018, 15(4): 883-904. doi: 10.3934/mbe.2018040
    [7] Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay . Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences and Engineering, 2014, 11(4): 877-918. doi: 10.3934/mbe.2014.11.877
    [8] Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857
    [9] Mingming Zhang, Huiyuan Jin, Ying Yang . ECG classification efficient modeling with artificial bee colony optimization data augmentation and attention mechanism. Mathematical Biosciences and Engineering, 2024, 21(3): 4626-4647. doi: 10.3934/mbe.2024203
    [10] Sophia R.-J. Jang . Discrete host-parasitoid models with Allee effects and age structure in the host. Mathematical Biosciences and Engineering, 2010, 7(1): 67-81. doi: 10.3934/mbe.2010.7.67
  • Honeybee pollination accounts annually for over $14 billion in United States agriculture alone. Within the past decade there has been a mysterious mass die-off of honeybees, an estimated 10 million beehives and sometimes as much as 90% of an apiary. There is still no consensus on what causes this phenomenon, called Colony Collapse Disorder, or CCD. Several mathematical models have studied CCD by only focusing on infection dynamics. We created a model to account for both healthy hive dynamics and hive extinction due to CCD, modeling CCD via a transmissible infection brought to the hive by foragers. The system of three ordinary differential equations accounts for multiple hive population behaviors including Allee effects and colony collapse. Numerical analysis leads to critical hive sizes for multiple scenarios and highlights the role of accelerated forager recruitment in emptying hives during colony collapse.


    [1] Journal of Theoretical Biology, 223 (2003), 451-464.
    [2] Quat. Rev. Zool., 12 (1937), 406-425.
    [3] United States Department of Agriculture, June 2010. Retrieved 2013-08-28 from http://www.ars.usda.gov/is/br/ccd/ccdprogressreport2010.pdf.
    [4] How To Books, London, 2008.
    [5] Journal of Apicultural Research, 49 (2010), 124-125.
    [6] Ecological Modelling, 45 (1989), 133-150.
    [7] Journal of Mathematical Biology, 28 (1990), 365-382.
    [8] Technical Report 2012-12, University of Texas at Arlington Mathematics Department, Arlington, TX. Available online at http://www.uta.edu/math/preprint/rep2012_12.pdf.
    [9] Electronic Journal of Differential Equations (EJDE) [electronic only] Conf. 19 (2010), 85-98. Available from: http://eudml.org/doc/232749.
    [10] Ecological Economics, 68 (2009), 810-821.
    [11] Environmental Microbiology, 10 (2008), 2659-2669.
    [12] Reproduction, Fertility, and Development, 24 (2012), 1079-1083.
    [13] Unpublished Thesis, School of Mathematics and Statistics, University of Sydney, Sydney, 2009.
    [14] PLoS ONE, 8 (2013), e59084.
    [15] PLoS ONE, 6 (2011), e18491.
    [16] PLoS Biology, 5 (2007), e168.
    [17] Uludag Bee Journal, 10 (2010), 85-95.
    [18] Nosema Ceranae, PLoS ONE, 8 (2013), e70182.
    [19] Ecological Modelling, 265 (2013), 158-169.
    [20] Ecological Modelling, 204 (2007), 219-245.
    [21] Journal of Animal Ecology, 73 (2004), 51-63.
    [22] Social Studies Of Science (Sage Publications, Ltd.), 43 (2013), 215-240.
    [23] American Bee Journal, 141 (2001), 287-288.
    [24] USDA, 2010. Available from: http://www.ars.usda.gov/is/br/ccd/ccdprogressreport2010.pdf.
    [25] Mathematical Biosciences, 180 (2002), 29-48.
    [26] Journal of Apicultural Research, 49 (2010), 7-14.
    [27] Science, 302 (2003), 296-299.
  • This article has been cited by:

    1. Nasim Muhammad, Hermann J Eberl, Two routes of transmission for Nosema infections in a honeybee population model with polyethism and time-periodic parameters can lead to drastically different qualitative model behavior, 2020, 84, 10075704, 105207, 10.1016/j.cnsns.2020.105207
    2. Vardayani Ratti, Peter G. Kevan, Hermann J. Eberl, A Mathematical Model of the Honeybee–Varroa destructor–Acute Bee Paralysis Virus System with Seasonal Effects, 2015, 77, 0092-8240, 1493, 10.1007/s11538-015-0093-5
    3. Nasim Muhammad, Hermann J. Eberl, 2018, Chapter 35, 978-3-319-99718-6, 385, 10.1007/978-3-319-99719-3_35
    4. K. Messan, G. DeGrandi-Hoffman, C. Castillo-Chavez, Y. Kang, M. Banerjee, A. Perasso, E. Venturino, Migration Effects on Population Dynamics of the Honeybee-mite Interactions, 2017, 12, 1760-6101, 84, 10.1051/mmnp/201712206
    5. Alex Petric, Ernesto Guzman-Novoa, Hermann J. Eberl, A mathematical model for the interplay of Nosema infection and forager losses in honey bee colonies, 2017, 11, 1751-3758, 348, 10.1080/17513758.2016.1237682
    6. Komi Messan, Marisabel Rodriguez Messan, Jun Chen, Gloria DeGrandi-Hoffman, Yun Kang, Population dynamics of Varroa mite and honeybee: Effects of parasitism with age structure and seasonality, 2021, 440, 03043800, 109359, 10.1016/j.ecolmodel.2020.109359
    7. Lotte Sewalt, Kristen Harley, Peter van Heijster, Sanjeeva Balasuriya, Influences of Allee effects in the spreading of malignant tumours, 2016, 394, 00225193, 77, 10.1016/j.jtbi.2015.12.024
    8. Brian Dennis, William P. Kemp, James A.R. Marshall, How Hives Collapse: Allee Effects, Ecological Resilience, and the Honey Bee, 2016, 11, 1932-6203, e0150055, 10.1371/journal.pone.0150055
    9. Ross D. Booton, Yoh Iwasa, James A.R. Marshall, Dylan Z. Childs, Stress-mediated Allee effects can cause the sudden collapse of honey bee colonies, 2017, 420, 00225193, 213, 10.1016/j.jtbi.2017.03.009
    10. Mataeli B. Lerata, Jean M-S. Lubuma, Abdullahi A. Yusuf, Continuous and discrete dynamical systems for the declines of honeybee colonies, 2018, 41, 01704214, 8724, 10.1002/mma.5093
    11. P. Magal, G. F. Webb, Yixiang Wu, An Environmental Model of Honey Bee Colony Collapse Due to Pesticide Contamination, 2019, 81, 0092-8240, 4908, 10.1007/s11538-019-00662-5
    12. Kenneth John Aitken, “If it looks like a duck…” – why humans need to focus on different approaches than insects if we are to become efficiently and effectively ultrasocial, 2016, 39, 0140-525X, 10.1017/S0140525X15000977
    13. A mechanistic model to assess risks to honeybee colonies from exposure to pesticides under different scenarios of combined stressors and factors, 2016, 13, 23978325, 10.2903/sp.efsa.2016.EN-1069
    14. Vardayani Ratti, Peter G. Kevan, Hermann J. Eberl, A Mathematical Model of Forager Loss in Honeybee Colonies Infested with Varroa destructor and the Acute Bee Paralysis Virus, 2017, 79, 0092-8240, 1218, 10.1007/s11538-017-0281-6
    15. Yun Kang, Krystal Blanco, Talia Davis, Ying Wang, Gloria DeGrandi-Hoffman, Disease dynamics of honeybees with Varroa destructor as parasite and virus vector, 2016, 275, 00255564, 71, 10.1016/j.mbs.2016.02.012
    16. J. Reilly Comper, Hermann J. Eberl, Mathematical modelling of population and food storage dynamics in a honey bee colony infected with Nosema ceranae, 2020, 6, 24058440, e04599, 10.1016/j.heliyon.2020.e04599
    17. P. Magal, G. F. Webb, Yixiang Wu, A spatial model of honey bee colony collapse due to pesticide contamination of foraging bees, 2020, 80, 0303-6812, 2363, 10.1007/s00285-020-01498-7
    18. Alessio Ippolito, Andreas Focks, Maj Rundlöf, Andres Arce, Marco Marchesi, Franco Maria Neri, Agnès Rortais, Csaba Szentes, Domenica Auteri, Analysis of background variability of honey bee colony size, 2021, 18, 23978325, 10.2903/sp.efsa.2021.EN-6518
    19. Jun Chen, Gloria DeGrandi-Hoffman, Vardayani Ratti, Yun Kang, Review on mathematical modeling of honeybee population dynamics, 2021, 18, 1551-0018, 9606, 10.3934/mbe.2021471
    20. Partha Sarathi Mandal, Sunil Maity, Impact of demographic variability on the disease dynamics for honeybee model, 2022, 32, 1054-1500, 083120, 10.1063/5.0096638
    21. Hermann J. Eberl, Nasim Muhammad, Mathematical modelling of between hive transmission of Nosemosis by drifting, 2022, 114, 10075704, 106636, 10.1016/j.cnsns.2022.106636
    22. David C. Elzinga, W. Christopher Strickland, Generalized Stressors on Hive and Forager Bee Colonies, 2023, 85, 0092-8240, 10.1007/s11538-023-01219-3
    23. Atanas Z. Atanasov, Miglena N. Koleva, Lubin G. Vulkov, Inverse Problem Numerical Analysis of Forager Bee Losses in Spatial Environment without Contamination, 2023, 15, 2073-8994, 2099, 10.3390/sym15122099
    24. Miglena N. Koleva, Lubin G. Vulkov, Reconstruction coefficient analysis of honeybee collapse due to pesticide contamination, 2023, 2675, 1742-6588, 012024, 10.1088/1742-6596/2675/1/012024
    25. Atanas Z. Atanasov, Slavi G. Georgiev, Lubin G. Vulkov, Analysis of the Influence of Brood Deaths on Honeybee Population, 2024, 14, 2076-3417, 11412, 10.3390/app142311412
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4017) PDF downloads(854) Cited by(25)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog