1.
|
Nasim Muhammad, Hermann J Eberl,
Two routes of transmission for Nosema infections in a honeybee population model with polyethism and time-periodic parameters can lead to drastically different qualitative model behavior,
2020,
84,
10075704,
105207,
10.1016/j.cnsns.2020.105207
|
|
2.
|
Vardayani Ratti, Peter G. Kevan, Hermann J. Eberl,
A Mathematical Model of the Honeybee–Varroa destructor–Acute Bee Paralysis Virus System with Seasonal Effects,
2015,
77,
0092-8240,
1493,
10.1007/s11538-015-0093-5
|
|
3.
|
Nasim Muhammad, Hermann J. Eberl,
2018,
Chapter 35,
978-3-319-99718-6,
385,
10.1007/978-3-319-99719-3_35
|
|
4.
|
K. Messan, G. DeGrandi-Hoffman, C. Castillo-Chavez, Y. Kang, M. Banerjee, A. Perasso, E. Venturino,
Migration Effects on Population Dynamics of the Honeybee-mite Interactions,
2017,
12,
1760-6101,
84,
10.1051/mmnp/201712206
|
|
5.
|
Alex Petric, Ernesto Guzman-Novoa, Hermann J. Eberl,
A mathematical model for the interplay of Nosema infection and forager losses in honey bee colonies,
2017,
11,
1751-3758,
348,
10.1080/17513758.2016.1237682
|
|
6.
|
Komi Messan, Marisabel Rodriguez Messan, Jun Chen, Gloria DeGrandi-Hoffman, Yun Kang,
Population dynamics of Varroa mite and honeybee: Effects of parasitism with age structure and seasonality,
2021,
440,
03043800,
109359,
10.1016/j.ecolmodel.2020.109359
|
|
7.
|
Lotte Sewalt, Kristen Harley, Peter van Heijster, Sanjeeva Balasuriya,
Influences of Allee effects in the spreading of malignant tumours,
2016,
394,
00225193,
77,
10.1016/j.jtbi.2015.12.024
|
|
8.
|
Brian Dennis, William P. Kemp, James A.R. Marshall,
How Hives Collapse: Allee Effects, Ecological Resilience, and the Honey Bee,
2016,
11,
1932-6203,
e0150055,
10.1371/journal.pone.0150055
|
|
9.
|
Ross D. Booton, Yoh Iwasa, James A.R. Marshall, Dylan Z. Childs,
Stress-mediated Allee effects can cause the sudden collapse of honey bee colonies,
2017,
420,
00225193,
213,
10.1016/j.jtbi.2017.03.009
|
|
10.
|
Mataeli B. Lerata, Jean M-S. Lubuma, Abdullahi A. Yusuf,
Continuous and discrete dynamical systems for the declines of honeybee colonies,
2018,
41,
01704214,
8724,
10.1002/mma.5093
|
|
11.
|
P. Magal, G. F. Webb, Yixiang Wu,
An Environmental Model of Honey Bee Colony Collapse Due to Pesticide Contamination,
2019,
81,
0092-8240,
4908,
10.1007/s11538-019-00662-5
|
|
12.
|
Kenneth John Aitken,
“If it looks like a duck…” – why humans need to focus on different approaches than insects if we are to become efficiently and effectively ultrasocial,
2016,
39,
0140-525X,
10.1017/S0140525X15000977
|
|
13.
|
A mechanistic model to assess risks to honeybee colonies from exposure to pesticides under different scenarios of combined stressors and factors,
2016,
13,
23978325,
10.2903/sp.efsa.2016.EN-1069
|
|
14.
|
Vardayani Ratti, Peter G. Kevan, Hermann J. Eberl,
A Mathematical Model of Forager Loss in Honeybee Colonies Infested with Varroa destructor and the Acute Bee Paralysis Virus,
2017,
79,
0092-8240,
1218,
10.1007/s11538-017-0281-6
|
|
15.
|
Yun Kang, Krystal Blanco, Talia Davis, Ying Wang, Gloria DeGrandi-Hoffman,
Disease dynamics of honeybees with Varroa destructor as parasite and virus vector,
2016,
275,
00255564,
71,
10.1016/j.mbs.2016.02.012
|
|
16.
|
J. Reilly Comper, Hermann J. Eberl,
Mathematical modelling of population and food storage dynamics in a honey bee colony infected with Nosema ceranae,
2020,
6,
24058440,
e04599,
10.1016/j.heliyon.2020.e04599
|
|
17.
|
P. Magal, G. F. Webb, Yixiang Wu,
A spatial model of honey bee colony collapse due to pesticide contamination of foraging bees,
2020,
80,
0303-6812,
2363,
10.1007/s00285-020-01498-7
|
|
18.
|
Alessio Ippolito, Andreas Focks, Maj Rundlöf, Andres Arce, Marco Marchesi, Franco Maria Neri, Agnès Rortais, Csaba Szentes, Domenica Auteri,
Analysis of background variability of honey bee colony size,
2021,
18,
23978325,
10.2903/sp.efsa.2021.EN-6518
|
|
19.
|
Jun Chen, Gloria DeGrandi-Hoffman, Vardayani Ratti, Yun Kang,
Review on mathematical modeling of honeybee population dynamics,
2021,
18,
1551-0018,
9606,
10.3934/mbe.2021471
|
|
20.
|
Partha Sarathi Mandal, Sunil Maity,
Impact of demographic variability on the disease dynamics for honeybee model,
2022,
32,
1054-1500,
083120,
10.1063/5.0096638
|
|
21.
|
Hermann J. Eberl, Nasim Muhammad,
Mathematical modelling of between hive transmission of Nosemosis by drifting,
2022,
114,
10075704,
106636,
10.1016/j.cnsns.2022.106636
|
|
22.
|
David C. Elzinga, W. Christopher Strickland,
Generalized Stressors on Hive and Forager Bee Colonies,
2023,
85,
0092-8240,
10.1007/s11538-023-01219-3
|
|
23.
|
Atanas Z. Atanasov, Miglena N. Koleva, Lubin G. Vulkov,
Inverse Problem Numerical Analysis of Forager Bee Losses in Spatial Environment without Contamination,
2023,
15,
2073-8994,
2099,
10.3390/sym15122099
|
|
24.
|
Miglena N. Koleva, Lubin G. Vulkov,
Reconstruction coefficient analysis of honeybee collapse due to pesticide contamination,
2023,
2675,
1742-6588,
012024,
10.1088/1742-6596/2675/1/012024
|
|
25.
|
Atanas Z. Atanasov, Slavi G. Georgiev, Lubin G. Vulkov,
Analysis of the Influence of Brood Deaths on Honeybee Population,
2024,
14,
2076-3417,
11412,
10.3390/app142311412
|
|