Epidemic models for complex networks with demographics

  • Received: 01 March 2014 Accepted: 29 June 2018 Published: 01 September 2014
  • MSC : Primary: 58F15, 58F17; Secondary: 53C35.

  • In this paper, we propose and study network epidemic models withdemographics for disease transmission. We obtain the formula of thebasic reproduction number $R_{0}$ of infection for an SIS model withbirths or recruitment and death rate. We prove that if $R_{0}\leq1$,infection-free equilibrium of SIS model is globally asymptoticallystable; if $R_{0}>1$, there exists a unique endemic equilibrium whichis globally asymptotically stable. It is also found thatdemographics has great effect on basic reproduction number $R_{0}$.Furthermore, the degree distribution of population varies with timebefore it reaches the stationary state.

    Citation: Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics[J]. Mathematical Biosciences and Engineering, 2014, 11(6): 1295-1317. doi: 10.3934/mbe.2014.11.1295

    Related Papers:

    [1] Haijun Hu, Xupu Yuan, Lihong Huang, Chuangxia Huang . Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks. Mathematical Biosciences and Engineering, 2019, 16(5): 5729-5749. doi: 10.3934/mbe.2019286
    [2] Qiuyi Su, Jianhong Wu . Impact of variability of reproductive ageing and rate on childhood infectious disease prevention and control: insights from stage-structured population models. Mathematical Biosciences and Engineering, 2020, 17(6): 7671-7691. doi: 10.3934/mbe.2020390
    [3] Najat Ziyadi . A male-female mathematical model of human papillomavirus (HPV) in African American population. Mathematical Biosciences and Engineering, 2017, 14(1): 339-358. doi: 10.3934/mbe.2017022
    [4] F. Berezovskaya, G. Karev, Baojun Song, Carlos Castillo-Chavez . A Simple Epidemic Model with Surprising Dynamics. Mathematical Biosciences and Engineering, 2005, 2(1): 133-152. doi: 10.3934/mbe.2005.2.133
    [5] Hai-Feng Huo, Qian Yang, Hong Xiang . Dynamics of an edge-based SEIR model for sexually transmitted diseases. Mathematical Biosciences and Engineering, 2020, 17(1): 669-699. doi: 10.3934/mbe.2020035
    [6] Churni Gupta, Necibe Tuncer, Maia Martcheva . A network immuno-epidemiological model of HIV and opioid epidemics. Mathematical Biosciences and Engineering, 2023, 20(2): 4040-4068. doi: 10.3934/mbe.2023189
    [7] Jinna Lu, Xiaoguang Zhang . Bifurcation analysis of a pair-wise epidemic model on adaptive networks. Mathematical Biosciences and Engineering, 2019, 16(4): 2973-2989. doi: 10.3934/mbe.2019147
    [8] Kazuo Yamazaki, Xueying Wang . Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences and Engineering, 2017, 14(2): 559-579. doi: 10.3934/mbe.2017033
    [9] F. S. Vannucchi, S. Boccaletti . Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences and Engineering, 2004, 1(1): 49-55. doi: 10.3934/mbe.2004.1.49
    [10] Xing Zhang, Zhitao Li, Lixin Gao . Stability analysis of a SAIR epidemic model on scale-free community networks. Mathematical Biosciences and Engineering, 2024, 21(3): 4648-4668. doi: 10.3934/mbe.2024204
  • In this paper, we propose and study network epidemic models withdemographics for disease transmission. We obtain the formula of thebasic reproduction number $R_{0}$ of infection for an SIS model withbirths or recruitment and death rate. We prove that if $R_{0}\leq1$,infection-free equilibrium of SIS model is globally asymptoticallystable; if $R_{0}>1$, there exists a unique endemic equilibrium whichis globally asymptotically stable. It is also found thatdemographics has great effect on basic reproduction number $R_{0}$.Furthermore, the degree distribution of population varies with timebefore it reaches the stationary state.


    [1] Oxford University Press, Oxford, 1992.
    [2] Science, 286 (1999), 509-511.
    [3] Journal of Theoretical Biology, 235 (2005), 275-288.
    [4] J. Phys. A: Math. Theor., 40 (2007), 8607-8619.
    [5] e-print cond-mat/0301149, (2003).
    [6] J. Math. Biol., 28 (1990), 257-270.
    [7] in Mathematical Population Dynamics: Analysis of Heterogeneity (eds. O. Arino, D. Axelrod, M. Kimmel and M. Langlais), Theory of Epidemics, 1, Wuerz, Winnipeg, 1993, 33-50.
    [8] Applied Mathematics and Computation, 197 (2008), 345-357.
    [9] J. Math. Biol., 30 (1992), 717-731.
    [10] Proc. Natl. Acad. Sci. U.S.A., 101 (2004), 15124.
    [11] J. Math. Anal. Appl., 308 (2005), 343-364.
    [12] Phys. Rev. E, 69 (2004), 066105.
    [13] J. R. Soc. Interface, 2 (2005), 295-307.
    [14] Princeton University Press, 2007.
    [15] Proc. R. Soc. A, 115 (1927), 700-711.
    [16] Mathematical Biosciences, 203 (2006), 124-136.
    [17] Bulletin of Mathematical Biology, 71 (2009), 888-905.
    [18] Physica D, 238 (2009), 370-378.
    [19] World Scientific, 2009.
    [20] Phys. Rev. E, 64 (2001), 066112.
    [21] Eur. Phys. J. B, 26 (2002), 521-529.
    [22] Phys. Rev. E, 70 (2004), 030902.
    [23] Phys. Rev. E, 63 (2001), 066117.
    [24] Phys. Rev. Let., 86 (2001), 3200.
    [25] IMA Journal of Mathematics Applied in Medicine & Biology, 13 (1996), 245-257.
    [26] Phys. Rev. E, 77 (2008), 066101.
    [27] SIAM J. Appl. Math., 46 (1986), 368-375.
    [28] Rocky Mountain J. Math., 24 (1994), 351-380.
    [29] Mathematical Biosciences, 180 (2002), 29-48.
    [30] Siam J. Appl. Math., 68 (2008), 1495-1502.
    [31] Mathematical Biosciences, 190 (2004), 97-112.
    [32] Springer-Verlag, New York, 2003.
    [33] Canad. Appl. Math. Quart., 4 (1996), 421-444.
  • This article has been cited by:

    1. Sanling Yuan, P. van den Driessche, Frederick H. Willeboordse, Zhisheng Shuai, Junling Ma, Disease invasion risk in a growing population, 2016, 73, 0303-6812, 665, 10.1007/s00285-015-0962-4
    2. Jing Li, Zhen Jin, Yuan Yuan, Gui-Quan Sun, A non-Markovian SIR network model with fixed infectious period and preventive rewiring, 2018, 75, 08981221, 3884, 10.1016/j.camwa.2018.02.035
    3. Wei Pan, Gui-Quan Sun, Zhen Jin, How demography-driven evolving networks impact epidemic transmission between communities, 2015, 382, 00225193, 309, 10.1016/j.jtbi.2015.07.009
    4. Shujuan Zhang, Zhen Jin, Juan Zhang, The dynamical modeling and simulation analysis of the recommendation on the user–movie network, 2016, 463, 03784371, 310, 10.1016/j.physa.2016.07.049
    5. Irina Bashkirtseva, Preventing Noise-Induced Extinction in Discrete Population Models, 2017, 2017, 1026-0226, 1, 10.1155/2017/9610609
    6. Wenjun Jing, Zhen Jin, Juping Zhang, An SIR pairwise epidemic model with infection age and demography, 2018, 12, 1751-3758, 486, 10.1080/17513758.2018.1475018
    7. Lu-Xing Yang, Moez Draief, Xiaofan Yang, Gui-Quan Sun, The Impact of the Network Topology on the Viral Prevalence: A Node-Based Approach, 2015, 10, 1932-6203, e0134507, 10.1371/journal.pone.0134507
    8. Shuping Li, Xiaorong Zhao, Network percolation of the disease transmission based on bipartite networks, 2020, 34, 0217-9792, 2050029, 10.1142/S0217979220500290
    9. XIAOFENG LUO, LILI CHANG, ZHEN JIN, DEMOGRAPHICS INDUCE EXTINCTION OF DISEASE IN AN SIS MODEL BASED ON CONDITIONAL MARKOV CHAIN, 2017, 25, 0218-3390, 145, 10.1142/S0218339017500085
    10. Huiyan Kang, Mengfeng Sun, Yajuan Yu, Xinchu Fu, Bocheng Bao, Spreading Dynamics of an SEIR Model with Delay on Scale-Free Networks, 2020, 7, 2327-4697, 489, 10.1109/TNSE.2018.2860988
    11. WENJUN JING, ZHEN JIN, XIAO-LONG PENG, ADAPTIVE SIS EPIDEMIC MODELS ON HETEROGENEOUS NETWORKS WITH DEMOGRAPHICS AND RISK PERCEPTION, 2018, 26, 0218-3390, 247, 10.1142/S0218339018500122
    12. Zhen Jin, Shuping Li, Xiaoguang Zhang, Juping Zhang, Xiao-Long Peng, 2016, Chapter 3, 978-3-662-47823-3, 51, 10.1007/978-3-662-47824-0_3
    13. Wei Gou, Zhen Jin, How heterogeneous susceptibility and recovery rates affect the spread of epidemics on networks, 2017, 2, 24680427, 353, 10.1016/j.idm.2017.07.001
    14. Junyuan Yang, Fei Xu, The Computational Approach for the Basic Reproduction Number of Epidemic Models on Complex Networks, 2019, 7, 2169-3536, 26474, 10.1109/ACCESS.2019.2898639
    15. Hong Xiang, Fang-Fang Cui, Hai-Feng Huo, Analysis of the SAITS alcoholism model on scale-free networks with demographic and nonlinear infectivity, 2019, 13, 1751-3758, 621, 10.1080/17513758.2019.1683629
    16. Xiaofeng Luo, Junyuan Yang, Zhen Jin, Jia Li, An edge-based model for non-Markovian sexually transmitted infections in coupled network, 2020, 13, 1793-5245, 2050014, 10.1142/S179352452050014X
    17. Yang Qin, Xiaoxiong Zhong, Hao Jiang, Yibin Ye, An environment aware epidemic spreading model and immune strategy in complex networks, 2015, 261, 00963003, 206, 10.1016/j.amc.2015.03.110
    18. YANRU YAO, JUPING ZHANG, A TWO-STRAIN EPIDEMIC MODEL ON COMPLEX NETWORKS WITH DEMOGRAPHICS, 2016, 24, 0218-3390, 577, 10.1142/S0218339016500297
    19. Shouying Huang, Jifa Jiang, Global stability of a network-based sis epidemic model with a general nonlinear incidence rate, 2016, 13, 1551-0018, 723, 10.3934/mbe.2016016
    20. Hai-Feng Huo, Hui-Ning Xue, Hong Xiang, Dynamics of an alcoholism model on complex networks with community structure and voluntary drinking, 2018, 505, 03784371, 880, 10.1016/j.physa.2018.04.024
    21. Raul Nistal, Manuel de la Sen, Santiago Alonso-Quesada, Asier Ibeas, Aitor J. Garrido, On the Stability and Equilibrium Points of MultistagedSI(n)REpidemic Models, 2015, 2015, 1026-0226, 1, 10.1155/2015/379576
    22. LI LI, MONTHLY PERIODIC OUTBREAK OF HEMORRHAGIC FEVER WITH RENAL SYNDROME IN CHINA, 2016, 24, 0218-3390, 519, 10.1142/S0218339016500261
    23. Junyuan Yang, Fei Xu, Global stability of two SIS epidemic mean-field models on complex networks: Lyapunov functional approach, 2018, 355, 00160032, 6763, 10.1016/j.jfranklin.2018.06.040
    24. Churni Gupta, Necibe Tuncer, Maia Martcheva, A Network Immuno-Epidemiological HIV Model, 2021, 83, 0092-8240, 10.1007/s11538-020-00855-3
    25. Xue-Zhi Li, Junyuan Yang, Maia Martcheva, 2020, Chapter 5, 978-3-030-42495-4, 153, 10.1007/978-3-030-42496-1_5
    26. Hai-Feng Huo, Peng Yang, Hong Xiang, Dynamics for an SIRS epidemic model with infection age and relapse on a scale-free network, 2019, 356, 00160032, 7411, 10.1016/j.jfranklin.2019.03.034
    27. Hendrik Baumann, Werner Sandmann, Gui-Quan Sun, Structured Modeling and Analysis of Stochastic Epidemics with Immigration and Demographic Effects, 2016, 11, 1932-6203, e0152144, 10.1371/journal.pone.0152144
    28. Junyuan Yang, Yuming Chen, Effect of infection age on an SIR epidemic model with demography on complex networks, 2017, 479, 03784371, 527, 10.1016/j.physa.2017.03.006
    29. Yi Wang, Jinde Cao, Ahmed Alsaedi, Tasawar Hayat, The spreading dynamics of sexually transmitted diseases with birth and death on heterogeneous networks, 2017, 2017, 1742-5468, 023502, 10.1088/1742-5468/aa58a6
    30. Qian Yin, Zhishuang Wang, Chengyi Xia, Matthias Dehmer, Frank Emmert-Streib, Zhen Jin, A novel epidemic model considering demographics and intercity commuting on complex dynamical networks, 2020, 386, 00963003, 125517, 10.1016/j.amc.2020.125517
    31. Wenjun Jing, Zhen Jin, Juping Zhang, Low-Dimensional SIR Epidemic Models with Demographics on Heterogeneous Networks, 2018, 31, 1009-6124, 1103, 10.1007/s11424-018-7029-8
    32. Hai-Feng Huo, Fang-Fang Cui, Hong Xiang, Dynamics of an SAITS alcoholism model on unweighted and weighted networks, 2018, 496, 03784371, 249, 10.1016/j.physa.2018.01.003
    33. Churni Gupta, Necibe Tuncer, Maia Martcheva, A network immuno-epidemiological model of HIV and opioid epidemics, 2022, 20, 1551-0018, 4040, 10.3934/mbe.2023189
    34. Jinxian Li, Hairong Yan, Zhen Jin, SIR dynamics with infection age in complex heterogeneous networks, 2023, 10075704, 107183, 10.1016/j.cnsns.2023.107183
    35. Wenjun Jing, Juping Zhang, Xiaoqin Zhang, Siew Ann Cheong, Epidemic Dynamics in Temporal Clustered Networks with Local-World Structure, 2023, 2023, 1099-0526, 1, 10.1155/2023/4591403
    36. R. Rakkiyappan, V. Preethi Latha, F. A. Rihan, Global Dynamics of a Fractional-order Ebola Model with Delayed Immune Response on Complex Networks, 2021, 91, 0369-8203, 681, 10.1007/s40010-021-00756-7
    37. Xiaoyan Wang, Junyuan Yang, A Bistable Phenomena Induced by a Mean-Field SIS Epidemic Model on Complex Networks: A Geometric Approach, 2021, 9, 2296-424X, 10.3389/fphy.2021.681268
    38. Shuping Li, Xiaorong Zhao, Ruixia Zhang, Site-bond percolation model of epidemic spreading with vaccination in complex networks, 2022, 85, 0303-6812, 10.1007/s00285-022-01816-1
    39. Xinxin Cheng, Yi Wang, Gang Huang, Dynamics of cholera transmission model with imperfect vaccination and demographics on complex networks, 2023, 360, 00160032, 1077, 10.1016/j.jfranklin.2022.12.006
    40. Ju-Ping Zhang, Hao-Ming Guo, Wen-Jun Jing, Zhen Jin, Dynamic analysis of rumor propagation model based on true information spreader, 2019, 68, 1000-3290, 150501, 10.7498/aps.68.20190191
    41. Giorgio Fagiolo, On the Coevolution Between Social Network Structure and Diffusion of the Coronavirus (COVID-19) in Spatial Compartmental Epidemic Models, 2022, 4, 2673-2726, 10.3389/fhumd.2022.825665
    42. Brandon Lieberthal, Aiman Soliman, Shaowen Wang, Sandra de Urioste-Stone, Allison M. Gardner, Epidemic spread on patch networks with community structure, 2023, 00255564, 108996, 10.1016/j.mbs.2023.108996
    43. Xinxin Cheng, Yi Wang, Gang Huang, Dynamical analysis of an age-structured cholera transmission model on complex networks, 2024, 531, 0022247X, 127833, 10.1016/j.jmaa.2023.127833
    44. Yuyan Qin, Lixin Yang, Ziyu Gu, Dynamics behavior of a novel infectious disease model considering population mobility on complex network, 2024, 2195-268X, 10.1007/s40435-023-01371-7
    45. Zhimin Han, Yi Wang, Shan Gao, Guiquan Sun, Hao Wang, Final epidemic size of a two-community SIR model with asymmetric coupling, 2024, 88, 0303-6812, 10.1007/s00285-024-02073-0
    46. Zhong-Pan Cao, Jin-Xuan Yang, Ying Tan, Epidemic spreading on biological evolution networks, 2025, 00255564, 109416, 10.1016/j.mbs.2025.109416
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3927) PDF downloads(795) Cited by(46)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog