Loading [MathJax]/jax/output/SVG/jax.js

A Simple Epidemic Model with Surprising Dynamics

  • Received: 01 July 2004 Accepted: 29 June 2018 Published: 01 November 2004
  • MSC : 92D30, 34C37, 37G35.

  • A simple model incorporating demographic and epidemiological processes is explored. Four re-parameterized quantities the basic demographic reproductive number (\Rd), the basic epidemiological reproductive number (\R0), the ratio (ν) between the average life spans of susceptible and infective class, and the relative fecundity of infectives (θ), are utilized in qualitative analysis. Mathematically, non-analytic vector fields are handled by blow-up transformations to carry out a complete and global dynamical analysis. A family of homoclinics is found, suggesting that a disease outbreak would be ignited by a tiny number of infectious individuals.

    Citation: F. Berezovskaya, G. Karev, Baojun Song, Carlos Castillo-Chavez. A Simple Epidemic Model with Surprising Dynamics[J]. Mathematical Biosciences and Engineering, 2005, 2(1): 133-152. doi: 10.3934/mbe.2005.2.133

    Related Papers:

    [1] A. Q. Khan, M. Tasneem, M. B. Almatrafi . Discrete-time COVID-19 epidemic model with bifurcation and control. Mathematical Biosciences and Engineering, 2022, 19(2): 1944-1969. doi: 10.3934/mbe.2022092
    [2] Cunjuan Dong, Changcheng Xiang, Wenjin Qin, Yi Yang . Global dynamics for a Filippov system with media effects. Mathematical Biosciences and Engineering, 2022, 19(3): 2835-2852. doi: 10.3934/mbe.2022130
    [3] Cheng-Cheng Zhu, Jiang Zhu . Spread trend of COVID-19 epidemic outbreak in China: using exponential attractor method in a spatial heterogeneous SEIQR model. Mathematical Biosciences and Engineering, 2020, 17(4): 3062-3087. doi: 10.3934/mbe.2020174
    [4] F. S. Vannucchi, S. Boccaletti . Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences and Engineering, 2004, 1(1): 49-55. doi: 10.3934/mbe.2004.1.49
    [5] Jinna Lu, Xiaoguang Zhang . Bifurcation analysis of a pair-wise epidemic model on adaptive networks. Mathematical Biosciences and Engineering, 2019, 16(4): 2973-2989. doi: 10.3934/mbe.2019147
    [6] Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409
    [7] Dirk Stiefs, Ezio Venturino, Ulrike Feudel . Evidence of chaos in eco-epidemic models. Mathematical Biosciences and Engineering, 2009, 6(4): 855-871. doi: 10.3934/mbe.2009.6.855
    [8] Bruno Buonomo, Marianna Cerasuolo . The effect of time delay in plant--pathogen interactions with host demography. Mathematical Biosciences and Engineering, 2015, 12(3): 473-490. doi: 10.3934/mbe.2015.12.473
    [9] Aili Wang, Yanni Xiao, Huaiping Zhu . Dynamics of a Filippov epidemic model with limited hospital beds. Mathematical Biosciences and Engineering, 2018, 15(3): 739-764. doi: 10.3934/mbe.2018033
    [10] Colin Klaus, Matthew Wascher, Wasiur R. KhudaBukhsh, Grzegorz A. Rempała . Likelihood-Free Dynamical Survival Analysis applied to the COVID-19 epidemic in Ohio. Mathematical Biosciences and Engineering, 2023, 20(2): 4103-4127. doi: 10.3934/mbe.2023192
  • A simple model incorporating demographic and epidemiological processes is explored. Four re-parameterized quantities the basic demographic reproductive number (\Rd), the basic epidemiological reproductive number (\R0), the ratio (ν) between the average life spans of susceptible and infective class, and the relative fecundity of infectives (θ), are utilized in qualitative analysis. Mathematically, non-analytic vector fields are handled by blow-up transformations to carry out a complete and global dynamical analysis. A family of homoclinics is found, suggesting that a disease outbreak would be ignited by a tiny number of infectious individuals.


  • This article has been cited by:

    1. Tao Wang, Dynamics of an epidemic model with spatial diffusion, 2014, 409, 03784371, 119, 10.1016/j.physa.2014.04.028
    2. T.K. Kar, Ashim Batabyal, Stability analysis and optimal control of an SIR epidemic model with vaccination, 2011, 104, 03032647, 127, 10.1016/j.biosystems.2011.02.001
    3. Yongli Cai, Weiming Wang, Dynamics of a parasite-host epidemiological model in spatial heterogeneous environment, 2015, 20, 1531-3492, 989, 10.3934/dcdsb.2015.20.989
    4. A.K. Misra, S.N. Mishra, A.L. Pathak, P.K. Srivastava, Peeyush Chandra, A mathematical model for the control of carrier-dependent infectious diseases with direct transmission and time delay, 2013, 57, 09600779, 41, 10.1016/j.chaos.2013.08.002
    5. John E. Franke, Abdul-Aziz Yakubu, Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models, 2008, 57, 0303-6812, 755, 10.1007/s00285-008-0188-9
    6. Baojun Song, Zhilan Feng, Gerardo Chowell, From the guest editors, 2013, 10, 1551-0018, 10.3934/mbe.2013.10.5i
    7. Pan-Ping Liu, Periodic solutions in an epidemic model with diffusion and delay, 2015, 265, 00963003, 275, 10.1016/j.amc.2015.05.028
    8. Yongli Cai, Weiming Wang, Spatiotemporal dynamics of a reaction–diffusion epidemic model with nonlinear incidence rate, 2011, 2011, 1742-5468, P02025, 10.1088/1742-5468/2011/02/P02025
    9. T.K. Kar, Prasanta Kumar Mondal, Global dynamics and bifurcation in delayed SIR epidemic model, 2011, 12, 14681218, 2058, 10.1016/j.nonrwa.2010.12.021
    10. Yuan Yuan, Hailing Wang, Weiming Wang, The Existence of Positive Nonconstant Steady States in a Reaction: Diffusion Epidemic Model, 2013, 2013, 1085-3375, 1, 10.1155/2013/921401
    11. Li-Peng Song, Rong-Ping Zhang , Li-Ping Feng , Qiong Shi, Pattern dynamics of a spatial epidemic model with time delay, 2017, 292, 00963003, 390, 10.1016/j.amc.2016.07.013
    12. Yuting Liu, Meijing Shan, Xinze Lian, Weiming Wang, Stochastic extinction and persistence of a parasite–host epidemiological model, 2016, 462, 03784371, 586, 10.1016/j.physa.2016.06.022
    13. Yanfei Jia, Yongli Cai, Hongbo Shi, Shengmao Fu, Weiming Wang, Turing patterns in a reaction–diffusion epidemic model, 2018, 11, 1793-5245, 1850025, 10.1142/S1793524518500250
    14. Fahad Al Saadi, Annette Worthy, John Regan Pillai, Ahmed Msmali, Localised structures in a virus-host model, 2021, 499, 0022247X, 125014, 10.1016/j.jmaa.2021.125014
    15. Junyuan Yang, Xiaoyan Wang, Threshold Dynamics of an SIR Model with Nonlinear Incidence Rate and Age-Dependent Susceptibility, 2018, 2018, 1076-2787, 1, 10.1155/2018/9613807
    16. Chengjun Yuan, Daqing Jiang, Donal O’Regan, Ravi P. Agarwal, Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation, 2012, 17, 10075704, 2501, 10.1016/j.cnsns.2011.07.025
    17. Yongli Cai, Yun Kang, Malay Banerjee, Weiming Wang, Complex Dynamics of a host–parasite model with both horizontal and vertical transmissions in a spatial heterogeneous environment, 2018, 40, 14681218, 444, 10.1016/j.nonrwa.2017.10.001
    18. Jean M. Tchuenche, Alexander Nwagwo, Local stability of an SIR epidemic model and effect of time delay, 2009, 32, 01704214, 2160, 10.1002/mma.1136
    19. D Devia Narváez, D Devia Narváez, R Ospina, Mathematical analysis of an epidemic through qualitative analysis with a third order model, 2019, 1403, 1742-6588, 012003, 10.1088/1742-6596/1403/1/012003
    20. Hai-Feng Huo, Zhan-Ping Ma, Dynamics of a delayed epidemic model with non-monotonic incidence rate, 2010, 15, 10075704, 459, 10.1016/j.cnsns.2009.04.018
    21. Faina S. Berezovskaya, Artem S. Novozhilov, Georgy P. Karev, Population models with singular equilibrium, 2007, 208, 00255564, 270, 10.1016/j.mbs.2006.10.006
    22. Gui-Quan Sun, Zhenguo Bai, Zi-Ke Zhang, Tao Zhou, Zhen Jin, Positive Periodic Solutions of an Epidemic Model with Seasonality, 2013, 2013, 1537-744X, 1, 10.1155/2013/470646
    23. Zhong-wei JIA, Xiao-wen LI, Dan FENG, Wu-chun CAO, Transmission models of tuberculosis in heterogeneous population, 2007, 120, 0366-6999, 1360, 10.1097/00029330-200708010-00012
    24. Baoxiang Zhang, Yongli Cai, Bingxian Wang, Weiming Wang, Pattern formation in a reaction–diffusion parasite–host model, 2019, 525, 03784371, 732, 10.1016/j.physa.2019.03.088
    25. Periodically forced discrete-time SIS epidemic model with disease induced mortality, 2011, 8, 1551-0018, 385, 10.3934/mbe.2011.8.385
    26. Yuqin Zhao, Daniel T. Wood, Hristo V. Kojouharov, Yang Kuang, Dobromir T. Dimitrov, Impact of Population Recruitment on the HIV Epidemics and the Effectiveness of HIV Prevention Interventions, 2016, 78, 0092-8240, 2057, 10.1007/s11538-016-0211-z
    27. Yongli Cai, Yuan Yuan, Xinze Lian, Weiming Wang, Extinction in a Feline Panleukopenia virus model incorporating direct and indirect transmissions, 2015, 258, 00963003, 358, 10.1016/j.amc.2015.01.021
    28. Jorge Rodríguez, Mauricio Patón, Joao M. Uratani, Juan M. Acuña, Martial L. Ndeffo Mbah, Modelling the impact of interventions on the progress of the COVID-19 outbreak including age segregation, 2021, 16, 1932-6203, e0248243, 10.1371/journal.pone.0248243
    29. Global analysis of a simple parasite-host model with homoclinic orbits, 2012, 9, 1551-0018, 767, 10.3934/mbe.2012.9.767
    30. Muhammad Altaf Khan, Ebenezer Bonyah, Shujaat Ali, Saeed Islam, Saima Naz Khan, Stability analysis of delay seirepidemic model, 2016, 3, 2313626X, 46, 10.21833/ijaas.2016.07.008
    31. Yongli Cai, Shuling Yan, Hailing Wang, Xinze Lian, Weiming Wang, Spatiotemporal Dynamics in a Reaction–Diffusion Epidemic Model with a Time-Delay in Transmission, 2015, 25, 0218-1274, 1550099, 10.1142/S0218127415500996
    32. The ratio of hidden HIV infection in Cuba, 2013, 10, 1551-0018, 959, 10.3934/mbe.2013.10.959
    33. Fathalla A. Rihan, M. Naim Anwar, Qualitative Analysis of Delayed SIR Epidemic Model with a Saturated Incidence Rate, 2012, 2012, 1687-9643, 1, 10.1155/2012/408637
    34. Xinxin Li, Yongli Cai, Kai Wang, Shengmao Fu, Weiming Wang, Non-constant positive steady states of a host-parasite model with frequency- and density-dependent transmissions, 2020, 357, 00160032, 4392, 10.1016/j.jfranklin.2020.02.058
    35. Weiming Wang, Yongli Cai, Mingjiang Wu, Kaifa Wang, Zhenqing Li, Complex dynamics of a reaction–diffusion epidemic model, 2012, 13, 14681218, 2240, 10.1016/j.nonrwa.2012.01.018
    36. Adrianne Jenner, Adelle Coster, Peter Kim, Federico Frascoli, Treating Cancerous Cells with Viruses: Insights from Aminimal Model for Oncolytic Virotherapy, 2018, 5, 23737867, 10.30707/LiB5.2Jenner
    37. Joseph J. Crivelli, Juraj Földes, Peter S. Kim, Joanna R. Wares, A mathematical model for cell cycle-specific cancer virotherapy, 2012, 6, 1751-3758, 104, 10.1080/17513758.2011.613486
    38. Jing Li, Gui-Quan Sun, Zhen Jin, Pattern formation of an epidemic model with time delay, 2014, 403, 03784371, 100, 10.1016/j.physa.2014.02.025
    39. Ranjit Kumar Upadhyay, Parimita Roy, Vikas Rai, Deciphering Dynamics of Epidemic Spread: The Case of Influenza Virus, 2014, 24, 0218-1274, 1450064, 10.1142/S0218127414500643
    40. Yu. V. Tyutyunov, L. I. Titova, From Lotka–Volterra to Arditi–Ginzburg: 90 Years of Evolving Trophic Functions, 2020, 10, 2079-0864, 167, 10.1134/S207908642003007X
    41. Sheng Wang, Wenbin Liu, Zhengguang Guo, Weiming Wang, Traveling Wave Solutions in a Reaction-Diffusion Epidemic Model, 2013, 2013, 1085-3375, 1, 10.1155/2013/216913
    42. Wei Tan, Jianguo Gao, Wenjun Fan, Bifurcation Analysis and Chaos Control in a Discrete Epidemic System, 2015, 2015, 1026-0226, 1, 10.1155/2015/974868
    43. Yun Kang, Carlos Castillo-Chávez, A simple epidemiological model for populations in the wild with Allee effects and disease-modified fitness, 2014, 19, 1553-524X, 89, 10.3934/dcdsb.2014.19.89
    44. Yongli Cai, Jianjun Jiao, Zhanji Gui, Yuting Liu, Weiming Wang, Environmental variability in a stochastic epidemic model, 2018, 329, 00963003, 210, 10.1016/j.amc.2018.02.009
    45. Vsevolod G. Sorokin, Andrei V. Vyazmin, Nonlinear Reaction–Diffusion Equations with Delay: Partial Survey, Exact Solutions, Test Problems, and Numerical Integration, 2022, 10, 2227-7390, 1886, 10.3390/math10111886
    46. Ronobir Chandra Sarker, Saroj Kumar Sahani, Pattern Formation in Epidemic Model with Media Coverage, 2022, 0971-3514, 10.1007/s12591-022-00595-x
    47. Wei Gou, Zhen Jin, Understanding the epidemiological patterns in spatial networks, 2021, 106, 0924-090X, 1059, 10.1007/s11071-021-06710-x
    48. Andrei D. Polyanin, Vsevolod G. Sorokin, Reductions and Exact Solutions of Nonlinear Wave-Type PDEs with Proportional and More Complex Delays, 2023, 11, 2227-7390, 516, 10.3390/math11030516
    49. Raminder Pal Singh, Bifurcation and Stability Analysis of Delayed SIR Model, 2022, 2267, 1742-6588, 012011, 10.1088/1742-6596/2267/1/012011
    50. Kaier Wang, Moira L Steyn-Ross, D Alistair Steyn-Ross, Marcus T Wilson, Jamie W Sleigh, Yoichi Shiraishi, Simulations of pattern dynamics for reaction-diffusion systems via SIMULINK, 2014, 8, 1752-0509, 10.1186/1752-0509-8-45
    51. Xin-You Meng, Tao Zhang, The impact of media on the spatiotemporal pattern dynamics of a reaction-diffusion epidemic model, 2020, 17, 1551-0018, 4034, 10.3934/mbe.2020223
    52. Ronobir Chandra Sarker, Saroj Kumar Sahani, Turing Pattern Dynamics in an SI Epidemic Model with Superdiffusion, 2022, 32, 0218-1274, 10.1142/S0218127422300257
    53. Artem S Novozhilov, Faina S Berezovskaya, Eugene V Koonin, Georgy P Karev, Mathematical modeling of tumor therapy with oncolytic viruses: Regimes with complete tumor elimination within the framework of deterministic models, 2006, 1, 1745-6150, 10.1186/1745-6150-1-6
    54. Xiaoyan Gao, Nonconstant positive steady states and pattern formation of a diffusive epidemic model, 2022, 14173875, 1, 10.14232/ejqtde.2022.1.20
    55. Wei Gou, Yongli Song, Zhen Jin, The Steady State Bifurcation for General Network-Organized Reaction-Diffusion Systems and Its Application in a Metapopulation Epidemic Model, 2023, 22, 1536-0040, 559, 10.1137/21M1439092
    56. Xiaoshan Zhang, Xinhong Zhang, Threshold behaviors and density function of a stochastic parasite-host epidemic model with Ornstein–Uhlenbeck process, 2024, 153, 08939659, 109079, 10.1016/j.aml.2024.109079
    57. Sarah Hews, Steffen Eikenberry, John D. Nagy, Tin Phan, Yang Kuang, Global Dynamics and Implications of an HBV Model with Proliferating Infected Hepatocytes, 2021, 11, 2076-3417, 8176, 10.3390/app11178176
    58. Li Li, Na Zheng, Chen Liu, Zhen Wang, Zhen Jin, Optimal control of vaccination for an epidemic model with standard incidence rate, 2025, 598, 00225193, 111993, 10.1016/j.jtbi.2024.111993
    59. Kalyan Kumar Pal, Rajanish Kumar Rai, Pankaj Kumar Tiwari, Impact of psychological fear and media on infectious diseases induced by carriers, 2024, 34, 1054-1500, 10.1063/5.0217936
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3281) PDF downloads(627) Cited by(59)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog