The Dynamical Survival Analysis (DSA) is a framework for modeling epidemics based on mean field dynamics applied to individual (agent) level history of infection and recovery. Recently, the Dynamical Survival Analysis (DSA) method has been shown to be an effective tool in analyzing complex non-Markovian epidemic processes that are otherwise difficult to handle using standard methods. One of the advantages of Dynamical Survival Analysis (DSA) is its representation of typical epidemic data in a simple although not explicit form that involves solutions of certain differential equations. In this work we describe how a complex non-Markovian Dynamical Survival Analysis (DSA) model may be applied to a specific data set with the help of appropriate numerical and statistical schemes. The ideas are illustrated with a data example of the COVID-19 epidemic in Ohio.
Citation: Colin Klaus, Matthew Wascher, Wasiur R. KhudaBukhsh, Grzegorz A. Rempała. Likelihood-Free Dynamical Survival Analysis applied to the COVID-19 epidemic in Ohio[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 4103-4127. doi: 10.3934/mbe.2023192
[1] | Sung Woong Cho, Sunwoo Hwang, Hyung Ju Hwang . The monotone traveling wave solution of a bistable three-species competition system via unconstrained neural networks. Mathematical Biosciences and Engineering, 2023, 20(4): 7154-7170. doi: 10.3934/mbe.2023309 |
[2] | Felicia Maria G. Magpantay, Xingfu Zou . Wave fronts in neuronal fields with nonlocal post-synaptic axonal connections and delayed nonlocal feedback connections. Mathematical Biosciences and Engineering, 2010, 7(2): 421-442. doi: 10.3934/mbe.2010.7.421 |
[3] | Xixia Ma, Rongsong Liu, Liming Cai . Stability of traveling wave solutions for a nonlocal Lotka-Volterra model. Mathematical Biosciences and Engineering, 2024, 21(1): 444-473. doi: 10.3934/mbe.2024020 |
[4] | Xiao-Min Huang, Xiang-ShengWang . Traveling waves of di usive disease models with time delay and degeneracy. Mathematical Biosciences and Engineering, 2019, 16(4): 2391-2410. doi: 10.3934/mbe.2019120 |
[5] | Tong Li, Zhi-An Wang . Traveling wave solutions of a singular Keller-Segel system with logistic source. Mathematical Biosciences and Engineering, 2022, 19(8): 8107-8131. doi: 10.3934/mbe.2022379 |
[6] | Shiqiang Feng, Dapeng Gao . Existence of traveling wave solutions for a delayed nonlocal dispersal SIR epidemic model with the critical wave speed. Mathematical Biosciences and Engineering, 2021, 18(6): 9357-9380. doi: 10.3934/mbe.2021460 |
[7] | Zhihong Zhao, Yan Li, Zhaosheng Feng . Traveling wave phenomena in a nonlocal dispersal predator-prey system with the Beddington-DeAngelis functional response and harvesting. Mathematical Biosciences and Engineering, 2021, 18(2): 1629-1652. doi: 10.3934/mbe.2021084 |
[8] | M. B. A. Mansour . Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences and Engineering, 2009, 6(1): 83-91. doi: 10.3934/mbe.2009.6.83 |
[9] | Tiberiu Harko, Man Kwong Mak . Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences and Engineering, 2015, 12(1): 41-69. doi: 10.3934/mbe.2015.12.41 |
[10] | Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008 |
The Dynamical Survival Analysis (DSA) is a framework for modeling epidemics based on mean field dynamics applied to individual (agent) level history of infection and recovery. Recently, the Dynamical Survival Analysis (DSA) method has been shown to be an effective tool in analyzing complex non-Markovian epidemic processes that are otherwise difficult to handle using standard methods. One of the advantages of Dynamical Survival Analysis (DSA) is its representation of typical epidemic data in a simple although not explicit form that involves solutions of certain differential equations. In this work we describe how a complex non-Markovian Dynamical Survival Analysis (DSA) model may be applied to a specific data set with the help of appropriate numerical and statistical schemes. The ideas are illustrated with a data example of the COVID-19 epidemic in Ohio.
The theory of fixed points is one of the interesting areas of research in mathematics. In 1890, Picard [1] established the concept of fixed point theory by using the successive approximations method and proved the existence of solutions of differential equations. In the field of mathematics, many researchers have made their contributions to fixed point theory by applying different types of contraction mappings and spaces. In 1922, Banach [2] proved a "Banach Contraction Principle" which is stated as follows: "A single-valued contractive type mapping on a complete metric space has a unique fixed point". Since then, many mathematicians have generalized in many directions and proved distinct contractive-type fixed point theorems in the framework of metric spaces for single- and multi-valued operations. Some of their findings in different types of metric spaces can be found in [3,4,5,6,7,8,9,10].
In 1972, Grossman and Katz [11] established an advanced type of calculus called multiplicative calculus by replacing the roles of difference and sum with the roles of division and multiplication, separately. By applying the concept of multiplicative calculus, Bashirov et al. [12] proved the basic theorem of multiplicative calculus and defined the notion of multiplicative metric space (MM-space). The characterization of completeness in MM-space was discussed by Sarwar and Rom [13]. He et al. [14] established some common fixed point theorems for weak commutative mapping on MM-space. In [15], Jiang and Gu proved some common coupled FP results in MM-spaces with applications. For more detail, we shall refer the readers to [16,17,19,20,21,22,23,24,25,26]and the references are therein.
In the present paper, we prove some new fixed point results for linear-mapping in multiplicative metric spaces under the generalized contraction conditions. Our main results consist of the maximum and minimum types regarding contraction conditions. We also present some demonstrative examples and an application in support of our generalized results to validate our work.
Definition 2.1. [12] Let W≠∅ seT, Then, a mapping d⋆:W×W→R+ is called a multiplicative metric if it satisfies the following conditions:
(m1) d⋆(˜p,˜δ)≥1 and d⋆(˜p,˜δ)=1⇔˜p=˜δ, for all ˜p,˜δ∈W.
(m2) d⋆(˜p,˜δ)=d⋆(˜δ,˜p) for all ˜p,˜δ∈W.
(m3) d⋆(˜p,˜δ)≤d⋆(˜p,˜δ∘).d⋆(˜δ∘,˜δ) for all ˜p,˜δ,˜δ∘∈W.
A pair (W,d⋆) is said to be an MM-space.
Example 2.2. [12] Consider W=(R+)ξ containing all ξ-tuples of positive real numbers. Let d⋆:(R+)ξ×(R+)ξ→R be defined as follows:
d⋆(˜p,˜δ)=|r1s1|⋅|r2s2|⋯|rξsξ|, |
where ˜p=(r1,r2,...,rξ), ˜δ=(s1,s2,...,sξ)∈(R+)ξ, and |⋅|:R+→[1,+∞) is defined as
|ξ|={ξif ξ≥1, and 1ξif ξ<1}. |
Then, it is conclusive that all the given conditions of an MM-space are satisfied, and hence ((R+)ξ,d⋆) is an MM-space.
Definition 2.3. [15,24] Let (W,d⋆) be an MM-space and {pξ} be a sequence in W. Then,
(ⅰ) pξ is convergent to p∈W as ξ→+∞ iff d⋆(pξ,p)→1 as ξ→+∞.
(ⅱ) {pξ} is called a multiplicative Cauchy sequence if it holds that for all ε>1, there exists a natural number ξ0∈N such that d⋆(pξ,pς)<ε for all ξ,ς>ς0.
(ⅲ) (W,d⋆) is called multiplicative complete if every multiplicative Cauchy sequence in (W,d⋆) is multiplicative convergent in W.
Lemma 2.4. [24] Let (W,d⋆) be an MM-space and {pξ} be a sequence in W. If a sequence {pξ} is multiplicative convergent, then the multiplicative limit is unique.
Theorem 2.5. [24] Let (W,d⋆) be an MM-space and sequence {pξ} in W be multiplicative convergent, Then, it is a multiplicative Cauchy sequence.
In this section, we define and prove some generalized contraction theorems on MM-spaces.
Definition 3.1. Let (W,d⋆) be an MM-space. A mapping Γ:W→W is said to be a Generalized multiplicative contraction (GM-contraction), if there exists ˜λ1,˜λ2,˜λ3≥0 with (˜λ1+4˜λ2+2˜λ3)<1 and satisfying:
d⋆(Γ˜p,Γ˜δ)≤(d⋆(˜p,˜δ))˜λ1⋅(d⋆(˜p,Γ˜p)⋅d⋆(˜δ,Γ˜δ)⋅ d⋆(˜p,Γ˜δ)⋅d⋆(˜δ,Γ˜p))˜λ2⋅(max{d⋆(˜p,Γ˜p),d⋆(˜δ,Γ˜δ),d⋆(˜p,Γ˜δ),d⋆(˜δ,Γ˜p)})˜λ3, | (3.1) |
for all ˜p,˜δ∈W.
Theorem 3.2. Suppose (W,d⋆) is a complete MM-space and a function Γ:W→W is a GM-contraction satisfying (3.1). Then, Γ has a unique fixed point in W.
Proof: Fix p0 in W, and a sequence {pξ} in W is defined by pξ+1=Γpξ for ξ≥0. Now, from (3.2),
d⋆(pξ+1,pξ)=d⋆(Γpξ,Γpξ−1)≤ (d⋆(pξ,pξ−1))˜λ1⋅(d⋆(pξ,Γpξ)⋅d⋆(pξ−1,Γpξ−1)⋅ d⋆(pξ,Γpξ−1)⋅d⋆(pξ−1,Γpξ))˜λ2⋅(max{d⋆(pξ,Γpξ),d⋆(pξ−1,Γpξ−1),d⋆(pξ,Γpξ−1),d⋆(pξ−1,Γpξ)})˜λ3=(d⋆(pξ,pξ−1))˜λ1⋅(d⋆(pξ,pξ+1)⋅d⋆(pξ−1,pξ)⋅ d⋆(pξ,pξ)⋅d⋆(pξ−1,pξ+1))˜λ2⋅(max{d⋆(pξ,pξ+1),d⋆(pξ−1,pξ),d⋆(pξ,pξ),d⋆(pξ−1,pξ+1)})˜λ3=(d⋆(pξ,pξ−1))˜λ1⋅(d⋆(pξ,pξ+1)⋅d⋆(pξ−1,pξ)⋅1⋅d⋆(pξ−1,pξ+1))˜λ2⋅(max{d⋆(pξ,pξ+1),d⋆(pξ−1,pξ),1,d⋆(pξ−1,pξ+1)})˜λ3≤(d⋆(pξ,pξ−1))˜λ1⋅(d⋆(pξ,pξ+1)⋅d⋆(pξ−1,pξ)⋅ d⋆(pξ−1,pξ)⋅d⋆(pξ,pξ+1))˜λ2⋅(d⋆(pξ−1,pξ)⋅d⋆(pξ,pξ+1))˜λ3=(d⋆(pξ,pξ−1))˜λ1⋅((d⋆(pξ,pξ+1))2⋅(d⋆(pξ−1,pξ))2)˜λ2⋅(d⋆(pξ−1,pξ)⋅d⋆(pξ,pξ+1))˜λ3. |
After simplification, we obtain that
d⋆(pξ+1,pξ)≤(d⋆(pξ,pξ−1))h,whereh=˜λ1+2˜λ2+˜λ31−2˜λ2−˜λ3<1. | (3.2) |
Similarly,
d⋆(pξ−1,pξ)≤(d⋆(pξ−2,pξ−1))h,whereh=˜λ1+2˜λ2+˜λ31−2˜λ2−˜λ3<1. | (3.3) |
Now, from (3.2) and (3.3), and by induction, we have
d⋆(pξ,pξ+1)≤(d⋆(pξ−1,pξ))h≤(d⋆(pξ−2,pξ−1))h2≤⋯≤(d⋆(p0,p1))hξ→1,as ξ→+∞. | (3.4) |
Hence, the sequence {pξ} in (W,d⋆) is contractive. Now, ξ<ς, and by using the triangular property of (W,d⋆), we have that
d⋆(pξ,pς)≤d⋆(pξ,pξ+1)⋅d⋆(pξ+1,pξ+2)⋯d⋆(pς−2,pς−1)⋅d⋆(pς−1,pς)≤(d⋆(p0,p1))hξ⋅(d⋆(p0,p1))hξ+1⋯(d⋆(p0,p1))hς−1⋅(d⋆(p0,p1))hς≤(d⋆(p0,p1))(hξ+hξ+1+⋯+hς−1+hς)≤(d⋆(p0,p1))(hξ1−h)→1,as ξ→+∞. |
Hence it is show that {pξ} is a Cauchy sequence in (W,d⋆). By the completeness of (W,d⋆), there exists κ∈W, so that limξ→+∞pξ=κ, and therefore
limξ→+∞d⋆(pξ,κ)=1. | (3.5) |
Now, we have to show that Γ(κ)=κ. Then, from (3.1) and (3.5), we have that
d⋆(κ,Γκ)≤d⋆(κ,pξ+1)⋅d⋆(pξ+1,Γκ)=d⋆(κ,pξ+1)⋅d⋆(Γpξ,Γκ)≤d⋆(κ,pξ+1)⋅ (d⋆(pξ,κ))˜λ1⋅(d⋆(pξ,Γpξ)⋅d⋆(κ,Γκ)⋅ d⋆(pξ,Γκ)⋅d⋆(κ,Γpξ))˜λ2⋅(max{d⋆(pξ,Γpξ),d⋆(κ,Γκ),d⋆(pξ,Γκ),d⋆(κ,Γpξ)})˜λ3=d⋆(κ,pξ+1)⋅(d⋆(pξ,κ))˜λ1⋅(d⋆(pξ,pξ+1)⋅d⋆(κ,Γκ)⋅ d⋆((pξ,Γκ)⋅d⋆(κ,pξ+1))˜λ2⋅(max{d⋆(pξ,pξ+1),d⋆(κ,Γκ),d⋆(pξ,Γκ),d⋆(κ,pξ+1)})˜λ3→(d⋆(κ,Γκ))2˜λ2+˜λ3as ξ→+∞. |
Hence, we obtain that
d⋆(κ,Γκ)≤(d⋆(κ,Γκ))2˜λ2+˜λ3⇒(d⋆(κ,Γκ))(1−2˜λ2−˜λ3)≤1 |
is a contradiction. Hence, we get that d⋆(Γκ,κ)=1 implies that Γκ=κ, which shows that κ is a FP of Γ in (W,d⋆).
Uniqueness: Suppose μ∈W is another FP of the mapping Γ, so that Γμ=μ. Now, we prove that κ=μ. From the view of (3.1), we have
d⋆(κ,μ)=d⋆(Γκ,Γμ)≤(d⋆(κ,μ))˜λ1⋅(d⋆(κ,Γκ)⋅d⋆(μ,Γμ)⋅ d⋆(κ,Γμ)⋅d⋆(μ,Γκ))˜λ2⋅(max{d⋆(κ,Γκ),d⋆(μ,Γμ),d⋆(κ,Γμ),d⋆(μ,Γκ)})˜λ3=(d⋆(κ,μ))˜λ1⋅(d⋆(κ,κ)⋅d⋆(μ,μ)⋅ d⋆(κ,μ)⋅d⋆(μ,κ))˜λ2⋅(max{d⋆(κ,κ),d⋆(μ,μ),d⋆(κ,μ),d⋆(μ,κ)})˜λ3=(d⋆(κ,μ))(˜λ1+2˜λ2+˜λ3). |
This implies that
d⋆(κ,μ)≤(d⋆(κ,μ))(˜λ1+2˜λ2+˜λ3)⇒(d⋆(κ,μ))(1−˜λ1−2˜λ2−˜λ3)≤1, |
is a contradiction. Hence, we get that d⋆(κ,μ)=1 implies that κ=μ. Thus, Γ has a unique fixed point in W.
If we reduce and use separately the second and third term values of the statement of Theorem 3.2, we get the following two corollaries.
Corollary 3.3. Let (W,d⋆) be a complete MM-space and let a function Γ:W→W satisfy,
d⋆(Γ˜p,Γ˜δ)≤(d⋆(˜p,˜δ))˜λ1⋅(d⋆(˜p,Γ˜p)⋅d⋆(˜δ,Γ˜δ))˜λ2⋅(max{d⋆(˜p,Γ˜p),d⋆(˜δ,Γ˜δ)})˜λ3, |
for all ˜p,˜δ∈W and ˜λ1,˜λ2,˜λ3≥0 with (˜λ1+2˜λ2+˜λ3)<1. Then, Γ has a unique FP in W.
Corollary 3.4. Let (W,d⋆) be a complete MM-space and let a function Γ:W→W satisfy,
d⋆(Γ˜p,Γ˜δ))≤(d⋆(˜p,˜δ))˜λ1⋅(d⋆(˜δ,Γ˜p)⋅d⋆(˜p,Γ˜δ))˜λ2⋅(max{d⋆(˜p,Γ˜δ),d⋆(˜δ,Γ˜p))})˜λ3, |
for all ˜p,˜δ∈W and ˜λ1,˜λ2,˜λ3≥0 with (˜λ1+2˜λ2+2˜λ3)<1. Then, Γ has a unique FP in W.
Now we present a supportive example for our first main result.
Example 3.5. Assume that W=[0,+∞[, and d⋆:W→R is a complete MM-space which is defined as d⋆(˜p,˜δ)=2|˜p−˜δ| for all ˜p,˜δ∈W. Now, we define a function Γ:W→W by Γ(˜p)=˜p10 for ˜p∈W. Now, from (3.2), we have
d⋆(Γ˜p,Γ˜δ)=2|˜p−˜δ10|≤2|7˜p+2˜δ50|=2|28˜p+8˜δ200|=2|10˜p−10˜δ+18˜p+18˜δ200|=2|˜p−˜δ20+18˜p+18˜δ200|≤2(|˜p−˜δ20|+|18˜p+18˜δ200|)=2|120(˜p−˜δ)|⋅2|1200(18˜p+18˜δ)|≤(2|(˜p−˜δ)|)120⋅(2|18˜p+18˜δ10|)120⋅(max{2|9˜p10|,2|9˜δ10|,2|10˜p−˜δ10|,2|10˜δ−˜p10|})15=(d⋆(˜p,˜δ))120⋅(d⋆(˜p,Γ˜p)⋅d⋆(˜δ,Γ˜δ)⋅ d⋆(˜p,Γ˜δ)⋅d⋆(˜δ,Γ˜p))120⋅(max{d⋆(˜p,Γ˜p),d⋆(˜δ,Γ˜δ),d⋆(˜p,Γ˜δ),d⋆(˜δ,Γ˜p)})15. |
Hence, all properties of Theorem 3.2 are satisfied for particular ˜λ1=˜λ2=120 and ˜λ3=15, and Γ has a unique fixed point, that is, Γ(0)=0.
Now, we present our second main result for minimum condition,
Theorem 3.6. Let (W,d⋆) be a complete MM-space and let a function Γ:W→W satisfy;
d⋆(Γ˜p,Γ˜δ)≤ (d⋆(˜p,˜δ))˜λ1⋅(d⋆(˜p,Γ˜p)⋅ d⋆(˜δ,Γ˜δ)⋅ d⋆(˜p,Γ˜δ)⋅d⋆(˜δ,Γ˜p))˜λ2⋅(min{d⋆(˜p,Γ˜p),d⋆(˜δ,Γ˜δ),d⋆(˜p,Γ˜δ),d⋆(˜δ,Γ˜p)})˜λ3, | (3.6) |
for all ˜p,˜δ∈W and ˜λ1,˜λ2,˜λ3≥0 with (˜λ1+4˜λ2)<1. Then, Γ has a unique fixed point in W.
Proof. Fix p0 in W, and a sequence {pξ} in W is defined pξ+1=Γpξfor ξ≥0. Now, from (3.6),
d⋆(pξ+1,pξ)=d⋆(Γpξ,Γpξ−1)≤ (d⋆(pξ,pξ−1))˜λ1⋅(d⋆(pξ,Γpξ)⋅d⋆(pξ−1,Γpξ−1)⋅d⋆(pξ,Γpξ−1).d⋆(pξ−1,Γpξ))˜λ2.(min{d⋆(pξ,Γpξ),d⋆(pξ−1,Γpξ−1),d⋆(pξ,Γpξ−1),d⋆(pξ−1,Γpξ)})˜λ3=(d⋆(pξ,pξ−1))˜λ1⋅(d⋆ξ,pξ+1)⋅d⋆(pξ−1,pξ)⋅d⋆(pξ,pξ)⋅d⋆(pξ−1,pξ+1))˜λ2⋅(min{d⋆(pξ,pξ+1),d⋆(pξ−1,pξ),d⋆(pξ,pξ),d⋆(pξ−1,pξ+1)})˜λ3=(d⋆(pξ,pξ−1))˜λ1⋅(d⋆(pξ,pξ+1)⋅d⋆(pξ−1,pξ)⋅1⋅d⋆(pξ−1,Γpξ+1))˜λ2⋅(min{d⋆(pξ,pξ+1),d⋆(pξ−1,pξ),1,d⋆(pξ−1,pξ+1)})˜λ3≤(d⋆(pξ,ξ−1))˜λ1⋅(d⋆(pξ,pξ+1)⋅d⋆(pξ−1,pξ)⋅d⋆(pξ−1,pξ)⋅d⋆(pξ,Γpξ+1))˜λ2=(d⋆(pξ,pξ−1))˜λ1⋅((d⋆(pξ,pξ+1))2⋅(d⋆(pξ−1,pξ))2)˜λ2⋅ |
After simplification, we obtain that
d⋆(pξ+1,pξ)≤(d⋆(pξ,pξ−1))h,whereh=˜λ1+2˜λ21−2˜λ2<1. | (3.7) |
Similarly,
d⋆(pξ−1,pξ)≤(d⋆(pξ−2,pξ−1))h,whereh=˜λ1+2˜λ21−2˜λ2<1. | (3.8) |
Now, from (3.7) and (3.8) and by induction, we have
d⋆(pξ,pξ+1)≤(d⋆(pξ−1,pξ))h≤(d⋆(pξ−2,pξ−1))h2≤⋯≤(d⋆(p0,p1))hξ→1,as ξ→+∞. | (3.9) |
Hence, the sequence {pξ} in (W,d⋆) is contractive. Now, ξ<ς, and by using the triangular property of (W,d⋆), we have that
d⋆(pξ,pς)≤d⋆(pξ,pξ+1)⋅d⋆(pξ+1,pξ+2)⋯d⋆(pς−2,pς−1)⋅d⋆(pς−1,pς)≤(d⋆(p0,p1))hξ⋅(d⋆(p0,p1))hξ+1⋯(d⋆(p0,p1))hς−1⋅(d⋆(p0,p1))hς≤(d⋆(p0,p1))(hξ+hξ+1+⋯+hς−1+hς)≤(d⋆(p0,p1))(hξ1−h)→1,as ξ,ς→+∞. |
Hence it is shown that {pξ} is a Cauchy sequence in (W,d⋆). By completeness of (W,d⋆), there exists κ∈W, so that limξ→+∞pξ=κ, and therefore
limξ→+∞d⋆(pξ,κ)=1. | (3.10) |
Now, we have to show Γ(κ)=κ. Then, from (3.1) and (3.10), we have that
d⋆(κ,Γκ)≤d⋆(κ,pξ+1)⋅d⋆(pξ+1,Γκ)=d⋆(κ,pξ+1)⋅d⋆(Γpξ,Γκ)≤d⋆(κ,pξ+1)⋅(d⋆(pξ,κ))˜λ1⋅(d⋆(pξ,Γpξ)⋅d⋆(κ,Γκ)⋅ d⋆(pξ,Γκ)⋅d⋆(κ,Γpξ))˜λ2⋅(min{d⋆(pξ,Γpξ),d⋆(κ,Γκ),d⋆(pξ,Γκ),d⋆(κ,Γpξ)})˜λ3=d⋆(κ,pξ+1)⋅(d⋆(pξ,κ))˜λ1⋅(d⋆(pξ,pξ+1)⋅d⋆(κ,Γκ)⋅ d⋆(pξ,Γκ)⋅d⋆(κ,pξ+1))˜λ2⋅(min{d⋆(pξ,pξ+1),d⋆(κ,Γκ), d⋆(pξ,Γκ),d⋆(κ,pξ+1)})˜λ3→(d⋆(κ,Γκ))2˜λ2,as ξ→+∞. |
Hence, we obtain that
d⋆(κ,Γκ)≤(d⋆(κ,Γκ))2˜λ2⇒(d⋆(κ,Γκ))(1−2˜λ2)≤1, |
is a contradiction. Hence, we get that d⋆(Γκ,κ)=1 implies that Γκ=κ, which shows that κ is a FP of Γ in (W,d⋆).
Uniqueness: Suppose μ is another fixed point of the mapping Γ in (W,d⋆), so that Γμ=μ. Now, we show that κ=μ. From the view of (3.6),
d⋆(κ,μ)=d⋆(Γκ,Γμ)≤(d⋆(κ,μ))˜λ1.(d⋆(κ,Γκ).d⋆(μ,Γμ).d⋆(κ,Γμ).d⋆(μ,Γκ))˜λ2.(min{d⋆(κ,Γκ),d⋆(μ,Γμ),d⋆(κ,Γμ),d⋆(μ,Γκ)})˜λ3=(d⋆(κ,μ))˜λ1.(d⋆(κ,κ).d⋆(μ,μ).d⋆(κ,μ).d⋆(μ,κ))˜λ2.(min{d⋆(κ,κ),d⋆(μ,μ),d⋆(κ,μ),d⋆(μ,κ)})˜λ3=(d⋆(κ,μ))˜λ1+2˜λ2. |
Hence,
d⋆(κ,μ)≤(d⋆(κ,μ))˜λ1+2˜λ2⇒(d⋆(κ,μ))(1−˜λ1−2˜λ2)≤1, |
is a contradiction. Hence, we get that d⋆(κ,μ)=1 implies that κ=μ. Thus, Γ has a unique FP in W.
If we reduce and use separately the second and third term values of the statement of Theorem 3.6, we get the following two corollaries.
Corollary 3.7. Let (W,d⋆) be a complete MM-space and let a function Γ:W→W satisfy,
d⋆(Γ˜p,Γ˜p)≤(d⋆(˜δ,˜δ))˜λ1⋅(d⋆(˜p,Γ˜p)⋅d⋆(˜δ,Γ˜δ))˜λ2⋅(min{d⋆(˜p,Γ˜p),d⋆(˜δ,Γ˜δ)})˜λ3, |
for all ˜p,˜δ∈W and ˜λ1,˜λ2,˜λ3≥0 with (˜λ1+2˜λ2+˜λ3)<1. Then, Γ has a unique fixed point in W.
Corollary 3.8. Let (W,d⋆) be a complete MM-space and let a function Γ:W→W satisfy,
d⋆(Γ˜p,Γ˜δ)≤(d⋆(˜p,˜δ))˜λ1⋅(d⋆(˜δ,Γ˜p)⋅d⋆(˜p,Γ˜δ))˜λ2⋅(min{d⋆(˜δ,Γ˜p),d⋆(˜p,Γ˜δ)})˜λ3, |
for all ˜p,˜δ∈W and ˜λ1,˜λ2,˜λ3≥0 with (˜λ1+2˜λ2)<1. Then, a function Γ has a unique fixed point.
Example 3.9. From Example 3.5, a function Γ is a multiplicative contraction and holds all the conditions of Theorem 3.6 with particular constants ˜λ1=120, ˜λ2=15 and ˜λ3=0. A function Γ has a unique fixed point, that is, 0.
For the validity of our main results, we present an application of a nonlinear integral equation (NIE) for the existence of a unique solution. Let W=B([c,d],R) be the Banach space of all continuous mappings on [c,d] with supremum norm
‖˜p‖=sup˜n∈[c,d]|˜p(˜n)|, where ˜p∈B([c,d],R), |
and the metric d⋆:W×W→R is defined as:
d⋆(˜p,˜δ)=sup˜n∈[c,d]|˜p(˜n)−˜δ(˜n)|=‖˜p−˜δ‖,where˜p,˜δ∈B([c,d],R). | (4.1) |
The NIE is defined as:
˜p(˜n)=∫dcE(˜n,˜u,˜p(˜u))d˜u, | (4.2) |
with ˜n∈[c,d]⊂R and E:[c,d]×[c,d]×R→R.
Theorem 4.1. Assume that the NIE is defined as in (4.2), and there exists ˜λ∈(0,1) so that
‖Γ˜p−Γ˜δ‖≤(D(Γ,˜p,˜δ))˜λ, | (4.3) |
where
D(Γ,˜p,˜δ)=min{‖˜p−˜δ‖,(‖˜p−Γ˜p‖⋅‖˜δ−Γ˜δ‖⋅ ‖˜p−Γ˜δ‖⋅‖˜δ−Γ˜p‖),max{‖˜p−Γ˜p‖,‖˜δ−Γ˜δ‖,‖˜p−Γ˜δ‖,‖˜δ−Γ˜p‖}}. | (4.4) |
Then, the NIE (4.2) has a unique solution in W.
Proof. Define a function Γ:W→W by
Γ˜p(˜n)=∫dcE(˜n,˜u,˜p(˜u))d˜u,for all ˜p∈W. | (4.5) |
Now, we apply Theorem 3.1 to the integral operator Γ to validate our work. We may have the following three main cases:
(1) If ‖˜p−˜δ‖ is the minimum term in (4.4), then D(Γ,˜p,˜δ)=‖˜p−˜δ‖. Now from (4.1) and (4.3), we have that
d⋆(Γ˜p,Γ˜δ)=‖Γ˜p−Γ˜δ‖≤(D(Γ,˜p,˜δ))˜λ=(‖˜p−˜δ‖)˜λ=(d⋆(˜p,˜δ))˜λ, |
for all ˜p,˜δ∈W. Hence, the operator Γ satisfies all the conditions of Theorem 3.1 with ˜λ=˜λ1 and ˜λ2=˜λ3=0. Thus, Γ has a unique FP in W, which is a unique solution of NIE (4.2).
(2) If (‖˜p−Γ˜p‖⋅‖˜δ−Γ˜δ‖⋅‖˜δ−Γ˜p‖⋅‖˜p−Γ˜δ‖) is the minimum term in (4.4), then
D(Γ,˜p,˜δ)=(‖˜p−Γ˜p‖⋅‖˜δ−Γ˜δ‖⋅‖˜δ−Γ˜p‖⋅‖˜p−Γ˜δ‖). |
Now, from (4.1) and (4.3), we have that
d⋆(Γ˜p,Γ˜δ)=‖Γ˜p−Γ˜δ‖≤(D(Γ,˜p,˜δ))˜λ=(‖˜p−Γ˜p‖⋅‖˜δ−Γ˜δ‖⋅‖˜δ−Γ˜p‖⋅‖˜p−Γ˜δ‖)˜λ=(d⋆(˜p,Γ˜p)⋅d⋆(˜δ,Γ˜δ)⋅d⋆(˜p,Γ˜δ)⋅d⋆(˜δ,Γ˜p))˜λ, |
for all ˜p,˜δ∈W. Hence, the operator Γ satisfy all the conditions of Theorem 3.1 with ˜λ=˜λ2 and ˜λ1=˜λ3=0. Thus, Γ has a unique FP in W, which is a unique solution of NIE (4.2).
(3) If (max{‖˜p−Γ˜p‖,‖˜δ−Γ˜δ‖,‖˜δ−Γ˜p‖,‖˜p−Γ˜δ‖}) is the minimum term in (4.4), then
D(Γ,˜p,˜δ)=max{‖˜p−Γ˜p‖,‖˜δ−Γ˜δ‖,‖˜δ−Γ˜p‖,‖˜p−Γ˜δ‖}. |
Now, we may have the following four subcases:
(ⅰ) If ‖˜p−Γ˜p‖ is the maximum term in {‖˜p−Γ˜p‖,‖˜δ−Γ˜δ‖,‖˜δ−Γ˜p‖,‖˜p−Γ˜δ‖}, then D(Γ,˜p,˜δ)=‖˜p−Γ˜p‖. Now, from (4.1) and (4.3), we have that
d⋆(Γ˜p,Γ˜δ)=‖Γ˜p−Γ˜δ‖≤(D(Γ,˜p,˜δ))˜λ=(‖˜p−Γ˜p‖)˜λ=(d⋆(˜p,Γ˜p))˜λfor all ˜p,˜δ∈W. |
(ⅱ) If ‖˜δ−Γ˜δ‖ is the maximum term in {‖˜p−Γ˜p‖,‖˜δ−Γ˜δ‖,‖˜δ−Γ˜p‖,‖˜p−Γ˜δ‖}, then D(Γ,˜p,˜δ)=‖˜δ−Γ˜δ‖. Now, from (4.1) and (4.3), we have that
d⋆(Γ˜p,Γ˜δ)=‖Γ˜p−Γ˜δ‖≤(D(Γ,˜p,˜δ))˜λ=(‖˜δ−Γ˜δ‖)˜λ=(d⋆(˜δ,Γ˜δ))˜λfor all ˜p,˜δ∈W. |
(ⅲ) If ‖˜δ−Γ˜p‖ is the maximum term in {‖˜p−Γ˜p‖,‖˜δ−Γ˜δ‖,‖˜δ−Γ˜p‖,‖˜p−Γ˜δ‖}, then D(Γ,˜p,˜δ)=‖˜δ−Γ˜p‖. Now, from (4.1) and (4.3), we have that
d⋆(Γ˜p,Γ˜δ)=‖Γ˜p−Γ˜δ‖≤(D(Γ,˜p,˜δ))˜λ=(‖˜δ−Γ˜p‖)˜λ=(d⋆(˜δ,Γ˜p))˜λfor all ˜p,˜δ∈W. |
(ⅳ) If ‖˜p−Γ˜δ‖ is the maximum term in {‖˜p−Γ˜p‖,‖˜δ−Γ˜δ‖,‖˜δ−Γ˜p‖,‖˜p−Γ˜δ‖}, then D(Γ,˜p,˜δ)=‖˜p−Γ˜δ‖. Now, from (4.1) and (4.3), we have that
d⋆(Γ˜p,Γ˜δ)=‖Γ˜p−Γ˜δ‖≤(D(Γ,˜p,˜δ))˜λ=(‖˜p−Γ˜δ‖)˜λ=(d⋆(˜p,Γ˜δ))˜λfor all ˜p,˜δ∈W. |
Hence, from (ⅰ)–(ⅳ), the operator Γ satisfies all the conditions of Theorem 3.1 with ˜λ=˜λ3 and ˜λ1=˜λ2=0. Thus, Γ has a unique FP in W, which is a unique solution of a NIE (4.2).
In the present paper, we studied and showed some of the latest generalized fixed point theorems by using the maximum and minimum conditions for single-valued contractive type mappings on MM-spaces with illustrative examples. Our results extended and improved many results existing in the literature of fixed point theory on MM-spaces. Further, we presented an application of an NIE to support our work. This new concept will play a vital role in the theory of fixed point. By using this new concept, one can prove some more generalized fixed point, common fixed point and coincidence point results with the application of different types of integral equations.
This research received funding from the National Science, Research and Innovation Fund (NSRIF), Thailand.
The authors declare that they have no conflicts of interest.
[1] |
L. An, V. R. Grimm, A. Sullivan, B. L. Turner II, N. Malleson, A. Heppenstall, et al., Challenges, tasks, and opportunities in modeling agent-based complex systems, Ecolog. Model., 457 (2021), 109685. https://doi.org/10.1016/j.ecolmodel.2021.109685 doi: 10.1016/j.ecolmodel.2021.109685
![]() |
[2] | W. R. KhudaBukhsh, B. S. Choi, E. Kenah, G. A. Rempała, Survival dynamical systems: Individual-level survival analysis from population-level epidemic models, Interface Focus, 10 (2020). https://doi.org/10.1098/rsfs.2019.0048 |
[3] | F. Di Lauro, W. R. KhudaBukhsh, I. Z. Kiss, E. Kenah, M. Jensen, G. A. Rempała, Dynamic survival analysis for non-markovian epidemic models. J. Royal Soc. Interf., 19 (2022), 20220124. https://doi.org/10.1098/rsif.2022.0124 |
[4] | B. S. Choi, S. Busch, D. Kazadi, B. Ilunga, E. Okitolonda, Y. Dai, et al., Modeling outbreak data: Analysis of a 2012 Ebola virus disease epidemic in DRC, Biomath, 8 (2019). https://doi.org/10.11145/j.biomath.2019.10.037 |
[5] | H. Vossler, P. Akilimali, Y. H. Pan, W. R. KhudaBukhsh, E. Kenah, G. A. Rempała, Analysis of individual-level epidemic data: Study of 2018-2020 Ebola outbreak in Democratic Republic of the Congo, Sci. Rep., 12 (2022). https://doi.org/10.1038/s41598-022-09564-4 |
[6] | W. R. KhudaBukhsh, S. K. Khalsa, E. Kenah, G. A. Rempala, J. H. Tien, COVID-19 dynamics in an Ohio prison,, medRxiv, 2021. Available from: https://www.medrxiv.org/content/early/2021/01/15/2021.01.14.21249782 |
[7] | M. Wascher, P. M. Schnell, W. R. KhudaBukhsh, M. Quam, J. H. Tien, G. A. Rempała, Monitoring sars-cov-2 transmission and prevalence in populations under repeated testing, 2021. Available from: https://www.medrxiv.org/content/10.1101/2021.06.22.21259342v1 |
[8] | I. Somekh, W. R. KhudaBukhsh, E. D. Root, G. A. Rempała, E. Sim{ o}es, E. Somekh, Quantifying the population-level effect of the COVID-19 mass vaccination campaign in Israel: A modeling study, Open Forum Infect. Diseases, 9 (2022). https://doi.org/10.1093/ofid/ofac087 |
[9] |
E. Kenah, Contact intervals, survival analysis of epidemic data, and estimation of R0, Biostatistics, 12 (2011), 548–566. https://doi.org/10.1093/biostatistics/kxq068 doi: 10.1093/biostatistics/kxq068
![]() |
[10] | N. G. van Kampen, Remarks on Non-Markov Processes, Brazilian J. Phys., 28 (1998). |
[11] | R. Ferrière, V. C. Tran, Stochastic and deterministic models for age-structured populations with genetically variable traits, In CANUM 2008, volume 27 of ESAIM Proc., pages 289–310. EDP Sci., Les Ulis, 2009. https://doi.org/10.1051/proc/2009033 |
[12] |
E. Franco, M. Gyllenberg, O. Diekmann, One dimensional reduction of a renewal equation for a measure-valued function of time describing population dynamics, Acta Appl. Math., 175 (2021), 12. https://doi.org/10.1007/s10440-021-00440-3 doi: 10.1007/s10440-021-00440-3
![]() |
[13] |
J. M. Hyman, J. Li, Infection-age structured epidemic models with behavior change or treatment, J. Biol. Dynam., 1 (2007), 109–131. https://doi.org/10.1080/17513750601040383 doi: 10.1080/17513750601040383
![]() |
[14] |
N. Sherborne, J. C. Miller, K. B. Blyuss, I. Z. Kiss, Mean-field models for non-markovian epidemics on networks, J. Math. Biol., 76 (2018), 755–778. https://doi.org/10.1007/s00285-017-1155-0 doi: 10.1007/s00285-017-1155-0
![]() |
[15] |
V. C. Tran, Large population limit and time behaviour of a stochastic particle model describing an age-structured population, ESAIM. Probab. Stat., 12 (2008), 345–386. https://doi.org/10.1051/ps:2007052 doi: 10.1051/ps:2007052
![]() |
[16] | N. Fournier, S. Méléard, A microscopic probabilistic description of a locally regulated population and macroscopic approximations, Ann. Appl. Probab., 14 (2004), 1880–1919. |
[17] |
W. R. KhudaBukhsh, H.-W. Kang, E. Kenah, G. Rempała, Incorporating age and delay into models for biophysical systems, Phys. Biol., 18 (2021), 10. https://doi.org/10.1088/1478-3975/abc2ab doi: 10.1088/1478-3975/abc2ab
![]() |
[18] | W. R. KhudaBukhsh, C. D Bastian, M. Wascher, C. Klaus, S. Y. Sahai, M. H. Weir, et al., Projecting covid-19 cases and subsequent hospital burden in ohio, medRxiv, 2022. Available from: https://www.medrxiv.org/content/10.1101/2022.07.27.22278117v1.full.pdf+html |
[19] |
C. D. Bastian, G. A. Rempala, Throwing stones and collecting bones: Looking for poisson-like random measures, Math. Methods Appl. Sci., 43 (2020), 4658–4668. https://doi.org/10.1002/mma.6224 doi: 10.1002/mma.6224
![]() |
[20] | G. F. Webb, Theory of nonlinear age-dependent population dynamics, volume 89 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1985. https://doi.org/10.1007/BF00250793 |
[21] | M. Iannelli, M. Martcheva, F. A. Milner, Gender-structured population modeling, volume 31 of Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005. |
[22] | L. C. Evans, Partial differential equations, volume 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, second edition, 2010. |
[23] | E. DiBenedetto, Partial differential equations, Cornerstones. Birkhäuser Boston, Ltd., Boston, MA, second edition, 2010. |
[24] | C Klaus, PDE-DSA github repository, 2022. Available from: https://github.com/klauscj68/PDE-Vax |
[25] | J. Bezanson, A. Edelman, S. Karpinski, V. B. Shah, Julia: A fresh approach to numerical computing, SIAM Rev., 59 (2017), 65–98. |
[26] | Ohio Department of Health, Ohio Department of Health COVID Dashboard, Available from: https://coronavirus.ohio.gov/wps/portal/gov/covid-19/dashboards/overview |
[27] | Centers for Disease Control and Prevention (CDC), US Centers for Disease Control and Prevention: COVID-19 vaccinations in the United States, County, Available from: https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-County/8xkx-amqh |
[28] | U. S. Census, County Population Totals 2010-2019, Available from: https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html |
[29] | L. L. Schumaker, Spline functions: Computational Methods, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2015. https://doi.org/10.1137/1.9781611973907 |
[30] |
T. Kypraios, P. Neal, D. Prangle, A tutorial introduction to bayesian inference for stochastic epidemic models using approximate bayesian computation, {Math. Biosci.}, 287 (2017), 42–53. https://doi.org/10.1016/j.mbs.2016.07.001 doi: 10.1016/j.mbs.2016.07.001
![]() |
[31] | S..A. Sisson, Y. N. Fan, M. A. Beaumont, Handbook of Approximate Bayesian Computation, CRC Press, Boca Raton, FL, 2020. |
[32] | Centers for Disease Control and Prevention (CDC), US Centers for Disease Control and Prevention: SARS-CoV-2 Variant Classifications and Definitions, Available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html |
[33] |
K. Koelle, M. A. Martin, R. Antia, B. Lopman, N. E. Dean, The changing epidemiology of sars-cov-2, Science, 375 (2022), 1116–1121. https://doi.org/10.1126/science.abm4915 doi: 10.1126/science.abm4915
![]() |
[34] |
M. O'Driscoll, G. R. Dos Santos, L. Wang, D. A. T. Cummings, A. S. Azman, J. Paireau, et al., Age-specific mortality and immunity patterns of SARS-CoV-2, Nature, 590 (2021), 140–145. https://doi.org/10.1038/s41586-020-2918-0 doi: 10.1038/s41586-020-2918-0
![]() |
[35] | I. Holmdahl, C. Buckee, Wrong but useful—what covid-19 epidemiologic models can and cannot tell us, New England J. Med., 383 (2020), 303–305. |
[36] |
N. P. Jewell, J. A. Lewnard, B. L. Jewell, Predictive mathematical models of the COVID-19 Pandemic: Underlying principles and value of projections, JAMA, 323 (2020), 1893–1894. https://doi.org/10.1001/jama.2020.6585 doi: 10.1001/jama.2020.6585
![]() |
[37] |
N. Barda, D. Riesel, A. Akriv, J. Levy, U. Finkel, G. Yona, et al. Developing a COVID-19 mortality
risk prediction model when individual-level data are not available, Nat. Commun., 11 (2020), 4439. https://doi.org/10.1038/s41467-020-18297-9 doi: 10.1038/s41467-020-18297-9
![]() |
[38] |
C. Klaus, M. Wascher, W. R. KhudaBukhsh, J. H. Tien, G. A. Rempała, E. Kenah, Assortative mixing among vaccination groups and biased estimation of reproduction numbers, Lancet Infect. Diseases, 22 (2022), 579–581. https://doi.org/10.1016/S1473-3099(22)00155-4 doi: 10.1016/S1473-3099(22)00155-4
![]() |
[39] | O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, in Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1968. Translated from the Russian by S. Smith. |
1. | Alan Dyson, Existence and Uniqueness of Traveling Fronts in Lateral Inhibition Neural Fields with Sigmoidal Firing Rates, 2020, 19, 1536-0040, 2194, 10.1137/20M1311697 |