Citation: Jan Poleszczuk, Marek Bodnar, Urszula Foryś. New approach to modeling of antiangiogenic treatment on the basis of Hahnfeldt et al. model[J]. Mathematical Biosciences and Engineering, 2011, 8(2): 591-603. doi: 10.3934/mbe.2011.8.591
1. | Marek Bodnar, Monika Joanna Piotrowska, Stability analysis of the family of tumour angiogenesis models with distributed time delays, 2016, 31, 10075704, 124, 10.1016/j.cnsns.2015.08.002 | |
2. | Katerina D. Argyri, Dimitra D. Dionysiou, Fay D. Misichroni, Georgios S. Stamatakos, Numerical simulation of vascular tumour growth under antiangiogenic treatment: addressing the paradigm of single-agent bevacizumab therapy with the use of experimental data, 2016, 11, 1745-6150, 10.1186/s13062-016-0114-9 | |
3. | U. Ledzewicz, H. Schättler, Multi-input Optimal Control Problems for Combined Tumor Anti-angiogenic and Radiotherapy Treatments, 2012, 153, 0022-3239, 195, 10.1007/s10957-011-9954-8 | |
4. | F. A. Rihan, M. Safan, M. A. Abdeen, D. Abdel Rahman, Qualitative and Computational Analysis of a Mathematical Model for Tumor-Immune Interactions, 2012, 2012, 1110-757X, 1, 10.1155/2012/475720 | |
5. | Anca Bucur, Jasper van Leeuwen, Nikolaos Christodoulou, Kamana Sigdel, Katerina Argyri, Lefteris Koumakis, Norbert Graf, Georgios Stamatakos, Workflow-driven clinical decision support for personalized oncology, 2016, 16, 1472-6947, 10.1186/s12911-016-0314-3 | |
6. | Jan Poleszczuk, Philip Hahnfeldt, Heiko Enderling, Domenico Ribatti, Therapeutic Implications from Sensitivity Analysis of Tumor Angiogenesis Models, 2015, 10, 1932-6203, e0120007, 10.1371/journal.pone.0120007 | |
7. | M. Saleem, Tanuja Agrawal, Chaos in a Tumor Growth Model with Delayed Responses of the Immune System, 2012, 2012, 1110-757X, 1, 10.1155/2012/891095 | |
8. | Monika J. Piotrowska, Urszula Foryś, Analysis of the Hopf bifurcation for the family of angiogenesis models, 2011, 382, 0022247X, 180, 10.1016/j.jmaa.2011.04.046 | |
9. | M. Sturrock, I. S. Miller, G. Kang, N. Hannis Arba’ie, A. C. O’Farrell, A. Barat, G. Marston, P. L. Coletta, A. T. Byrne, J. H. Prehn, Anti-angiogenic drug scheduling optimisation with application to colorectal cancer, 2018, 8, 2045-2322, 10.1038/s41598-018-29318-5 | |
10. | Renee Brady, Heiko Enderling, Mathematical Models of Cancer: When to Predict Novel Therapies, and When Not to, 2019, 81, 0092-8240, 3722, 10.1007/s11538-019-00640-x | |
11. | J.M. Chrobak, M. Bodnar, H. Herrero, About a generalized model of lymphoma, 2012, 386, 0022247X, 813, 10.1016/j.jmaa.2011.08.043 | |
12. | Nicoleta Tarfulea, 2016, Chapter 30, 978-3-319-30377-2, 319, 10.1007/978-3-319-30379-6_30 | |
13. | Leonid Berezansky, Elena Braverman, Lev Idels, Effect of treatment on the global dynamics of delayed pathological angiogenesis models, 2014, 363, 00225193, 13, 10.1016/j.jtbi.2014.08.012 | |
14. | Gompertz model with delays and treatment: Mathematical analysis, 2013, 10, 1551-0018, 551, 10.3934/mbe.2013.10.551 | |
15. | Marek Bodnar, Pilar Guerrero, Ruben Perez-Carrasco, Monika J. Piotrowska, Grant Lythe, Deterministic and Stochastic Study for a Microscopic Angiogenesis Model: Applications to the Lewis Lung Carcinoma, 2016, 11, 1932-6203, e0155553, 10.1371/journal.pone.0155553 | |
16. | Emad Attia, Marek Bodnar, Urszula Foryś, Angiogenesis model with Erlang distributed delays, 2017, 14, 1551-0018, 1, 10.3934/mbe.2017001 | |
17. | J. Poleszczuk, M. J. Piotrowska, U. Foryś, S. Anita, N. Hritonenko, G. Marinoschi, A. Swierniak, Optimal Protocols for the Anti-VEGF Tumor Treatment, 2014, 9, 0973-5348, 204, 10.1051/mmnp/20149412 | |
18. | Bhavyata Patel, Rhydham Karnik, Dhanesh Patel, 2021, Chapter 3, 978-981-16-6017-7, 39, 10.1007/978-981-16-6018-4_3 | |
19. | Niusha Narimani, Mehdi Dehghan, Vahid Mohammadi, A weighted combination of reproducing kernel particle shape functions with cardinal functions of scalable polyharmonic spline radial kernel utilized in Galerkin weak form of a mathematical model related to anti-angiogenic therapy, 2024, 10075704, 108059, 10.1016/j.cnsns.2024.108059 |