Processing math: 100%

A pressure model of immune response to mycobacterium tuberculosis infection in several space dimensions

  • Received: 01 January 2009 Accepted: 29 June 2018 Published: 01 April 2010
  • MSC : Primary: 35K57, 92C17 ; Secondary: 65C20, 93A30.

  • Mycobacterium tuberculosis (Mtb) is a widely diffused infection. However, in general, the human immune system is able to contain it. In this work, we propose a mathematical model which describes the early immune response to the Mtb infection in the lungs, also including the possible evolution of the infection in the formation of a granuloma. The model is based on coupled reaction-diffusion-transport equations with chemotaxis, which take into account the interactions among bacteria, macrophages and chemoattractant. The novelty of this approach is in the modeling of the velocity field, proportional to the gradient of the pressure developed between the cells, which makes possible to deal with a full multidimensional description and efficient numerical simulations. We perform a linear stability analysis of the model and propose a robust implicit-explicit scheme to deal with long time simulations. Both in one and two-dimensions, we find that there are threshold values in the parameters space, between a contained infection and the uncontrolled bacteria growth, and the generation of granuloma-like patterns can be observed numerically.

    Citation: Fabrizio Clarelli, Roberto Natalini. A pressure model of immune response to mycobacteriumtuberculosis infection in several space dimensions[J]. Mathematical Biosciences and Engineering, 2010, 7(2): 277-300. doi: 10.3934/mbe.2010.7.277

    Related Papers:

    [1] Eduardo Ibargüen-Mondragón, M. Victoria Otero-Espinar, Miller Cerón Gómez . A within-host model on the interaction dynamics between innate immune cells and Mycobacterium tuberculosis. Mathematical Biosciences and Engineering, 2025, 22(3): 511-527. doi: 10.3934/mbe.2025019
    [2] Suman Ganguli, David Gammack, Denise E. Kirschner . A Metapopulation Model Of Granuloma Formation In The Lung During Infection With Mycobacterium Tuberculosis. Mathematical Biosciences and Engineering, 2005, 2(3): 535-560. doi: 10.3934/mbe.2005.2.535
    [3] Eduardo Ibarguen-Mondragon, Lourdes Esteva, Leslie Chávez-Galán . A mathematical model for cellular immunology of tuberculosis. Mathematical Biosciences and Engineering, 2011, 8(4): 973-986. doi: 10.3934/mbe.2011.8.973
    [4] Gesham Magombedze, Winston Garira, Eddie Mwenje . Modelling the human immune response mechanisms to mycobacterium tuberculosis infection in the lungs. Mathematical Biosciences and Engineering, 2006, 3(4): 661-682. doi: 10.3934/mbe.2006.3.661
    [5] Eduardo Ibargüen-Mondragón, Lourdes Esteva, Edith Mariela Burbano-Rosero . Mathematical model for the growth of Mycobacterium tuberculosis in the granuloma. Mathematical Biosciences and Engineering, 2018, 15(2): 407-428. doi: 10.3934/mbe.2018018
    [6] Xu Zhang, Dongdong Chen, Wenmin Yang, JianhongWu . Identifying candidate diagnostic markers for tuberculosis: A critical role of co-expression and pathway analysis. Mathematical Biosciences and Engineering, 2019, 16(2): 541-552. doi: 10.3934/mbe.2019026
    [7] Benjamin H. Singer, Denise E. Kirschner . Influence of backward bifurcation on interpretation of R0 in a model of epidemic tuberculosis with reinfection. Mathematical Biosciences and Engineering, 2004, 1(1): 81-93. doi: 10.3934/mbe.2004.1.81
    [8] Abba B. Gumel, Baojun Song . Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis. Mathematical Biosciences and Engineering, 2008, 5(3): 437-455. doi: 10.3934/mbe.2008.5.437
    [9] Changwook Yoon, Sewoong Kim, Hyung Ju Hwang . Global well-posedness and pattern formations of the immune system induced by chemotaxis. Mathematical Biosciences and Engineering, 2020, 17(4): 3426-3449. doi: 10.3934/mbe.2020194
    [10] Surabhi Pandey, Ezio Venturino . A TB model: Is disease eradication possible in India?. Mathematical Biosciences and Engineering, 2018, 15(1): 233-254. doi: 10.3934/mbe.2018010
  • Mycobacterium tuberculosis (Mtb) is a widely diffused infection. However, in general, the human immune system is able to contain it. In this work, we propose a mathematical model which describes the early immune response to the Mtb infection in the lungs, also including the possible evolution of the infection in the formation of a granuloma. The model is based on coupled reaction-diffusion-transport equations with chemotaxis, which take into account the interactions among bacteria, macrophages and chemoattractant. The novelty of this approach is in the modeling of the velocity field, proportional to the gradient of the pressure developed between the cells, which makes possible to deal with a full multidimensional description and efficient numerical simulations. We perform a linear stability analysis of the model and propose a robust implicit-explicit scheme to deal with long time simulations. Both in one and two-dimensions, we find that there are threshold values in the parameters space, between a contained infection and the uncontrolled bacteria growth, and the generation of granuloma-like patterns can be observed numerically.


  • This article has been cited by:

    1. Massimiliano Pio di Cagno, Fabrizio Clarelli, Jon Våbenø, Christina Lesley, Sokar Darsim Rahman, Jennifer Cauzzo, Erica Franceschinis, Nicola Realdon, Paul C. Stein, Experimental Determination of Drug Diffusion Coefficients in Unstirred Aqueous Environments by Temporally Resolved Concentration Measurements, 2018, 15, 1543-8384, 1488, 10.1021/acs.molpharmaceut.7b01053
    2. Fabrizio Clarelli, Gabriele Inglese, Reconstruction of a nonlinear heat transfer law from uncomplete boundary data by means of infrared thermography, 2016, 32, 0266-5611, 115017, 10.1088/0266-5611/32/11/115017
    3. Frédérique Noël, Benjamin Mauroy, Propagation of an idealized infection in an airway tree, consequences of the inflammation on the oxygen transfer to blood, 2023, 561, 00225193, 111405, 10.1016/j.jtbi.2023.111405
    4. Eduardo Ibargüen-Mondragón, M. Victoria Otero-Espinar, Miller Cerón Gómez, A within-host model on the interaction dynamics between innate immune cells and Mycobacterium tuberculosis, 2025, 22, 1551-0018, 511, 10.3934/mbe.2025019
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2806) PDF downloads(486) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog