1.
|
Simeone Marino, Jennifer J. Linderman, Denise E. Kirschner,
A multifaceted approach to modeling the immune response in tuberculosis,
2011,
3,
19395094,
479,
10.1002/wsbm.131
|
|
2.
|
Ruiqing Shi, Yang Li, Sanyi Tang,
A MATHEMATICAL MODEL WITH OPTIMAL CONTROLS FOR CELLULAR IMMUNOLOGY OF TUBERCULOSIS,
2014,
18,
1027-5487,
10.11650/tjm.18.2014.3739
|
|
3.
|
Doctor B. Sibandze, Beki T. Magazi, Lesibana A. Malinga, Nontuthuko E. Maningi, Bong-Akee Shey, Jotam G. Pasipanodya, Nontombi N. Mbelle,
Machine learning reveals that Mycobacterium tuberculosis genotypes and anatomic disease site impacts drug resistance and disease transmission among patients with proven extra-pulmonary tuberculosis,
2020,
20,
1471-2334,
10.1186/s12879-020-05256-4
|
|
4.
|
Mohammad Fallahi-Sichani, Simeone Marino, JoAnne L. Flynn, Jennifer J. Linderman, Denise E. Kirschner,
2013,
Chapter 7,
978-1-4614-4965-2,
127,
10.1007/978-1-4614-4966-9_7
|
|
5.
|
Gesham Magombedze, Nicola Mulder,
A mathematical representation of the development of Mycobacterium tuberculosis active, latent and dormant stages,
2012,
292,
00225193,
44,
10.1016/j.jtbi.2011.09.025
|
|
6.
|
Rendani Netshikweta, Winston Garira,
A Multiscale Model for the World’s First Parasitic Disease Targeted for Eradication: Guinea Worm Disease,
2017,
2017,
1748-670X,
1,
10.1155/2017/1473287
|
|
7.
|
Winston Garira,
2013,
Chapter 35,
978-1-4614-4997-3,
595,
10.1007/978-1-4614-4998-0_35
|
|
8.
|
Ruth Bowness,
2016,
Chapter 7,
978-1-4939-3282-5,
107,
10.1007/978-1-4939-3283-2_7
|
|
9.
|
Wenjing Zhang,
Analysis of an in-host tuberculosis model for disease control,
2020,
99,
08939659,
105983,
10.1016/j.aml.2019.07.014
|
|
10.
|
Gesham Magombedze, Nicola Mulder,
Understanding TB latency using computational and dynamic modelling procedures,
2013,
13,
15671348,
267,
10.1016/j.meegid.2012.09.017
|
|
11.
|
Denise Kirschner, Elsje Pienaar, Simeone Marino, Jennifer J. Linderman,
A review of computational and mathematical modeling contributions to our understanding of Mycobacterium tuberculosis within-host infection and treatment,
2017,
3,
24523100,
170,
10.1016/j.coisb.2017.05.014
|
|
12.
|
Sudha Bhavanam, Gina R Rayat, Monika Keelan, Dennis Kunimoto, Steven J Drews,
Understanding the pathophysiology of the human TB lung granuloma usingin vitrogranuloma models,
2016,
11,
1746-0913,
1073,
10.2217/fmb-2016-0005
|
|
13.
|
A mathematical model for cellular immunology of tuberculosis,
2011,
8,
1551-0018,
973,
10.3934/mbe.2011.8.973
|
|
14.
|
D. Okuonghae,
A Note on Some Qualitative Properties of a Tuberculosis Differential Equation Model with a Time Delay,
2015,
23,
0971-3514,
181,
10.1007/s12591-013-0190-6
|
|
15.
|
Santosh Ramkissoon, Henry G. Mwambi, Alan P. Matthews, Edward Goldstein,
Modelling HIV and MTB Co-Infection Including Combined Treatment Strategies,
2012,
7,
1932-6203,
e49492,
10.1371/journal.pone.0049492
|
|
16.
|
GESHAM MAGOMBEDZE, WINSTON GARIRA, EDDIE MWENJE,
Modeling the TB/HIV-1 Co-Infection and the Effects of Its Treatment,
2010,
17,
0889-8480,
12,
10.1080/08898480903467241
|
|
17.
|
Edith Mariela Burbano-Rosero, Lourdes Esteva, Eduardo Ibargüen-Mondragón,
Mathematical model for the growth of Mycobacterium tuberculosis in the granuloma,
2017,
15,
1551-0018,
407,
10.3934/mbe.2018018
|
|
18.
|
Winston Garira, Dephney Mathebula, Rendani Netshikweta,
A mathematical modelling framework for linked within-host and between-host dynamics for infections with free-living pathogens in the environment,
2014,
256,
00255564,
58,
10.1016/j.mbs.2014.08.004
|
|
19.
|
Daniel Okuonghae, Andrei Korobeinikov,
2013,
Chapter 3,
978-1-4614-9223-8,
59,
10.1007/978-1-4614-9224-5_3
|
|
20.
|
Wenjing Zhang, Leif Ellingson, Federico Frascoli, Jane Heffernan,
An investigation of tuberculosis progression revealing the role of macrophages apoptosis via sensitivity and bifurcation analysis,
2021,
83,
0303-6812,
10.1007/s00285-021-01655-6
|
|
21.
|
Kathryn M. Styles, Aidan T. Brown, Antonia P. Sagona,
A Review of Using Mathematical Modeling to Improve Our Understanding of Bacteriophage, Bacteria, and Eukaryotic Interactions,
2021,
12,
1664-302X,
10.3389/fmicb.2021.724767
|
|
22.
|
Eliezer Flores-Garza, Mario A Zetter, Rogelio Hernández-Pando, Elisa Domínguez-Hüttinger,
Mathematical Model of the Immunopathological Progression of Tuberculosis,
2022,
2,
2674-0702,
10.3389/fsysb.2022.912974
|
|
23.
|
Hui Cao, Jianquan Li, Pei Yu,
Study of immune response in a latent tuberculosis infection model,
2025,
140,
10075704,
108404,
10.1016/j.cnsns.2024.108404
|
|
24.
|
Tanni Rani Nandi, Amit Kumar Saha, Sudharonjon Roy,
Analysis of a fractional order epidemiological model for tuberculosis transmission with vaccination and reinfection,
2024,
14,
2045-2322,
10.1038/s41598-024-73392-x
|
|
25.
|
Mario Fuest, Johannes Lankeit, Masaaki Mizukami,
Global solvability of a model for tuberculosis granuloma formation,
2025,
85,
14681218,
104369,
10.1016/j.nonrwa.2025.104369
|
|
26.
|
Mlyashimbi Helikumi, Salamida Daudi, Eva Lusekelo, Steady Mushayabasa,
Optimizing combination therapy against drug resistance Mycobacterium tuberculosis: a modelling study,
2025,
51,
0092-0606,
10.1007/s10867-025-09685-7
|
|