Modelling the human immune response mechanisms to mycobacterium tuberculosis infection in the lungs

  • Received: 01 October 2005 Accepted: 29 June 2018 Published: 01 August 2006
  • MSC : 92D30.

  • This work elaborates on the effects of cytotoxic lymphocytes (CTLs) and other immune mechanisms in determining whether a TB-infected individual will develop active or latent TB. It answers one intriguing question: why do individuals infected with Mycobacterium tuberculosis (Mtb) experience different clinical outcomes? In addressing this question, we have developed a model that captures the effects of CTLs and the combined effects of CD4+ helper T cells (Th1 and Th2) immune response mechanisms to TB infection. The occurrence of active or latent infection is shown to depend on a number of factors that include effector function and levels of CTLs. We use the model to predict disease progression scenarios, including primary, latency or clearance. Model analysis shows that occurrence of active disease is much attributed to the Mtb pathogen ability to persist outside the intracellular environment and that high levels of CTLs result in latent TB, while low levels of CTLs result in active TB. This is attributed to the CTLs’ ability to directly kill infected macrophages and the bacteria inside the infected macrophages. The study suggests directions for further basic studies and potential new treatment strategies.

    Citation: Gesham Magombedze, Winston Garira, Eddie Mwenje. Modelling the human immune response mechanisms to mycobacterium tuberculosis infection in the lungs[J]. Mathematical Biosciences and Engineering, 2006, 3(4): 661-682. doi: 10.3934/mbe.2006.3.661

    Related Papers:

    [1] Suman Ganguli, David Gammack, Denise E. Kirschner . A Metapopulation Model Of Granuloma Formation In The Lung During Infection With Mycobacterium Tuberculosis. Mathematical Biosciences and Engineering, 2005, 2(3): 535-560. doi: 10.3934/mbe.2005.2.535
    [2] Fabrizio Clarelli, Roberto Natalini . A pressure model of immune response to mycobacterium tuberculosis infection in several space dimensions. Mathematical Biosciences and Engineering, 2010, 7(2): 277-300. doi: 10.3934/mbe.2010.7.277
    [3] Eduardo Ibarguen-Mondragon, Lourdes Esteva, Leslie Chávez-Galán . A mathematical model for cellular immunology of tuberculosis. Mathematical Biosciences and Engineering, 2011, 8(4): 973-986. doi: 10.3934/mbe.2011.8.973
    [4] Eduardo Ibargüen-Mondragón, Lourdes Esteva, Edith Mariela Burbano-Rosero . Mathematical model for the growth of Mycobacterium tuberculosis in the granuloma. Mathematical Biosciences and Engineering, 2018, 15(2): 407-428. doi: 10.3934/mbe.2018018
    [5] Eduardo Ibargüen-Mondragón, M. Victoria Otero-Espinar, Miller Cerón Gómez . A within-host model on the interaction dynamics between innate immune cells and Mycobacterium tuberculosis. Mathematical Biosciences and Engineering, 2025, 22(3): 511-527. doi: 10.3934/mbe.2025019
    [6] Chang Gong, Jennifer J. Linderman, Denise Kirschner . A population model capturing dynamics of tuberculosis granulomas predicts host infection outcomes. Mathematical Biosciences and Engineering, 2015, 12(3): 625-642. doi: 10.3934/mbe.2015.12.625
    [7] Abdessamad Tridane, Yang Kuang . Modeling the interaction of cytotoxic T lymphocytes and influenza virus infected epithelial cells. Mathematical Biosciences and Engineering, 2010, 7(1): 171-185. doi: 10.3934/mbe.2010.7.171
    [8] Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341
    [9] Tuersunjiang Keyoumu, Ke Guo, Wanbiao Ma . Periodic oscillation for a class of in-host MERS-CoV infection model with CTL immune response. Mathematical Biosciences and Engineering, 2022, 19(12): 12247-12259. doi: 10.3934/mbe.2022570
    [10] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
  • This work elaborates on the effects of cytotoxic lymphocytes (CTLs) and other immune mechanisms in determining whether a TB-infected individual will develop active or latent TB. It answers one intriguing question: why do individuals infected with Mycobacterium tuberculosis (Mtb) experience different clinical outcomes? In addressing this question, we have developed a model that captures the effects of CTLs and the combined effects of CD4+ helper T cells (Th1 and Th2) immune response mechanisms to TB infection. The occurrence of active or latent infection is shown to depend on a number of factors that include effector function and levels of CTLs. We use the model to predict disease progression scenarios, including primary, latency or clearance. Model analysis shows that occurrence of active disease is much attributed to the Mtb pathogen ability to persist outside the intracellular environment and that high levels of CTLs result in latent TB, while low levels of CTLs result in active TB. This is attributed to the CTLs’ ability to directly kill infected macrophages and the bacteria inside the infected macrophages. The study suggests directions for further basic studies and potential new treatment strategies.


  • This article has been cited by:

    1. Simeone Marino, Jennifer J. Linderman, Denise E. Kirschner, A multifaceted approach to modeling the immune response in tuberculosis, 2011, 3, 19395094, 479, 10.1002/wsbm.131
    2. Ruiqing Shi, Yang Li, Sanyi Tang, A MATHEMATICAL MODEL WITH OPTIMAL CONTROLS FOR CELLULAR IMMUNOLOGY OF TUBERCULOSIS, 2014, 18, 1027-5487, 10.11650/tjm.18.2014.3739
    3. Doctor B. Sibandze, Beki T. Magazi, Lesibana A. Malinga, Nontuthuko E. Maningi, Bong-Akee Shey, Jotam G. Pasipanodya, Nontombi N. Mbelle, Machine learning reveals that Mycobacterium tuberculosis genotypes and anatomic disease site impacts drug resistance and disease transmission among patients with proven extra-pulmonary tuberculosis, 2020, 20, 1471-2334, 10.1186/s12879-020-05256-4
    4. Mohammad Fallahi-Sichani, Simeone Marino, JoAnne L. Flynn, Jennifer J. Linderman, Denise E. Kirschner, 2013, Chapter 7, 978-1-4614-4965-2, 127, 10.1007/978-1-4614-4966-9_7
    5. Gesham Magombedze, Nicola Mulder, A mathematical representation of the development of Mycobacterium tuberculosis active, latent and dormant stages, 2012, 292, 00225193, 44, 10.1016/j.jtbi.2011.09.025
    6. Rendani Netshikweta, Winston Garira, A Multiscale Model for the World’s First Parasitic Disease Targeted for Eradication: Guinea Worm Disease, 2017, 2017, 1748-670X, 1, 10.1155/2017/1473287
    7. Winston Garira, 2013, Chapter 35, 978-1-4614-4997-3, 595, 10.1007/978-1-4614-4998-0_35
    8. Ruth Bowness, 2016, Chapter 7, 978-1-4939-3282-5, 107, 10.1007/978-1-4939-3283-2_7
    9. Wenjing Zhang, Analysis of an in-host tuberculosis model for disease control, 2020, 99, 08939659, 105983, 10.1016/j.aml.2019.07.014
    10. Gesham Magombedze, Nicola Mulder, Understanding TB latency using computational and dynamic modelling procedures, 2013, 13, 15671348, 267, 10.1016/j.meegid.2012.09.017
    11. Denise Kirschner, Elsje Pienaar, Simeone Marino, Jennifer J. Linderman, A review of computational and mathematical modeling contributions to our understanding of Mycobacterium tuberculosis within-host infection and treatment, 2017, 3, 24523100, 170, 10.1016/j.coisb.2017.05.014
    12. Sudha Bhavanam, Gina R Rayat, Monika Keelan, Dennis Kunimoto, Steven J Drews, Understanding the pathophysiology of the human TB lung granuloma usingin vitrogranuloma models, 2016, 11, 1746-0913, 1073, 10.2217/fmb-2016-0005
    13. A mathematical model for cellular immunology of tuberculosis, 2011, 8, 1551-0018, 973, 10.3934/mbe.2011.8.973
    14. D. Okuonghae, A Note on Some Qualitative Properties of a Tuberculosis Differential Equation Model with a Time Delay, 2015, 23, 0971-3514, 181, 10.1007/s12591-013-0190-6
    15. Santosh Ramkissoon, Henry G. Mwambi, Alan P. Matthews, Edward Goldstein, Modelling HIV and MTB Co-Infection Including Combined Treatment Strategies, 2012, 7, 1932-6203, e49492, 10.1371/journal.pone.0049492
    16. GESHAM MAGOMBEDZE, WINSTON GARIRA, EDDIE MWENJE, Modeling the TB/HIV-1 Co-Infection and the Effects of Its Treatment, 2010, 17, 0889-8480, 12, 10.1080/08898480903467241
    17. Edith Mariela Burbano-Rosero, Lourdes Esteva, Eduardo Ibargüen-Mondragón, Mathematical model for the growth of Mycobacterium tuberculosis in the granuloma, 2017, 15, 1551-0018, 407, 10.3934/mbe.2018018
    18. Winston Garira, Dephney Mathebula, Rendani Netshikweta, A mathematical modelling framework for linked within-host and between-host dynamics for infections with free-living pathogens in the environment, 2014, 256, 00255564, 58, 10.1016/j.mbs.2014.08.004
    19. Daniel Okuonghae, Andrei Korobeinikov, 2013, Chapter 3, 978-1-4614-9223-8, 59, 10.1007/978-1-4614-9224-5_3
    20. Wenjing Zhang, Leif Ellingson, Federico Frascoli, Jane Heffernan, An investigation of tuberculosis progression revealing the role of macrophages apoptosis via sensitivity and bifurcation analysis, 2021, 83, 0303-6812, 10.1007/s00285-021-01655-6
    21. Kathryn M. Styles, Aidan T. Brown, Antonia P. Sagona, A Review of Using Mathematical Modeling to Improve Our Understanding of Bacteriophage, Bacteria, and Eukaryotic Interactions, 2021, 12, 1664-302X, 10.3389/fmicb.2021.724767
    22. Eliezer Flores-Garza, Mario A Zetter, Rogelio Hernández-Pando, Elisa Domínguez-Hüttinger, Mathematical Model of the Immunopathological Progression of Tuberculosis, 2022, 2, 2674-0702, 10.3389/fsysb.2022.912974
    23. Hui Cao, Jianquan Li, Pei Yu, Study of immune response in a latent tuberculosis infection model, 2025, 140, 10075704, 108404, 10.1016/j.cnsns.2024.108404
    24. Tanni Rani Nandi, Amit Kumar Saha, Sudharonjon Roy, Analysis of a fractional order epidemiological model for tuberculosis transmission with vaccination and reinfection, 2024, 14, 2045-2322, 10.1038/s41598-024-73392-x
    25. Mario Fuest, Johannes Lankeit, Masaaki Mizukami, Global solvability of a model for tuberculosis granuloma formation, 2025, 85, 14681218, 104369, 10.1016/j.nonrwa.2025.104369
    26. Mlyashimbi Helikumi, Salamida Daudi, Eva Lusekelo, Steady Mushayabasa, Optimizing combination therapy against drug resistance Mycobacterium tuberculosis: a modelling study, 2025, 51, 0092-0606, 10.1007/s10867-025-09685-7
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2958) PDF downloads(594) Cited by(26)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog