Research article Special Issues

Results on Coincidence and common fixed point theorems for $ L_\mathcal{R} $ -contraction

  • Published: 27 January 2026
  • MSC : 47H10, 54H25

  • In this paper, we establish coincidence and common fixed point theorems for a pair of mappings $(T, S)$ that utilize the binary relation in a metric space employing the concept of a locally finitely $T$ -transitive relation together with an $ L_\mathcal{R} $ contraction. We also provide appropriate added suitable examples to establish the genuineness of our newly established results over the corresponding earlier known results.

    Citation: Shahbaz Ali, Maneesha, Asik Hossain, Qamrul Haque Khan, Suhel Ahmad Khan. Results on Coincidence and common fixed point theorems for $ L_\mathcal{R} $ -contraction[J]. AIMS Mathematics, 2026, 11(1): 2578-2594. doi: 10.3934/math.2026104

    Related Papers:

  • In this paper, we establish coincidence and common fixed point theorems for a pair of mappings $(T, S)$ that utilize the binary relation in a metric space employing the concept of a locally finitely $T$ -transitive relation together with an $ L_\mathcal{R} $ contraction. We also provide appropriate added suitable examples to establish the genuineness of our newly established results over the corresponding earlier known results.



    加载中


    [1] S. Banach, Sure operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math., 3 (1922), 133–181.
    [2] D. W. Boyd, J. S. Wong, On nonlinear contractions, P. Am. Math. Soc., 20 (1969), 458–464. https://doi.org/10.2307/2035677
    [3] R. Machuca, A coincidence theorem, Amer. Math. Mon., 74 (1967), 569. https://doi.org/10.2307/2314896
    [4] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226 (1977), 257–290. https://doi.org/10.1090/S0002-9947-1977-0433430-4 doi: 10.1090/S0002-9947-1977-0433430-4
    [5] F. E. Browder, Remarks on fixed point theorems of contractive type, Nonlinear Anal.-Theor., 3 (1979), 657–661. https://doi.org/10.1016/0362-546X(79)90094-4 doi: 10.1016/0362-546X(79)90094-4
    [6] A. Alam, M. Imdad, Relation-theoretic contraction principle, J. Fix. Point Theory A., 17 (2015), 693–702. https://doi.org/10.1007/s11784-015-0247-y doi: 10.1007/s11784-015-0247-y
    [7] M. Abbas, H. Iqbal, A. Petrusel, Fixed points for multivalued Suzuki type ($\theta, R $)-contraction mapping with applications, J. Funct. Spaces, 2019 (2019), 9565804. https://doi.org/10.1155/2019/9565804 doi: 10.1155/2019/9565804
    [8] H. K. Nashine, R. Jain, V. Parvaneh, A relational-theoretic approach to get solution of nonlinear matrix equations, J. Inequal. Appl., 79 (2022), 1–19.
    [9] K. Sawangsup, W. Sintunavarat, A. F. R. L. de-Hierro, Fixed point theorems for $F_R$ -contractions with applications to solution of nonlinear matrix equations, J. Fixed Point Theory Appl., 19 (2017), 1711–1725. https://doi.org/10.1007/s11784-016-0306-z doi: 10.1007/s11784-016-0306-z
    [10] H. H. Al-Sulami, J. Ahmad, N. Hussain, A. Latif, Relation-theoretic ($\theta, R $)-contraction results with applications to nonlinear matrix equations, Symmetry, 10 (2018), 767. https://doi.org/10.3390/sym10120767 doi: 10.3390/sym10120767
    [11] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. App., 2014 (2014), 38. https://doi.org/10.1186/1029-242X-2014-38 doi: 10.1186/1029-242X-2014-38
    [12] J. Ahmad, A. E. Al-Mazrooei, Y. J. Cho, Y. Yang, Fixed point results for generalized $\Theta$-contractions, J. Nonlinear Sci. Appl., 10 (2017), 2350–2358. http://doi.org/10.22436/jnsa.010.05.07 doi: 10.22436/jnsa.010.05.07
    [13] F. Khojasteh, S. Shukla, Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1189–1194. http://doi.org/10.2298/FIL1506189K doi: 10.2298/FIL1506189K
    [14] K. Sawangsup, W. Sintunavarat, On modified $\mathcal {Z}$-Contractions and an iterative scheme for solving nonlinear matrix equations, J. Fixed Point Theory Appl., 20 (2018), 80. https://doi.org/10.1007/s11784-018-0563-0 doi: 10.1007/s11784-018-0563-0
    [15] E. Karapinar, Fixed points results via simulation functions, Filomat, 30 (2016), 2343–2350. https://doi.org/10.2298/FIL1608343K doi: 10.2298/FIL1608343K
    [16] S. H. Cho, Fixed point theorems for $L$-contractions in generalized metric spaces, Abstr. Appl. Anal., 2018 (2018), 1327691. https://doi.org/10.1155/2018/1327691 doi: 10.1155/2018/1327691
    [17] K. Goebel, A coincidence theorem, Bull. Acad. Pol. Sci. S'er. Sci. Math. Astron. Phys., 16 (1968), 733–735.
    [18] G. Jungck, Commuting maps and fixed points, Amer. Math. Mon., 83 (1976), 261–263. https://doi.org/10.1080/00029890.1976.11994093 doi: 10.1080/00029890.1976.11994093
    [19] R. P. Agarwal, R. K. Bisht, N. Shahzad, A Comparison of various noncommuting conditions in metric fixed point theory and their applications, Fixed Point Theory A., 2014 (2014), 38. https://doi.org/10.1186/1687-1812-2014-38 doi: 10.1186/1687-1812-2014-38
    [20] A. Alam, A. R. Khan, M. Imdad, Some coincidence theorems for generalized nonlinear contractions in ordered metric spaces with applications, Fixed Point Theory A., 2014 (2014), 216. https://doi.org/10.1186/1687-1812-2014-216 doi: 10.1186/1687-1812-2014-216
    [21] M. Hasanuzzaman, M. Imdad, H. N. Saleh, On modified L-Contraction via binary relations with an application, Fixed Point Theory, 23 (2022), 267–278. https://doi.org/10.24193/fpt-ro.2022.1.17 doi: 10.24193/fpt-ro.2022.1.17
    [22] S. Lipschutz, Schaum's outlines of theory and problems of set theory ans related Topics, McGraw-hill, New york, 1964.
    [23] B. Kolman, R. C. Busby, S. Ross, Discrete Mathematical Structures, 3Eds., PHI Pvt. ltd., New Delhi, 2000.
    [24] A. Alam, M. Imdad, Relation-theoretic metrical coincidence theorems, Filomat, 31 (2017), 4421–4439. https://doi.org/10.2298/FIL1714421A doi: 10.2298/FIL1714421A
    [25] A. Alam, M. Imdad, M. Arif, Observations on relation-theoretic coincidence theorems under Boyd–Wong type nonlinear contractions, Fixed Point Theory A., 2019 (2019), 6. https://doi.org/10.1186/s13663-019-0656-5 doi: 10.1186/s13663-019-0656-5
    [26] A. Alam, M. Imdad, Nonlinear contractions in metric spaces under locally T-transitive binary relations, Fixed Point Theory, 19 (2018), 13–24. https://doi.org/10.24193/fpt-ro.2018.1.02 doi: 10.24193/fpt-ro.2018.1.02
    [27] M. Berzig, E. Karapinar, Fixed Point results for ($\alpha \psi$, $\beta \phi$)-contractive mappings for a generalized altering distance, Fixed Point Theory A., 2013 (2013), 205. https://doi.org/10.1186/1687-1812-2013-205 doi: 10.1186/1687-1812-2013-205
    [28] A. Alam, M. Arif, M. Imdad, Metrical fixed point theorems via locally finitely T-transitive binary relations under certain control functions, Miskolc Math. Notes, 20 (2019), 59–73. https://doi.org/10.18514/MMN.2019.2468 doi: 10.18514/MMN.2019.2468
    [29] M. Berzig, E. Karapinar, A. Roldán-López-de-Hierro, Discussion on generalized-($\alpha \psi$ $\beta \phi$)-contractive mappings via generalized altering distance function and related fixed point theorems, Abstr. Appl. Anal., 2014 (2014), 259768. http://doi.org/10.1155/2014/259768 doi: 10.1155/2014/259768
    [30] M. Turinici, Contractive maps in locally transitive relational metric spaces, Sci. World J., 2014 (2014), 169358. http://doi.org/10.1155/2014/169358 doi: 10.1155/2014/169358
    [31] R. H. Haghi, S. Rezapour, N. Shahzad, Some fixed point generalizations are not real generalizations, Nonlinear Anal.-Theor., 74 (2011), 1799–1803. https://doi.org/10.1016/j.na.2010.10.052 doi: 10.1016/j.na.2010.10.052
    [32] M. Arif, M. Imdad, Coincidence point results on a metric space endowed with a locallt T-transitive binary relation employing comparison functions, Miskolc Math. Notes, 2024, 25 (2024), 63–78. http://doi.org/10.18514/MMN.2024.4114
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(190) PDF downloads(34) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog