In this paper, we establish coincidence and common fixed point theorems for a pair of mappings $(T, S)$ that utilize the binary relation in a metric space employing the concept of a locally finitely $T$ -transitive relation together with an $ L_\mathcal{R} $ contraction. We also provide appropriate added suitable examples to establish the genuineness of our newly established results over the corresponding earlier known results.
Citation: Shahbaz Ali, Maneesha, Asik Hossain, Qamrul Haque Khan, Suhel Ahmad Khan. Results on Coincidence and common fixed point theorems for $ L_\mathcal{R} $ -contraction[J]. AIMS Mathematics, 2026, 11(1): 2578-2594. doi: 10.3934/math.2026104
In this paper, we establish coincidence and common fixed point theorems for a pair of mappings $(T, S)$ that utilize the binary relation in a metric space employing the concept of a locally finitely $T$ -transitive relation together with an $ L_\mathcal{R} $ contraction. We also provide appropriate added suitable examples to establish the genuineness of our newly established results over the corresponding earlier known results.
| [1] | S. Banach, Sure operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math., 3 (1922), 133–181. |
| [2] | D. W. Boyd, J. S. Wong, On nonlinear contractions, P. Am. Math. Soc., 20 (1969), 458–464. https://doi.org/10.2307/2035677 |
| [3] | R. Machuca, A coincidence theorem, Amer. Math. Mon., 74 (1967), 569. https://doi.org/10.2307/2314896 |
| [4] |
B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226 (1977), 257–290. https://doi.org/10.1090/S0002-9947-1977-0433430-4 doi: 10.1090/S0002-9947-1977-0433430-4
|
| [5] |
F. E. Browder, Remarks on fixed point theorems of contractive type, Nonlinear Anal.-Theor., 3 (1979), 657–661. https://doi.org/10.1016/0362-546X(79)90094-4 doi: 10.1016/0362-546X(79)90094-4
|
| [6] |
A. Alam, M. Imdad, Relation-theoretic contraction principle, J. Fix. Point Theory A., 17 (2015), 693–702. https://doi.org/10.1007/s11784-015-0247-y doi: 10.1007/s11784-015-0247-y
|
| [7] |
M. Abbas, H. Iqbal, A. Petrusel, Fixed points for multivalued Suzuki type ($\theta, R $)-contraction mapping with applications, J. Funct. Spaces, 2019 (2019), 9565804. https://doi.org/10.1155/2019/9565804 doi: 10.1155/2019/9565804
|
| [8] | H. K. Nashine, R. Jain, V. Parvaneh, A relational-theoretic approach to get solution of nonlinear matrix equations, J. Inequal. Appl., 79 (2022), 1–19. |
| [9] |
K. Sawangsup, W. Sintunavarat, A. F. R. L. de-Hierro, Fixed point theorems for $F_R$ -contractions with applications to solution of nonlinear matrix equations, J. Fixed Point Theory Appl., 19 (2017), 1711–1725. https://doi.org/10.1007/s11784-016-0306-z doi: 10.1007/s11784-016-0306-z
|
| [10] |
H. H. Al-Sulami, J. Ahmad, N. Hussain, A. Latif, Relation-theoretic ($\theta, R $)-contraction results with applications to nonlinear matrix equations, Symmetry, 10 (2018), 767. https://doi.org/10.3390/sym10120767 doi: 10.3390/sym10120767
|
| [11] |
M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. App., 2014 (2014), 38. https://doi.org/10.1186/1029-242X-2014-38 doi: 10.1186/1029-242X-2014-38
|
| [12] |
J. Ahmad, A. E. Al-Mazrooei, Y. J. Cho, Y. Yang, Fixed point results for generalized $\Theta$-contractions, J. Nonlinear Sci. Appl., 10 (2017), 2350–2358. http://doi.org/10.22436/jnsa.010.05.07 doi: 10.22436/jnsa.010.05.07
|
| [13] |
F. Khojasteh, S. Shukla, Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1189–1194. http://doi.org/10.2298/FIL1506189K doi: 10.2298/FIL1506189K
|
| [14] |
K. Sawangsup, W. Sintunavarat, On modified $\mathcal {Z}$-Contractions and an iterative scheme for solving nonlinear matrix equations, J. Fixed Point Theory Appl., 20 (2018), 80. https://doi.org/10.1007/s11784-018-0563-0 doi: 10.1007/s11784-018-0563-0
|
| [15] |
E. Karapinar, Fixed points results via simulation functions, Filomat, 30 (2016), 2343–2350. https://doi.org/10.2298/FIL1608343K doi: 10.2298/FIL1608343K
|
| [16] |
S. H. Cho, Fixed point theorems for $L$-contractions in generalized metric spaces, Abstr. Appl. Anal., 2018 (2018), 1327691. https://doi.org/10.1155/2018/1327691 doi: 10.1155/2018/1327691
|
| [17] | K. Goebel, A coincidence theorem, Bull. Acad. Pol. Sci. S'er. Sci. Math. Astron. Phys., 16 (1968), 733–735. |
| [18] |
G. Jungck, Commuting maps and fixed points, Amer. Math. Mon., 83 (1976), 261–263. https://doi.org/10.1080/00029890.1976.11994093 doi: 10.1080/00029890.1976.11994093
|
| [19] |
R. P. Agarwal, R. K. Bisht, N. Shahzad, A Comparison of various noncommuting conditions in metric fixed point theory and their applications, Fixed Point Theory A., 2014 (2014), 38. https://doi.org/10.1186/1687-1812-2014-38 doi: 10.1186/1687-1812-2014-38
|
| [20] |
A. Alam, A. R. Khan, M. Imdad, Some coincidence theorems for generalized nonlinear contractions in ordered metric spaces with applications, Fixed Point Theory A., 2014 (2014), 216. https://doi.org/10.1186/1687-1812-2014-216 doi: 10.1186/1687-1812-2014-216
|
| [21] |
M. Hasanuzzaman, M. Imdad, H. N. Saleh, On modified L-Contraction via binary relations with an application, Fixed Point Theory, 23 (2022), 267–278. https://doi.org/10.24193/fpt-ro.2022.1.17 doi: 10.24193/fpt-ro.2022.1.17
|
| [22] | S. Lipschutz, Schaum's outlines of theory and problems of set theory ans related Topics, McGraw-hill, New york, 1964. |
| [23] | B. Kolman, R. C. Busby, S. Ross, Discrete Mathematical Structures, 3Eds., PHI Pvt. ltd., New Delhi, 2000. |
| [24] |
A. Alam, M. Imdad, Relation-theoretic metrical coincidence theorems, Filomat, 31 (2017), 4421–4439. https://doi.org/10.2298/FIL1714421A doi: 10.2298/FIL1714421A
|
| [25] |
A. Alam, M. Imdad, M. Arif, Observations on relation-theoretic coincidence theorems under Boyd–Wong type nonlinear contractions, Fixed Point Theory A., 2019 (2019), 6. https://doi.org/10.1186/s13663-019-0656-5 doi: 10.1186/s13663-019-0656-5
|
| [26] |
A. Alam, M. Imdad, Nonlinear contractions in metric spaces under locally T-transitive binary relations, Fixed Point Theory, 19 (2018), 13–24. https://doi.org/10.24193/fpt-ro.2018.1.02 doi: 10.24193/fpt-ro.2018.1.02
|
| [27] |
M. Berzig, E. Karapinar, Fixed Point results for ($\alpha \psi$, $\beta \phi$)-contractive mappings for a generalized altering distance, Fixed Point Theory A., 2013 (2013), 205. https://doi.org/10.1186/1687-1812-2013-205 doi: 10.1186/1687-1812-2013-205
|
| [28] |
A. Alam, M. Arif, M. Imdad, Metrical fixed point theorems via locally finitely T-transitive binary relations under certain control functions, Miskolc Math. Notes, 20 (2019), 59–73. https://doi.org/10.18514/MMN.2019.2468 doi: 10.18514/MMN.2019.2468
|
| [29] |
M. Berzig, E. Karapinar, A. Roldán-López-de-Hierro, Discussion on generalized-($\alpha \psi$ $\beta \phi$)-contractive mappings via generalized altering distance function and related fixed point theorems, Abstr. Appl. Anal., 2014 (2014), 259768. http://doi.org/10.1155/2014/259768 doi: 10.1155/2014/259768
|
| [30] |
M. Turinici, Contractive maps in locally transitive relational metric spaces, Sci. World J., 2014 (2014), 169358. http://doi.org/10.1155/2014/169358 doi: 10.1155/2014/169358
|
| [31] |
R. H. Haghi, S. Rezapour, N. Shahzad, Some fixed point generalizations are not real generalizations, Nonlinear Anal.-Theor., 74 (2011), 1799–1803. https://doi.org/10.1016/j.na.2010.10.052 doi: 10.1016/j.na.2010.10.052
|
| [32] | M. Arif, M. Imdad, Coincidence point results on a metric space endowed with a locallt T-transitive binary relation employing comparison functions, Miskolc Math. Notes, 2024, 25 (2024), 63–78. http://doi.org/10.18514/MMN.2024.4114 |