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1. Introduction

The classical Banach contraction concept, proclaimed by Banach [1] in 1922, sparked the
development of metric fixed point theory. The Banach contraction principle (BCP) is a cornerstone of
nonlinear functional analysis, providing a fundamental tool for establishing the existence and
uniqueness of fixed points in metric spaces. Subsequently, several authors have generalized this result
in various ways, (cf. [2,3]), among others.

During the 1970s, there was a notable expansion in the literature aimed at broadening the class of
contraction mappings. In 1977, Rhoades conducted a comprehensive comparison of different types
of contractive mappings, analyzing and contrasting distinct conditions associated with such mappings
[4]. This extensive analysis provided valuable insight into on the diversity of contraction conditions
and their implications. In 1979, Browder [5] subsumed a major part of the work of Rhoades [4]
under an intuitive and simple mode of argument. In 2015, Alam and Imdad [6] obtained a relation-
theoretic analogue of the BCP under an arbitrary binary relation, thereby unifying several well-known
order-theoretic fixed-point results. Historically, BCP is a fundamental theorem in fixed point theory,
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asserting that a contraction mapping on a complete metric space possesses a unique fixed point. The
novelty of Alam and Imdad’s work lies in their use of an amorphous binary relation instead of the
more commonly employed partial order. Subsequently, several researchers proposed various relation-
theoretic results [7, 8]. These results involve weak contraction conditions that are applicable only to
pairs of comparable elements [9, 10].

In particular, Jheli and Samet [11] introduced the concept of a ®-contraction and extended the BCP
to a generalized metric space. Thereafter, Ahmad et al. [12] modified the conditions imposed on the
auxiliary function ® and obtained a natural analogue of this result in a metric space. On the other hand,
by employing a family of control functions (known as simulations), Khojasteh et al. [13] developed the
concept of a Z-contraction, which unified various linear and nonlinear contractions discussed in the
existing literature. Subsequently, several researchers ( [14, 15] and references therein) extended and
generalized the results presented in [13]. Motivated by these developments, Cho [16] proposed a new
type of contraction, termed an L-contraction, and established several fixed point results in generalized
metric spaces for this class of contractions.

The notions of coincidence and common fixed points build upon the concept of fixed points by
considering multiple mappings within a given space. A fixed point of a self-mapping 7 in a nonempty
set Q 1s a point { € Q such that 7({) = {. This can be seen as 7 ({) = I({), where I denotes the
identity mapping on Q. This observation naturally raises the question of whether the identity mapping
I can be replaced by another self-mapping S on Q. Accordingly, given two self-mapping 7~ and S on
a non-empty set {2, we are interested in finding points £, {’ € Q such that

T =81 =1¢"

A point ¢ € Q satisfying 7({) = S(¢) is called a coincidence point. If £ is also a fixed point of both
7 and S, it is referred to as a common fixed point. The study of coincidence theorems was initiated by
Goebel [17] and Jungck [18], who extended the Banach Contraction Principle (BCP) to the framework
of two mappings. Since then, substantial research has been conducted on the theory of common and
coincidence fixed points [19, 20].

In this manuscript, we establish the coincidence and common fixed point theorems for a pair of
mappings (7, S) utilizing a binary relation in the setting of a metric space with a locally finite 7 -
transitive relation involving the Lg -contraction. Furthermore, an illustrative example is provided to
demonstrate the validity and applicability of the obtained results.

2. Preliminaries

Throughout this manuscript Ny, N, and R, denote the set of whole numbers, natural numbers, and
real numbers respectively.

Following [10], let ® be the set of all the functions 8 : (0,c0) — (1, o) satisfying the following
conditions:

(6y) 6 is nondecreasing;
(6,) For each sequence {¢,,} C (0, 00),

lim 6(Z,) = 1 & lim ¢, = 0; 2.1)

n—oo
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(03) dke(0,1)andy € (0,0) :
2.2)

After that, Ahmad et al. [12] modified the condition and replaced it (63) with the following:

(64) @ 1is continuous .
In the recent past, Cho [16] initiated the idea of L-simulation function if the following conditions

are satisfied:

&) &, =1;
= lim,e Vv,

(&) &, <3 Viv> 1,
{v,} are sequences in (1,00) such that lim,,.¢, = > 1, then

(&) if {du),
lim,, o sup £(&,, v) < 1.
The final of L-simulation functions will be denoted by L. A few examples of L-simulation functions

are as follows:
Example 2.1. [16] We define the mapping &; : [1,00) X [1,00) — R fori = 1,2,3, as follows:

« &) =%V Ly e[l o) wherek € (0, 1)
*— YV [,v € [1,00), where ¢ : [1,00) — [1,00) is a lower semi-continuous and non-

i §2(§’ V) = 6(v)
decreasing functions such that ¢~ ({1}) = {1}.

I if0n 0 =1
HUY =% ifv<(

Y elsewhere,

V{,ve[l,o0)and k € (0,1).

Then &; are L-simulation functions fori = 1,2, 3.
Definition 2.1. [21] Let (Q, d) be a metric space and T,S : Q — Q. Then T is called L-contraction

with respect to & if there exist ¢ € L and 6 € ® such thatV {,v € Q,
EO(T L, Tv)), 0(d(SE, Sv))) = 1.

If we take &(Z,v) = % V {,v € [0,00) with k € (0, 1), then L-contraction takes the form of 6-

contraction, which was extensively used in getting many results in the literature.

Definition 2.2. [6,22]. Let R a binary relation on Q. Then, for {,v € Q,
(i) The inverse relation of R™' = {({,v) € Q* : (v,) € R} and symmetric closure R® :== R U R~
(ii) {,v € Q, we say that { & v are R-comparative if either ({,v) € Ror (v,{) € R.

We denote it by [{,v] € R.

(iii) [{,v]e R &= ,{) e R".
(iv) A sequence {,} C Q is called R- preserving if ({,, {nv1) € RY n € Ny.
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Definition 2.3. [23] A relation R defined on a nonempty set Q, G C Q, such that the restriction of R
to G is defined by R|; and is defined to be the set R N G2, i.e.,

RlG =RN Gz.

In fact, R|¢ is a relation on G induced by R.

Definition 2.4. [24] R is termed as (T, S) - closed if it satisfies ¥V ,v € Q,
(S, Sv)yeR = (T¢,Tv)eR.

Proposition 2.1. [24] If R remains (T, S)-closed, then R® also remains (T, S)-closed.
Definition 2.5. [25] R is called (T, S)-compatible if it satisfies ¥ {,v € Q

(S¢,Sv)yeR and S()=S(v) = T =T ).

Definition 2.6. [24] (Q,d) is called R-complete metric space if every R-preserving Cauchy sequence
in Q remains convergent.

Definition 2.7. [24] T is termed as R-continuous at { € Q if it satisfies

T(L) > T,

d
for any R-preserving sequence {(,} C Q with {, — {. Naturally, if a mapping remains R-continuous at
all points of Q, it is known as R-continuous.

Definition 2.8. [24] T is termed as (S, T")-continuous at { € Q if it satisfies

TS T Q).

d
for any sequence {,} C Q, whereas {S¢,} remains R-preserving satisfying S ({,) = S({). Naturally, if
a mapping remains (S, R)-continuous at all points of Q, it is known as (S, R)- continuous.

Definition 2.9. [24] T & S are known as R-compatible if they satisfy
lim d(ST &, T8¢x) = 0,
for any sequence {(,} C Q, whereas {T {,} and {S¢,} remain R-preserving and
lim 7°(5,) = lim S(Z,).
Definition 2.10. [24] T and S are known as weakly compatible if
T =S = T(S) =S(TY, Y.
Compatibility = Weak compatibility but reverse implication not possible.
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2582

Definition 2.11. [24] R is called (S, R)-self-closed if every R-preserving sequence {(,} C Q satisfying

&n 4 { admits a subsequence {(,, } verifying
[S&y, ST € R.

Definition 2.12. [23] Given {,v € Q a finite sequence {0y, 01,...,0;} C Q is referred to as a path of
length @ € N in R from { to v if the following ones hold:

(i) 0o = a and o, = B,
(ii) (09,09+1) ER 0V <w-1.

Definition 2.13. [26] A subset G C Q is called R-connected if, between any pair of elements of G, 3
a path in R from { to v.

Definition 2.14. [27] Given Q € N, Q < 2, R is called Q-transitive if, for any {y, 1, ..., L. € Q,
(L9-1.49) € R, foreach 0 <P <Q) = ({o,4) €R.

Definition 2.15. [28] R is known as locally finitely T -transitive if, countable subset G € 7 (Q2), 3
Q = Q(G) > 2, such that R|g remains Q-transitive.

Lemma 2.1. [29] Let (€, d) be a metric space and {(,,} C Q be a sequence. If {(,} remains not Cauchy,
then 1 € > 0 and a pair of subsequences {{, .} and {{,, } of {{,} verifying

(i) s <mg <n., VgeN,

(ii) d(&m.»8n) 2 €
(iii) d({ne>8n) <€ Y pe€{mg+ 1,me+2,...,n,—2,n. — 1}

Moreover, if {{,} satisfies lim,,_,., d({,, (1) = 0, then

lim d({m;a §n§+p) =€, v pE NO'
g0

Lemma 2.2. [30] Let Q # 0 and {q,} C Q be an R-preserving sequence. If R remains Q-transitive on
G ={q, : n € Ny} for some Q > 2, then

(Gn> Gnr1+n@-1y) € No.

Lemma 2.3. [31] If T is a self-mapping on a non-empty set Q, then 3 a subset H of Q such that
TH)=T(Q)and T : H — Q is injective.

Lemma 2.4. [25] Let T and S be two self-mappings on a non-empty set Q such that T and S have a
unique point of coincidence. If

(i) T and S remain weakly compatible, then the point of coincidence is also a unique common fixed
point.
(ii) Either T or S be injective, then T~ and S have a unique coincidence point.
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Definition 2.16. Let R be a binary relation on a metric space (,d) and T and S self-mappings on

Q. We say that T and S are Lg with respect to & € L, if there exist 6 € ® and & € L, such that the
following conditions hold:

1 <&Od(T L, TV),0d(SL,Sv))), VL, veQ with {,veR
where ({,v) e R :={({,v) e R:T L+ Tv, S # Sv}.

Proposition 2.2. Suppose that (Q,d) is a metric space endowed with a relation R, and T and S are
self-mappings on Q. For a given 6 € ® and ¢ € L, then the following conditions are equivalent:

(i) ¥ ¢, v e Qwith (,v) € R = &OW@T L, TV)),0d(SL,SM) > 1,
(ii) ¥ £, v € Qwith [{,v] € R* = &@OWAT L, Tv)), 0d(SL, Sv))) > 1.

Proof. Obviously (ii) = (i). We claim that (i) = (ii), choose (£, v € Q) such that [, v] € R*, then
(if) immediately follows from (i). otherwise, if (v, {) € R*, then by (i) and owing to the symmetry of d
(metric), we conclude the claim. O

Proposition 2.3. [32] Let (Q,d) be a metric space endowed with a relation R, and T and S be a set
of self-mappings on Q. Then

(i) Ris T -transitive < Rl (x) is transitive,
(ii) R is locally T -transitive <= Rlsx, is locally transitive,
(iii) R is transitive = R is locally transitive = R is locally T - transitive,
(iv) Ris transitive = R is T - transitive = R is locally T - transitive,
(iv) if T () € S(Q), then S-transitivity of R = R is T -transitive and locally S-transitivity of R
= R s locally T - transitive but not conversely.

3. Results

Theorem 3.1. Let (Q,d) be a metric space, T and S be the self-mappings on Q, while R remains a
relation on Q. In addition,

(i) T(Q) C S(),
(ii) R remains (T, S)- closed and locally finitely T -transitive,
(iii) A ¢y € Q verifying (S, T () € R,
(iv) 30 € ® and & € L such that, for all {,v € Qwith d(T{,Tv) > 0,

1 <&Od(T¢,Tv),0(d(SL, Sv)))

(v) (vl) (Q,d) remains R-complete,
(v2) T and S remains R-compatible,
(v3) S remains R-continuous,
(v4) T remains R-continuous or R remains (T ,S)-compatible and (S, d)-self-closed, or,
alternatively,
(v’ Xv’1) A R-complete subspace G of Q verifying T () C G C S(Q),
(v’2) T remains (S, R)-continuous or T and S remain continuous or R and R|g remain (7, S)-
compatible and d-self-closed, respectively.
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Then, T and S have a coincidence point.

Proof. By condition (iii), if S({y) = 7 ({y), then ¢, remains a coincidence point of 7~ and S. Otherwise,
if S(¢y) # T ¢y, then owing to 7 () C S(Q), we choose ; € Q satisfying S({;) = 7 ({p). Again, using
T (Q) C S(Q), we can choose {, € Q satisfying S({;) = 7 (). Thus, we construct a sequence {(,,} C Q
verifying

S(&n+1) = T(&n), ¥n € Ny. (3.1)

Now, by induction, we need to demonstrate that {S¢,} remains to R-preserving sequence, i.e.,
(S&1,S8i1) €R, VYV neNy. (3.2)
By assumption (ii7) and (3.1) (for n = 0), one obtains
(840, S¢1) € R.

Thus, (3.2) is true for n = 0. Assume that (3.2) holds forn = ¢ > 0, i.e.,

(845, Ssr1) € R.
By (77, S) - closedness of R, one has

(T4, T der1) €R,
using (3.1), gives rise to

(S§g+1, S§g+2) eR.

Hence, by (3.2) holds V n € Nj,.
From (3.1) and (3.2), {7 x,} remains also R-preserving so that

(T8, T &ns1) €R, VYn € Ny. (3.3)

If there exists ny € Ny satisfying d(S¢,,, S{y,+1) = 0, then by (3.1), we conclude that ,, remains a
coincidence point of 7 and S. Otherwise, we get

d(an, S{n+l) > 0’ d(Tgn, T§n+l) > 0 v ne NO-
By (3.1), (3.2) and hypothesis (iv), we obtain

1< &Od(T Ln-1, T 4n)), 0(d(SEp-1, SE))

= 0(d(SSu, Spi1)), (d(SEu-1,SEy)
0(d(Sgu-1, SEn)

S Wd(SLr SLn)
so that

0(d(S¢,, SLni1)) < 0(d(SL,-1,SE,) (3.4)
then due to (), we deduce d(S¢,,Su1) < d(S{,-1,SE,). Therefore, {d(SE,, SEuii)), is a

monotonic decreasing sequence of non-negative real numbers, and hence there exists a > 0, such that

AIMS Mathematics Volume 11, Issue 1, 2578-2594.
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lim d(S¢,, S&ur1) = a.
Now, we show that @ = 0 Suppose that a > 0 then by using (6,), we get

lim 6(d(S¢y, SEue1)) = lim 0(d(SEy1, Si2)) = 0(a).

Now, if we set p, = 0 d(T &, T {uv1)) and g, = 6(d(T &pi1, T Eni)), then g, < p,,, for all n € N by (3.3)
and lim,,_,, p, = lim,, g, > 1. Then by (£3) we obtain

1 < }}LI?O sup EO(T &u-1, T £n)), 0(d(SEu-1, SEn))
= lgg sup (d(S&y, SEui1)), O(d(SE-1, SEy)
< 1

which is a contradiction to the definition of Lg-contraction and hence a = 0, i.e.,

lim d(84,-1,84,) = 0, (3.5)
by (6,), we also have

lim 6(d(S¢,, S¢ui)) = 1.
Now, we show that {S¢,} is a Cauchy sequence. Consider {S¢,} is not Cauchy. Using Lemma 2.1, 3
€ > 0 and {SZ,, },{S¢, } C {Sg,} with ng > mg > ¢ > g, such that
d(Sgn.,S¢,) 2 € and d(S, 1,5, < €.
Thus, we can have
€ < d(Sn,, S&n,) < d(Sings Sline-1) + d(Sine-1,S8n;) < d(Sngs SEm-1) + €,

taking ¢ — oo and using (3.3), we get

lim d(S¢,,, S¢,,) = € or 1im 6(d(S{,,., SE,,)) = 6(e), (3.6)
¢—00 g—00
and hence
lim d(S§m§+l’ S§n§+1) =€ or lim H(d(sgmg+la S§n§+l)) = 0(6) (37)
g g0

As the sequence {S¢,} is R-preserving and R is S-transitive, therefore (Sg,, ., S,.) € R, on using (3.4),
(3.5) and property (£3) of a simulation function with £, = d(7 {41, T {ne+1) and v, = d(T ., T E5,)
we obtain

b= Lim sup &(0(d(T L, T 0., Nd(SEn,> SEn)))
= Lim sup &@(d(Sng1- Slu+1)), Hd(SLng» SZn))) < 1,
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which is a contradiction, so that {S¢,} remains Cauchy.
Now, we take assumption (v) and (v'). Let (v) hold. As {S¢,} remains an R-preserving Cauchy in Q
and Q remains R-complete, 3 p € Q verifying

lim S(,) = p. (3.8)
By (3.1) and (3.8), we obtain
lim 7(Z,) = p. 3.9)

By (3.2), (3.6) and condition (v2), one gets

lim $(Sg,) = S(lim SZ,) = S(p). (3.10)
By (3.3), (3.7) and assumption (v2), we obtain

lim S(7¢,) = S(lim 7¢,) = S(p). 3.11)

Now, both {77¢,} and {S¢,} remains R-preserving (due to (3.2) and (3.3)) and lim 7 ({,) = lim S(¢,) =
p (due to (3.8) and (3.9). By condition (v1), one obtains

lim d(ST ¢, TSE,) = 0. (3.12)

Under assumptions (v4), first consider that 7 remains R-continuous. Utilizing (3.2), (3.8) and R-
continuity of 7, we obtains

lim 7(S¢,) = 7 (lim SZ,) = 7 (p). (3.13)
Using (3.11)—(3.13) and continuity of d, we get
d(Sp, T p)

d(lim S7°¢,, lim 7°S¢,)
lim d(ST ,, T S&,)
0

so that

S(p) =T (p).

Now, we consider that R remains (7, S)-compatible as well as (S, d) - self-closed. Since remains R-

preserving (due to (3.2)) and S(¢,) 4 p (due to (3.8)), therefore, using (S, d)-self-closedness of R. We
find a subsequence {S¢, } of {S{,} satisfying

[SSZ,..S,1 € R, YgeN. (3.14)

As S(Z,) 4 p» equation (3.8) — (3.12) also holds for {{,_} instead of {£,}. One claims that
d(T S, T p) < d(SSE,.,Sp), Y¢eN. (3.15)

Let {N°, N*} denote a partition of N satisfy the following cases:

AIMS Mathematics Volume 11, Issue 1, 2578-2594.
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(a) d(88¢,,Sp) =0, Vs eN,

(b) d(SSZ,.,Sp) >0, V¢ eN*.

In case (a), making use of (3.14) and (7, S)-compatibility of R, we get d(7SZ,..T p) =0,¥ ¢ € N° so
that (3.15) holds ¥ ¢ € N°. In case (b), by (3.14), condition (iv) and Proposition 2.2, we obtain

1 < 0TS, T p)),(d(SSE,,, Sp))
6(d(SS,,, Sp))
0(d(TS,..Sp)
so that
0(d(T Sy, T p)) < 0(d(SSE,,, Sp), (3.16)
then due to (6,), we deduce d(7 S¢,, T p) < d(SS{,.,Sp) ¥ ¢ € N* so that (3.15) holds V ¢ € N*,
Thus, (3.15) holds V ¢ € N. By the triangular inequality, (3.10), (3.11), (3.12), and (3.15), we get
dSp,Tp) < d(Sp,ST )+ d(ST &, T SE,) +d(T S, T p)
< d(Sp,ST &) +d(ST &, T Sx,,) + d(SSE,., Sp)

— 0 as ¢ >

so that
S(p) =T (p).

Therefore, p remains a coincidence point of 7 and S. Alternatively, if assumption (V') holds,
considering G C S(QQ), A € Q s.t. p = S(£). Consequently, (3.8) and (3.9) respectively become

lim S(Z,) = S(J). (3.17)
lim 7(4,) = 7 (). (3.18)

Now, we have to demonstrate that { remains a coincidence point of 7~ and S under condition (v'2).
Initially, consider that 7~ remains (S, R)- continuous. Utilizing (3.17), we get

lim 7°(Z,) = T(). (3.19)

On using (3.18) and (3.19), we obtain
S =T (D).

Secondly, consider that 7~ and S remain continuous, and from Lemma 2.2, there exists a subset H C Q
verifying S(H) = S(Q) and S : H — Q remains injective.
Define a function [ : S(H) — S(Q) by

I(S®) » T(®), VY S(G)e S(H). (3.20)

As S : H — Qremains injective and 7 (Q) C S(Q), ‘I’ remains well defined. Continuities of 7 and S
guarantee that ‘” remains continuous. By S(Q) = S(H), condition (i) reduces to 7 () C S(H). Thus,
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we construct {(,}*, C H satisfying (3.1) and enabling us to choose { € H. By (3.17),(3.18), (3.20),
and continuity of ‘’, we have

T() = S(80) = (lim §,) = lim (S,) = lim T(Z,) = SQ).

Hence, ¢ remains a coincidence point of 7 and S. Finally, consider that R and R|s remain (7, S
)-compatible and d-self-closed, respectively. Since {S;,} remains R|- preserving (as per (3.2)) and

S() 4 S(¢) € G (as per (3.17)), by d-self-closeness of R|s, there exists a subsequence {S{n;} of {S;}
satisfying

[S{ng, S{l1eRlg ¥V ¢eNy. (3.21)
One claims that
d(S{,,S.,T{) < d(S_(nC,Sg) Y ¢ N. (3.22)

Let {N°, N*} denote a partition of N satisfy the following cases:
(a) d(8¢,,S¢) =0, Vg eN,

(b) d(S¢,.,S¢) >0, V¢eN".

In case (a) holds, then by (3.21) and (7", S)-compatibility of R, we obtain d(7S¢, ,7¢{) =0,V ¢ € N°
which in the presence of (3.1) gives rise to d(S¢,,7¢) =0,V ¢ € N° and hence (22) holds V ¢ € N°.
In case (b), by (3.1), (3.21), condition (iv) and Proposition 2.2, one obtains

1 < &Od(TSE,, T ), 0(d(SSE,, SE))

0(d(SSE,, . S0))
d(T Sn,> T )

so that
Q(d(TS{nS,,T{)) < H(d(SS{ng, S?) (3.23)

then due to (0,), we deduce d(S¢, 11,7 () < d(S{,.,SE), ¥ ¢ € N* and hence (3.22) holds ¥ ¢ € N*,
Therefore, (3.22) holds ¢ € N. By (3.17), (3.22) and continuity of d, we obtain

d(SL.T¢) = d(lim S¢,01, T)
= limd(S¢,.41.70)
< gll_)Ig d(S&u., T
- 0
so that
S =T(D.

Therefore, { be a coincidence point of 7~ and S.
m]
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Theorem 3.2. In addition to Theorem (3.1), if the following assumptions hold:

(vil) 7(Q) remains ng(g)—connected,
(vi2) R remains (7, S)-compatible,

then T and S have a unique point of coincidence. Furthermore, if

(a) T and S remain weakly compatible, then the point of coincidence is also a unique common fixed
point and

(b) either T or S remains injective, then T and S have a unique coincidence point.
Proof. By Theorem 3.1, if i and £ are two points of coincidence of 7~ and S, then A u, £ € Q satisfying
=T =Su) & =7 =S). (3.24)

we prove that it = . As T(u),7(0) € T(Q) C S(Q), by hypothesis (vil), there exists a path
{Soo, So1, S0s, ..., S0z} In d|g(g) from 7 (u) to 7 (), whereas 09, 01,0, .-.,05 € Q. By (3.24), we
can set o) = u and o, = {. Therefore, we obtain

[Sgﬂ, SQﬂ+1] S d|s(g), Y 19(0 <9<w- 1) (325)

Define the constant sequence ¢ = u and o) = . Using (3.24), we have S(¢°, ) = T¢) = i and
SW%,) =Te% = VYneNy. Putgy =01, 05 = 025-, 07" = 0o-1. Since T(Q) C S(Q),
therefore similar to Theorem 3.1, we construct sequence {o!}, {Qﬁ}, cees {an‘l} in Q verifying S(erl )=
T (s3),S0,,,) =T (@), -...S7 ") =T (©7™"), ¥ n € Ny. Hence, we obtain

n+1
S(Qfﬂ) = 7’(93), VneNy & V 30 < < w). (3.26)
Now, one claim that

Our claim will be justified by induction. Using (3.25), (3.27) true for n = 0. Consider that (3.27) holds
for n = ¢ > 0 so that

[So?,S0"'1eR, VneN, & ¥ 90 <9 <w—1).
As R remains (7, S)-closed, by Proposition 2.1, we obtain

[T0!,Tol"'eR, VseNy & V 90<I<wm—-1),
by using (3.26), gives rise to

[So’,,Solfl1€R, VseNy & ¥V #(0<¥ <w—1).

Therefore, by induction, (3.27) holds ¥ n € Ny and ¥ #(0 < & < @ — 1), define n’ := d(Sp”, Sp?*™).
One claim that

limn? =0, Y 90<9<w-1). (3.28)
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Let 9 be fixed and consider two cases. First, suppose nn = d(SQnO, Sgﬂ“) = 0 for some ng € NO
By assumptlon (vi2), one obtains d(7 Qno, 19“) = 0. Consequently, from (3.26), we have nn =
d(Se), o Selt!)) = d(T o, Teon") = 0. Hence, by induction, we deduce 77, = 0,V n > ng implying
lim, e 170 = 0.

If n};’ > 0, VY n € Ny, then by (3.26), (3.27), condition (iv) and Proposition 2.2, we obtain

1

IA

EO(T 0,1 Tooi), 0(d(Sey, 1. Soi))
6(d(So!, Se?™)), 8(d(Se”, ,, S’
0(d(Se?, Sg:?”))
0(d(So?,,. S’ h)

n+1’ n+1

so that
0., < 0(n)) (3.29)

then due to (6;), we deduce r”,, < n%. Hence, lim,_,., 7 = 0. Therefore, in both cases, (3.28) is proven
VYV %0 <9 <@ - 1). Applying triangle inequality and (3.28), we obtain

d(ﬁ’Z) < 772+77,11+"-+77,?_1—>0, as n— oo
= a=/L

Hence, 7 and S have a unique point of coincidence. Finally, conclusions (a) and (b) are immediate in
the presence of Lemma 2.4.
O

Corollary 3.1. Theorem 3.1 remains valid if the locally finitely T -transitivity condition is substituted
with any one of the following assumptions:

e R is transitive,

e R is finitely transitive,

o Ris T -transitive,

e Ris locally finitely transitive.

Corollary 3.2. In addition to the hypotheses of Theorem 3.2, if anyone of the following assumptions is
satisfied,

(i) Rl is complete binary relation,
(ii) T(Q) is ng(g)- directed,

then T admits a unique fixed point.

Proof. If using (i), then for any ({,v) € 7 (Q), [{,v] € R, which yields that {Z, v} is a path of length
1 in ng(g) from £ to v. So, 7(Q) is ng(g)- connected and by Theorem 3.2, the conclusion follows
immediately.

Else (ii) holds, then for each (£, v) € 7(Q), A w € Q such that [{, w] € R and [w, v] € R, which means
that {{, w, v} is a path of length 2 in ng(m from £ to v. Thus, 7(Q) is ng(g)—connected and then by
Theorem 3.2, the conclusion follows immediately. m]

Here we provide an example in support of our results.
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Example 3.1. Suppose Q = [0, 1] is endowed with its Euclidian metric d({,v) = |{ — v|. Define binary
relation R by

:{({,V)EQZ:0§§<VS%},

then, R remains locally finitely T -transitive, (Q, d) is an R-complete metric space.
Take T,S : Q — Q defined by

- {35 e
1 lf{ € (5’ l]
and
3
S0 = =

Then, R has (T,S)- closed while T and S remain R-compatible. Moreover, T and S remain R-
continuous. Let {,v € R verify (S,Sv) € R.

Now, we choose 0(8) = eV¥ Y B > 0 and if we take £, v) = % V,vell,o)and k € (0,1). Then
the following cases arise:

Case (I): we take { = 0 and v = —, then we get

E;
3
£0(d(T(0), T( ))) 0(d(S(0), S( )))) = 5(9(61'( ), 0(d(0, )))) = 5(9( ) o( m))
Nes \/\/Ek
—é—‘(g\/; e 100) = — ( )4k \/; > 1.

e30

Case (II): we take { = - and V= then we have

100’

09 3 147
), 0(d( 100’ m))))

49 7
§(9(d(7"( )T(—))) 9(0'(3( 0 S({ge = £0d(55: 300

100

77 VE-VE| _ NVE VD
_ HO=2y, 0 (‘\/ \/ ‘)) eV, e
300 100 1000 e\/%

_ NEVEeVE

Therefore, all the assumptions of Theorem 3.1 are fulfilled, and hence T and S have a coincidence
point. Similarly, all the requirements of Theorem 3.2 are satisfied. Consequently, T and S admit a
common fixed point for { =

4. Conclusions
In this paper, we have established coincidence and common fixed point theorems for a pair of
mappings (7,S) in a metric space endowed with a binary relation. The results are obtained by

employing the notion of a locally finitely T -transitive relation together with an Lg contraction. To
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illustrate the effectiveness and originality of our results, we have provided suitable examples showing
that the obtained theorems properly generalize and improve several existing results in the literature.

As directions for future research, these results may be extended to other generalized metric

structures such as b-metric spaces, quasi-metric spaces, and cone metric spaces. Furthermore, we can
generalize the present results to pairs of self-mappings or apply the established theorems to
investigate the existence and uniqueness of solutions for certain boundary value problems.
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