Research article Topical Sections

Sequential mixing condition for continuous-time entangled Markov chains

  • Published: 19 January 2026
  • MSC : 46L06, 47A35, 60J27, 82B31, 82C31

  • We established a continuous-time framework for entangled quantum Markov chains derived from classical continuous-time Markov processes. Unlike previous studies focused on discrete-time dynamics, we demonstrated that a robust mixing property emerges directly from the structural architecture of the underlying continuous-time process. Our analysis showed that inhomogeneous entangled chains exhibited path-independent convergence to a limiting distribution determined by asymptotic temporal parameters. The results motivated future study of these entangled Markov chains in connection with open quantum system dynamics and quantum master equations.

    Citation: Abdessatar Souissi, Abdessatar Barhoumi. Sequential mixing condition for continuous-time entangled Markov chains[J]. AIMS Mathematics, 2026, 11(1): 1637-1652. doi: 10.3934/math.2026068

    Related Papers:

  • We established a continuous-time framework for entangled quantum Markov chains derived from classical continuous-time Markov processes. Unlike previous studies focused on discrete-time dynamics, we demonstrated that a robust mixing property emerges directly from the structural architecture of the underlying continuous-time process. Our analysis showed that inhomogeneous entangled chains exhibited path-independent convergence to a limiting distribution determined by asymptotic temporal parameters. The results motivated future study of these entangled Markov chains in connection with open quantum system dynamics and quantum master equations.



    加载中


    [1] F. Fagnola, R. Rebolledo, On the existence of stationary states for quantum dynamical semigroups, J. Math. Phys., 42 (2001), 1296–1308. http://doi.org/10.1063/1.1340870 doi: 10.1063/1.1340870
    [2] A. M. Chebotarev, F. Fagnola, Sufficient conditions for conservativity of minimal quantum dynamical semigroups, J. Funct. Anal., 153 (1998), 382–404. https://doi.org/10.1006/jfan.1997.3189 doi: 10.1006/jfan.1997.3189
    [3] E. B. Davies, Markovian master equations, Commun. Math. Phys., 39 (1974), 91–110. https://doi.org/10.1007/BF01608389 doi: 10.1007/BF01608389
    [4] E. B. Davies, Markovian master equations. Ⅱ, Math. Ann., 219 (1976), 147–158.
    [5] V. Gorini, A. Kossakowski, E. C. G. Sudarshan, Completely positive dynamical semigroups of $N$-level systems, J. Math. Phys., 17 (1976), 821–825. http://doi.org/10.1063/1.522979 doi: 10.1063/1.522979
    [6] G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys., 48 (1976), 119–130.
    [7] J. R. Norris, Markov chains, Cambridge University Press, 1998. http://doi.org/10.1017/cbo9780511810633
    [8] O. Bratelli, D. W. Robinson, Operator algebras and quantum statistical mechanics Vol. I, Berlin, Heidelberg: Springer, 1979. https://doi.org/10.1007/978-3-662-02313-6
    [9] M. Merkli, Quantum Markovian master equations: resonance theory shows validity for all time scales, Ann. Phys., 412 (2020), 167996. https://doi.org/10.1016/j.aop.2019.167996 doi: 10.1016/j.aop.2019.167996
    [10] M. Merkli, Correlation decay and Markovianity in open systems, Ann. Henri Poincaré, 24 (2023), 751–782. https://doi.org/10.1007/s00023-022-01226-5 doi: 10.1007/s00023-022-01226-5
    [11] M. Merkli, Dynamics of open quantum systems I, oscillation and decay, Quantum, 6 (2022), 615. https://doi.org/10.22331/q-2022-01-03-615 doi: 10.22331/q-2022-01-03-615
    [12] H.-P. Breuer, F. Petruccione, The theory of open quantum systems, Oxford University Press, 2007. https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
    [13] L. Accardi, Non-commutative Markov chains, In: Proceedings of the international school of mathematical physics, Set. 30–Oct. 12, 1974, Universit‘a di Camerino, 268–295.
    [14] L. Accardi, A. Souissi, E. G. Soueidi, Quantum Markov chains: a unification approach, Infin. Dimens. Anal. Qu., 23 (2020), 2050016. https://doi.org/10.1142/S0219025720500162 doi: 10.1142/S0219025720500162
    [15] L. Accardi, A. Frigerio, Markovian cocycles, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 83A (1983), 251–263.
    [16] M. Guţă, J. Kiukas, Equivalence classes and local asymptotic normality in system identification for quantum Markov chains, Commun. Math. Phys., 335 (2015), 1397–1428. https://doi.org/10.1007/s00220-014-2253-0 doi: 10.1007/s00220-014-2253-0
    [17] M. Fannes, B. Nachtergaele, R. F. Werner, Finitely correlated states on quantum spin chains, Commun. Math. Phys., 144 (1992), 443–490. https://doi.org/10.1007/BF02099178 doi: 10.1007/BF02099178
    [18] M. Fannes, B. Nachtergaele, R. F. Werner, Ground states of VBS models on Cayley trees, J. Stat. Phys., 66 (1992), 939–973. https://doi.org/10.1007/BF01055710 doi: 10.1007/BF01055710
    [19] L. Accardi, F. Fidaleo, Entangled Markov chains, Annali di Matematica, 184 (2005), 327–346. https://doi.org/10.1007/s10231-004-0118-4 doi: 10.1007/s10231-004-0118-4
    [20] L. Accardi, T. Matsuoka, M. Ohya, Entangled Markov chains are indeed entangled, Infin. Dimens. Anal. Qu., 9 (2006), 379–390. https://doi.org/10.1142/S0219025706002445 doi: 10.1142/S0219025706002445
    [21] A. Souissi, E. G. Soueidy, A. Barhoumi, On a $\psi$-mixing property for entangled Markov chains, Physica A, 613 (2023), 128533. https://doi.org/10.1016/j.physa.2023.128533 doi: 10.1016/j.physa.2023.128533
    [22] A. Souissi, F. Mukhamedov, Nonlinear stochastic operators and associated inhomogeneous entangled quantum Markov chains, J. Nonlinear Math. Phys., 31 (2024), 11. https://doi.org/10.1007/s44198-024-00172-6 doi: 10.1007/s44198-024-00172-6
    [23] G. Vardoyan, S. Guha, P. Nain, D. Towsley, On the stochastic analysis of a quantum entanglement distribution switch, IEEE Trans. Quantum Eng., 2 (2021), 4101016. https://ieeexplore.ieee.org/document/9351761
    [24] L. Accardi, E. G. Soueidi, Y. G. Lu, A. Souissi, Hidden quantum Markov processes, Infin. Dimens. Anal. Qu., 28 (2025), 2450007. https://doi.org/10.1142/S0219025724500073 doi: 10.1142/S0219025724500073
    [25] A. Souissi, E. G. Soueidy, Entangled hidden Markov models, Chaos Soliton. Fract., 174 (2023), 113804. https://doi.org/10.1016/j.chaos.2023.113804 doi: 10.1016/j.chaos.2023.113804
    [26] A. Souissi, F. Mukhamedov, E. G. Soueidi, M. Rhaima, F. Mukhamedova, Entangled hidden elephant random walk model, Chaos Soliton. Fract., 186 (2024), 115252. https://doi.org/10.1016/j.chaos.2024.115252 doi: 10.1016/j.chaos.2024.115252
    [27] L. Accardi, Y. G. Lu, A. Souissi, A Markov–Dobrushin inequality for quantum channels, Open Syst. Inf. Dyn., 28 (2021), 2150018. https://doi.org/10.1142/S1230161221500189 doi: 10.1142/S1230161221500189
    [28] R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli, et al., Measuring entanglement entropy in a quantum many-body system, Nature, 528 (2015), 77–83. https://doi.org/10.1038/nature15750 doi: 10.1038/nature15750
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(72) PDF downloads(8) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog