We established a continuous-time framework for entangled quantum Markov chains derived from classical continuous-time Markov processes. Unlike previous studies focused on discrete-time dynamics, we demonstrated that a robust mixing property emerges directly from the structural architecture of the underlying continuous-time process. Our analysis showed that inhomogeneous entangled chains exhibited path-independent convergence to a limiting distribution determined by asymptotic temporal parameters. The results motivated future study of these entangled Markov chains in connection with open quantum system dynamics and quantum master equations.
Citation: Abdessatar Souissi, Abdessatar Barhoumi. Sequential mixing condition for continuous-time entangled Markov chains[J]. AIMS Mathematics, 2026, 11(1): 1637-1652. doi: 10.3934/math.2026068
We established a continuous-time framework for entangled quantum Markov chains derived from classical continuous-time Markov processes. Unlike previous studies focused on discrete-time dynamics, we demonstrated that a robust mixing property emerges directly from the structural architecture of the underlying continuous-time process. Our analysis showed that inhomogeneous entangled chains exhibited path-independent convergence to a limiting distribution determined by asymptotic temporal parameters. The results motivated future study of these entangled Markov chains in connection with open quantum system dynamics and quantum master equations.
| [1] |
F. Fagnola, R. Rebolledo, On the existence of stationary states for quantum dynamical semigroups, J. Math. Phys., 42 (2001), 1296–1308. http://doi.org/10.1063/1.1340870 doi: 10.1063/1.1340870
|
| [2] |
A. M. Chebotarev, F. Fagnola, Sufficient conditions for conservativity of minimal quantum dynamical semigroups, J. Funct. Anal., 153 (1998), 382–404. https://doi.org/10.1006/jfan.1997.3189 doi: 10.1006/jfan.1997.3189
|
| [3] |
E. B. Davies, Markovian master equations, Commun. Math. Phys., 39 (1974), 91–110. https://doi.org/10.1007/BF01608389 doi: 10.1007/BF01608389
|
| [4] | E. B. Davies, Markovian master equations. Ⅱ, Math. Ann., 219 (1976), 147–158. |
| [5] |
V. Gorini, A. Kossakowski, E. C. G. Sudarshan, Completely positive dynamical semigroups of $N$-level systems, J. Math. Phys., 17 (1976), 821–825. http://doi.org/10.1063/1.522979 doi: 10.1063/1.522979
|
| [6] | G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys., 48 (1976), 119–130. |
| [7] | J. R. Norris, Markov chains, Cambridge University Press, 1998. http://doi.org/10.1017/cbo9780511810633 |
| [8] | O. Bratelli, D. W. Robinson, Operator algebras and quantum statistical mechanics Vol. I, Berlin, Heidelberg: Springer, 1979. https://doi.org/10.1007/978-3-662-02313-6 |
| [9] |
M. Merkli, Quantum Markovian master equations: resonance theory shows validity for all time scales, Ann. Phys., 412 (2020), 167996. https://doi.org/10.1016/j.aop.2019.167996 doi: 10.1016/j.aop.2019.167996
|
| [10] |
M. Merkli, Correlation decay and Markovianity in open systems, Ann. Henri Poincaré, 24 (2023), 751–782. https://doi.org/10.1007/s00023-022-01226-5 doi: 10.1007/s00023-022-01226-5
|
| [11] |
M. Merkli, Dynamics of open quantum systems I, oscillation and decay, Quantum, 6 (2022), 615. https://doi.org/10.22331/q-2022-01-03-615 doi: 10.22331/q-2022-01-03-615
|
| [12] | H.-P. Breuer, F. Petruccione, The theory of open quantum systems, Oxford University Press, 2007. https://doi.org/10.1093/acprof:oso/9780199213900.001.0001 |
| [13] | L. Accardi, Non-commutative Markov chains, In: Proceedings of the international school of mathematical physics, Set. 30–Oct. 12, 1974, Universit‘a di Camerino, 268–295. |
| [14] |
L. Accardi, A. Souissi, E. G. Soueidi, Quantum Markov chains: a unification approach, Infin. Dimens. Anal. Qu., 23 (2020), 2050016. https://doi.org/10.1142/S0219025720500162 doi: 10.1142/S0219025720500162
|
| [15] | L. Accardi, A. Frigerio, Markovian cocycles, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 83A (1983), 251–263. |
| [16] |
M. Guţă, J. Kiukas, Equivalence classes and local asymptotic normality in system identification for quantum Markov chains, Commun. Math. Phys., 335 (2015), 1397–1428. https://doi.org/10.1007/s00220-014-2253-0 doi: 10.1007/s00220-014-2253-0
|
| [17] |
M. Fannes, B. Nachtergaele, R. F. Werner, Finitely correlated states on quantum spin chains, Commun. Math. Phys., 144 (1992), 443–490. https://doi.org/10.1007/BF02099178 doi: 10.1007/BF02099178
|
| [18] |
M. Fannes, B. Nachtergaele, R. F. Werner, Ground states of VBS models on Cayley trees, J. Stat. Phys., 66 (1992), 939–973. https://doi.org/10.1007/BF01055710 doi: 10.1007/BF01055710
|
| [19] |
L. Accardi, F. Fidaleo, Entangled Markov chains, Annali di Matematica, 184 (2005), 327–346. https://doi.org/10.1007/s10231-004-0118-4 doi: 10.1007/s10231-004-0118-4
|
| [20] |
L. Accardi, T. Matsuoka, M. Ohya, Entangled Markov chains are indeed entangled, Infin. Dimens. Anal. Qu., 9 (2006), 379–390. https://doi.org/10.1142/S0219025706002445 doi: 10.1142/S0219025706002445
|
| [21] |
A. Souissi, E. G. Soueidy, A. Barhoumi, On a $\psi$-mixing property for entangled Markov chains, Physica A, 613 (2023), 128533. https://doi.org/10.1016/j.physa.2023.128533 doi: 10.1016/j.physa.2023.128533
|
| [22] |
A. Souissi, F. Mukhamedov, Nonlinear stochastic operators and associated inhomogeneous entangled quantum Markov chains, J. Nonlinear Math. Phys., 31 (2024), 11. https://doi.org/10.1007/s44198-024-00172-6 doi: 10.1007/s44198-024-00172-6
|
| [23] | G. Vardoyan, S. Guha, P. Nain, D. Towsley, On the stochastic analysis of a quantum entanglement distribution switch, IEEE Trans. Quantum Eng., 2 (2021), 4101016. https://ieeexplore.ieee.org/document/9351761 |
| [24] |
L. Accardi, E. G. Soueidi, Y. G. Lu, A. Souissi, Hidden quantum Markov processes, Infin. Dimens. Anal. Qu., 28 (2025), 2450007. https://doi.org/10.1142/S0219025724500073 doi: 10.1142/S0219025724500073
|
| [25] |
A. Souissi, E. G. Soueidy, Entangled hidden Markov models, Chaos Soliton. Fract., 174 (2023), 113804. https://doi.org/10.1016/j.chaos.2023.113804 doi: 10.1016/j.chaos.2023.113804
|
| [26] |
A. Souissi, F. Mukhamedov, E. G. Soueidi, M. Rhaima, F. Mukhamedova, Entangled hidden elephant random walk model, Chaos Soliton. Fract., 186 (2024), 115252. https://doi.org/10.1016/j.chaos.2024.115252 doi: 10.1016/j.chaos.2024.115252
|
| [27] |
L. Accardi, Y. G. Lu, A. Souissi, A Markov–Dobrushin inequality for quantum channels, Open Syst. Inf. Dyn., 28 (2021), 2150018. https://doi.org/10.1142/S1230161221500189 doi: 10.1142/S1230161221500189
|
| [28] |
R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli, et al., Measuring entanglement entropy in a quantum many-body system, Nature, 528 (2015), 77–83. https://doi.org/10.1038/nature15750 doi: 10.1038/nature15750
|