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1. Introduction

Continuous-time quantum Markov dynamics have attracted considerable attention for their ability
to provide a rigorous and more realistic representation of complex open quantum systems. The
foundational work on quantum dynamical semigroups [1, 2] established a robust mathematical
framework for describing the irreversible evolution of such systems. This formalism finds its
most concrete and powerful expression in the theory of Markovian master equations, pioneered
by Davies [3, 4] and leading to the now-standard Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
form [5, 6]. The Lindblad equation has proven to be remarkably versatile, allowing for the recovery of
a wide range of physically relevant models and capturing intricate phenomena such as the generation
and decay of quantum entanglement. The mathematical underpinnings of these models are profound,
synthesizing concepts from the theory of continuous-time stochastic processes [7] and operator
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algebras [8]. Recent theoretical advances, particularly in resonance theory, have further solidified
the validity of the Markovian approximation, demonstrating its applicability across all relevant time
scales [9]. Ongoing research continues to refine our understanding of the delicate interplay between
correlation decay, non-Markovianity, and the emergence of Markovian dynamics [10, 11], making the
subject a cornerstone of modern quantum theory, as comprehensively treated in seminal texts like that
of Breuer and Petruccione [12].

Quantum Markov chains (QMCs) [13, 14] are states defined on discrete infinite tensor products
of matrix algebras, characterized by Markovian correlations generated by Markov operators [15, 16].
Discrete-time QMCs have demonstrated their robustness in accurately describing quantum systems,
offering a solid framework for analyzing their properties. Within the realm of QMCs, finitely correlated
states [17, 18] stand out as an important subclass, playing a pivotal role in the characterization of
valence bond states. Since their introduction in the context of quantum random walks [19], entangled
Markov chains have developed into a rich subject of study. Early work established their foundational
entanglement measures, which were later refined to support deeper analysis [20]. More recently,
researchers have turned to the chains’ long-term behavior, examining properties like ψ-mixing in
homogeneous systems [21] and exploring how entanglement transitions relate to certain stochastic
operators [22]. This line of inquiry highlights how classical probabilistic concepts can adapt to
quantum settings, opening fresh perspectives on complex systems. For instance, one application
models a quantum switch as a continuous-time Markov chain [23]. Together, these advances illustrate
the growing dialogue between probability theory and quantum information, suggesting new pathways
to understand entanglement through dynamical processes.

Hidden quantum Markov models are a quantum extension of classical hidden Markov models.
Recently, a solid mathematical foundation has been established for both Markovian and non-Markovian
hidden quantum processes [24]. Specifically, entangled Hidden Markov Models were introduced
in [25], providing new insights into the role of entanglement in quantum systems. Furthermore, a
recent study has explored inhomogeneous entangled dynamics within the context of elephant random
walks [26], expressing the memory dependence of these dynamics through local mean entropy
formulas. These advancements deepen our understanding of quantum memory effects and their
implications for complex systems.

This paper develops a continuous-time framework for entangled Markov chains. In contrast to
previous works [21, 22] where the Markov-Dobrushin inequality [27] played a central role, we show
that in the continuous-time setting the mixing property emerges directly from the structural properties
of the underlying continuous-time Markov process. Specifically, we establish a robust mixing property
for a class of inhomogeneous entangled Markov chains derived from a common finite-state continuous-
time Markov chain. We demonstrate the stability of this mixing with respect to various consistent
realization paths and prove that the resulting limiting distribution is path-independent but depends on
the asymptotic time.

Our results extend the ψ-mixing property previously established for the homogeneous discrete-
time case [21] and for entangled chains associated with F-stochastic operators [22]. This continuous-
time extension not only broadens the applicability of the theory, but also reveals a deeper connection
between the ergodic features of the base Markov process and the entanglement architecture. A natural
question arising from this work is whether the dynamics of such entangled chains can be described by
a Markovian master equation [3,12]. Furthermore, the study of entanglement quantification within this
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continuous-time framework remains an open direction. These promising avenues will be addressed in
future work.

We begin this paper with a preliminary section for the embedding of continuous-Markov chains into
quantum dynamics in Section 2. In Section 3, we introduce the concept of entangled Markov chains
associated with continuous-time Markov dynamics, laying the groundwork for our analysis. Section 4
presents the core results of this study, where we prove the main theorem. Finally, in Section 5, we
conclude with a discussion of the implications and potential extensions of our findings.

2. Quantum embedding of Markovian dynamics

A continuous-time Markov chain is a stochastic process {X(t), t ≥ 0} that satisfies the Markov
property:

P(Xt+s ∈ A | F≤t) = P(Xt+s ∈ A | Xt), (2.1)

where F≤t is the filtration representing the information up to time t. This implies that the future
evolution of Xt depends only on the current state and not on the past trajectory.

If the right hand side of (2.1) does not depend on t the CTMC is called homogeneous.
In the sequel, {X(t), t ≥ 0} denotes a homogeneous continuous time Markov chain (HCTMC) with

finite state space S. For every states (i, j) ∈ S2, let

Πi j(t) = P(X(t) = j | X(0) = i),

denote the transition probability from the state i to state j in time t.
The HCTMC is characterized by a rate matrix Q = (Qi j), where Qi j represents the rate of transition

from state i to state j.
The transition probabilities satisfy the Kolmogorov forward equations (or Chapman-Kolmogorov

equations):
d
dt
Πi j(t) =

∑
k∈S

Πik(t)Qk j (2.2)

Similarly, the Kolmogorov backward equations are given by:

d
dt
Πi j(t) =

∑
k∈S

QikΠk j(t), (2.3)

The rate matrix Q (also called the generator matrix) has the following properties:

Qi j ≥ 0 for i , j, (2.4)

Qii = −
∑
j,i

Qi j (2.5)

The relationship between Q andΠ(t) is characterized by the matrix exponential function. The transition
matrix Π(t) is obtained from the Q-matrix Q by

Π(t) = etQ,
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This formulation ensures that Π(t) satisfies the Kolmogorov forward (2.2) and backward (2.3)
equations, describing the evolution of transition probabilities over time. Thus, the Q-matrix provides
the infinitesimal transition rates, while Π(t) captures the cumulative transition probabilities over time
t.

Let S be a finite state space. Let H be a Hilbert space of dimension |S|, equipped with an
orthonormal basis {|i⟩ : i ∈ S}.

Consider a time-homogeneous Markov process {X(t)}t≥0 on S with transition probability matrix
Π(t) =

(
Πi j(t)

)
i, j∈S, where Πi j(t) = P(X(t) = j | X(0) = i). Let Q = (Qi j) be the associated rate matrix

(generator), satisfying the forward Kolmogorov equation (2.2). We construct a quantum representation
of this stochastic process in the doubled Hilbert spaceH⊗H . For a given initial distribution π = (πi)i∈S,
we define the time-dependent state vector:

|ψ(t)⟩ :=
∑
i, j∈S

√
πi

√
Πi j(t) |i⟩ ⊗ | j⟩. (2.6)

This state is normalized since

⟨ψ(t)|ψ(t)⟩ =
∑

i, j

πiΠi j(t) =
∑

j

∑
i

πiΠi j(t)

 = 1.

The individual transition amplitudes are encoded in the elementary vectors:

|ψi j(t)⟩ :=
√
Πi j(t) |i⟩ ⊗ | j⟩. (2.7)

We introduce a time-dependent, diagonal operator H(t) onH ⊗H defined by:

H(t) :=
∑
i, j∈S

λi j(t) |i⟩⟨i| ⊗ | j⟩⟨ j|, (2.8)

where the coefficients λi j(t) are specified in terms of the classical Markov data:

λi j(t) :=
1
2

[
Π(t)Q

]
i j

Πi j(t)
. (2.9)

This definition is well-defined wherever Πi j(t) > 0. Using the forward Kolmogorov equation,[
Π(t)Q

]
i j =

d
dtΠi j(t), the coefficient can be expressed equivalently as:

λi j(t) =
1
2

d
dtΠi j(t)
Πi j(t)

=
d
dt

log
√
Πi j(t).

The quantum state |ψ(t)⟩, constructed from the classical transition probabilities, satisfies a simple
first-order differential equation driven by the operator H(t).

Theorem 2.1. Let Π(t) be the transition matrix of a Markov process with generator Q, and let π be an
initial distribution. Let |ψ(t)⟩ be defined as in (2.6) and H(t) as in (2.8) with coefficients given by (2.9).
Then,

d
dt
|ψ(t)⟩ = H(t)|ψ(t)⟩. (2.10)
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Proof. We compute the time derivative of |ψ(t)⟩:

d
dt
|ψ(t)⟩ =

∑
i, j

√
πi

d
dt

√
Πi j(t) |i⟩ ⊗ | j⟩.

Since d
dt

√
Πi j(t) = 1

2

d
dtΠi j(t)
√
Πi j(t)

, and using d
dtΠi j(t) = [Π(t)Q]i j, we have:

d
dt

√
Πi j(t) =

1
2

[Π(t)Q]i j√
Πi j(t)

.

Substituting the expression for λi j(t) from (2.9),

d
dt

√
Πi j(t) = λi j(t)

√
Πi j(t).

Therefore,
d
dt
|ψ(t)⟩ =

∑
i, j

√
πi λi j(t)

√
Πi j(t) |i⟩ ⊗ | j⟩.

Now, applying H(t) to |ψ(t)⟩:

H(t)|ψ(t)⟩ =
∑

i, j

λi j(t)
(√
πi

√
Πi j(t)

)
|i⟩ ⊗ | j⟩,

which is identical to the expression for d
dt |ψ(t)⟩. This proves (2.10). □

For a composite quantum system, a description based solely on a wave function is insufficient to
capture the complete physical state. A more general framework, using density matrices, is required.
The pure-state density matrix of our embedded system is given by

ρ(t) = |ψ(t)⟩⟨ψ(t)|,

where |ψ(t)⟩ is defined in Eq (2.6). Unlike a wave function, ρ(t) can also describe statistical mixtures,
making it indispensable for modeling open quantum systems that interact with an environment.

An open quantum system is defined as one that interacts with an external environment, such that the
joint evolution of the system and environment is unitary. The total Hilbert space is bipartite,HS ⊗HE,
where HS and HE denote the system and environment spaces, respectively [12]. For the reduced
system density operator, the most general form of Markovian, completely positive dynamics is given
by the Lindblad master equation [5, 6]:

dρ(t)
dt
= −

i
ℏ

[H, ρ(t)] +
∑

i

γi

(
Liρ(t)L†i −

1
2
{L†i Li, ρ(t)}

)
,

here, H is the effective Hamiltonian governing coherent evolution, Li are the Lindblad (jump) operators
encoding dissipative interactions with the environment, γi ≥ 0 are the corresponding dissipation rates,
and {a, b} = ab + ba denotes the anticommutator.
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A key feature of our quantum embedding is the emergence of entanglement between the “history”
(subsystem A) and “outcome” (subsystem B) registers. The entanglement entropy [28], defined as the
von Neumann entropy of either reduced density matrix,

S ent(t) = −Tr
[
ρA(t) log2 ρA(t)

]
,

quantifies these non-classical correlations, with ρA(t) = TrB[ρ(t)].
Deriving explicit Lindblad operators that exactly reproduce the dynamics of ρ(t) from the classical

transition data, and characterizing how the corresponding dissipative terms relate to the entanglement
entropy S ent(t), present substantial theoretical challenges. The time-dependent, highly constrained
structure of the generator, along with the functional complexity of ρ(t), may obstruct an exact Lindblad
representation. A rigorous analysis of these questions—including the existence of a Lindblad form
for the embedding and the dynamical behavior of the entanglement entropy—is reserved for future
investigation.

3. EMCs associated with time-continuous dynamics

In the notations of the previous sections, Xt ≡ (π, (Π(t))t,Q) is a continuous-time Markov chain
with a countable state space S and π is the distribution of X0. LetH be a Hilbert space with dimension
|S|, with orthonormal basis e = { |i⟩ }i. Denote B = B(H) its associated algebra of bounded operators.

Definition 3.1. Let A and B be C∗-algebras. A linear map Φ : A → B is completely positive if for
every n ∈ N, the ampliated map

Φ(n) : Mn(A)→ Mn(B), [ai j] 7→ [Φ(ai j)],

sends positive elements to positive elements. If Φ preserves the unit (Φ(1IA) = 1IB), it is called
completely positive and identity-preserving (CPIP).

Definition 3.2. A transition expectation is a CPIP map E : B ⊗ B −→ B. Physically, E describes
a one-step interaction that couples two consecutive systems and outputs an observable of the second
system conditioned on the first.

Following Accardi [13], a transition expectation E is the fundamental building block for
constructing a homogeneous quantum Markov chain on B⊗N. Given an initial state φ0 on B, the
quantum Markov chain is uniquely determined by its finite-dimensional marginals: for any n ≥ 1
and a0, . . . , an ∈ B,

φ(a0 ⊗ · · · ⊗ an) = φ0

(
E
(
a0 ⊗ E(a2 ⊗ · · · ⊗ E(an ⊗ 1I) · · · )

))
. (3.1)

This recursive formula shows explicitly how E encodes the transition mechanism between consecutive
time steps.

At each time t, the algebra of observables for the system is represented by Bt, which is isomorphic
to B, meaning that Bt is a copy of B corresponding to the observable at time t. LetDe be the diagonal
subalgebra of B associated with the basis e, which is spanned by the atomic projections |i⟩⟨i|, i ∈ S.
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For any two times s and t, we define a map Es+t
s : Bs ⊗ Bs+t → Bs, which acts as a linear extension

of the following expression:

Es+t
s (as ⊗ as+t) =

∑
i, j,k,l

√
Πik(t)Π jl(t) as;i jas+t;kl|i⟩⟨ j|, (3.2)

where as =
∑

i, j as;i j|i⟩⟨ j| ∈ Bs and as+t =
∑

k,l as+t;kl|k⟩⟨l| ∈ Bs+t. Here, Πik(t) represents the transition
probability of the Markov process over time t.

The backward entangled Markov operator associated with Es+t
s is defined as

Ps+t
s (a) = Es+t

s (1Is ⊗ as+t) =
∑
i,k,l

√
Πik(t)Πil(t) as+t;kl|i⟩⟨i|, (3.3)

The forward entangled Markov operator associated with Es+t
s is expressed as

T s+t
s (as) = Es+t

s (as ⊗ 1Is+t) =
∑
i, j,k

√
Πik(t)Π jk(t) as;i j|i⟩⟨ j|, (3.4)

To represent this transformation more compactly, we introduce the partial isometry V(t) : H →
H ⊗H , which acts on the basis vectors |i⟩ by:

V(t)|i⟩ =
∑
j∈S

√
Πi j(t) |i⟩ ⊗ | j⟩.

The adjoint operator V∗(t) : H ⊗H → H is defined by the linear extension:

V∗(t) |i⟩ ⊗ | j⟩ =
√
Πi j(t) |i⟩.

It can be shown that V∗(t)V(t) = 1I, ensuring that the map Et(·) can be equivalently written in terms of
V(t) and V∗(t) as:

Et(a) := V∗(t)aV(t), ∀a ∈ Bs ⊗ Bs+t. (3.5)

This formulation encapsulates the dynamics of the system as an interplay between the isometry V(t)
and its adjoint V∗(t). Consider the initial state

|ψ0⟩ =
∑
i∈S

√
πi |i⟩.

Definition 3.3. A sequence of times τ = {tn}n≥0, where t0 = 0, and the cumulative sums sn =
∑n

k=0 tk

form a strictly increasing sequence with
∑∞

n=0 tn = +∞, is called a persistent sequence. Furthermore,
if limn→∞ tn = t∞ > 0, the sequence is said to be asymptotically constant.

Let φ0 be the state onA defined by

φ0(a) = ⟨ψ0|a|ψ0⟩.

For a given sequence of times τ := (tn)n such that t0 = 0 and
∑

n tn = ∞. Let sn =
∑

j t j for every n.
The sequence (Esn+1

sn )n define a time-inhomogeneous entangled Markov chain in the sense of [22], on
the quasi-local algebra

Bτ =
⊗

n

Bsn
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where the algebra Bsn is the embedding of B into the position sn is denoted by σsn given by

Bsn := σsn(B) = 1I0 ⊗ 1Is1 ⊗ · · · ⊗ 1Isn−1 ⊗ B ⊗ 1Isn+1 · · · (3.6)

The left shift operator στ on the space Bτ is defined as an endomorphism, which shifts the index of the
sequence {sm}m∈N by one step to the left. Specifically, it satisfies the relation:

στ(σsm) = σsm+1 . (3.7)

This means that applying στ to σsm results in the next element σsm+1 in the sequence.
Additionally, the nth power of the left shift operator στ corresponds to shifting the sequence by n

steps. That is, for any n ∈ N, the following holds:

σn
τ(σsm) = σsm+n . (3.8)

This indicates that applying the operator σn
τ to σsm results in σsm+n , which is n steps ahead in the

sequence.
The finite correlations of the entangled Markov chain can be described in terms of shifted operators

and nested conditional expectations. For ai ∈ B and asi = σsi(ai), where 0 ≤ i ≤ n, the correlation
functional φ(τ; ·) is expressed as:

φ(τ;σs0(a0)σs1(a1) · · ·σsn(atn))

= φ0

(
Es1

s0

(
a0 ⊗ E

s2
s1

(
as1 ⊗ · · · E

sn
sn−1

(
asn−1 ⊗ E

sn+1
sn

(
asn ⊗ 1Isn+1

)))))
. (3.9)

The state φ(τ; ·), whose expression is given by (3.9), captures the intrinsic correlations through a
family of nested entangled transition expectations Esi+1

si . The identity operator 1Isn+1 serves as a (trivial)
boundary condition, in general it can be replaced by a family positive operators (hn)n satisfying the
compatibility condition σsn(hn) = Esn+1

sn (1Isn ⊗ σsn+1(hn+1)).

4. Mixing for inhomogeneous EMCs

Recall in the context of quasi-local algebra, such as the infinite tenor product algebra B⊗N, ergodic
states are the extreme points of the set of all translation invariant states [8]. Analytically, The ergodicity
of a state φ on B⊗N is expressed through the convergence of the ergodic mean:

lim
n→∞

1
n

n−1∑
k=0

φ(σk(a)) = φ(a), (4.1)

for all local observable X ∈ B⊗N, where σk denotes the k-step shift.
The mixing condition (known also clustering property [8]) is a stronger property and it is

characterizing through a, b ∈ B⊗N, the correlations decay asymptotically:

lim
n→∞

φ(σn(a)b) = φ(a)φ(b). (4.2)

This represents asymptotic statistical independence, where distant observables become completely de-
correlated. In the context of the present paper, since the state is not translation invariant we adopt the
notions of ergodic and mixing in the following
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Definition 4.1. Let τ = {tn}n be a persistent sequence with sn = tn − tn−1. The state φ(τ, ·) on Bτ;N =⊗
Bsn is:

• ergodic if there exists a state ψ on B⊗N such that

lim
n→∞

1
n + 1

n∑
k=0

φ
(
τ;σsk(b0)σsk+1(bk+1) · · ·σsm+k(bm)

)
= ψ (b0 ⊗ b1 · · · bm) , (4.3)

for all m ∈ N and for any bi ∈ B, where i = 0, 1, . . . ,m.
• ψ-mixing if there exists a state ψ on B⊗N such that

lim
n→∞

φ
(
τ;σs0(a0)σs1(a1) · · ·σsm(am)σsn(b0)σsn+1(bn+1) · · ·σsm+n(bm)

)
(4.4)

= φ
(
τ;σs0(a0)σs1(a1) · · ·σsm(am)

)
ψ (b0 ⊗ b1 ⊗ · · · ⊗ bm) ,

for all m ∈ N and for any ai, bi ∈ B, where i = 0, 1, . . . ,m.

This condition ensures that correlations between past and future observables vanish asymptotically,
meaning that the state φ exhibits long-term statistical independence in the limit.

The relationship between mixing and ergodicity reveals a fundamental hierarchy in the behavior
of quantum dynamical systems. Mixing, as defined in (4.2), is a strictly stronger property than
ergodicity (4.1).

Theorem 4.2. Let (X(t))t ≡ (π,Π(t)) be a time-continuous Markov chain. If (X(t))t is ergodic with a
limiting distribution π∞ = (π∞;i)i∈S, then for any persistent sequence τ = {tn}n that is asymptotically
constant, the entangled Markov chain φ ≡ (π, (Esn+1

sn )), where sn =
∑n

j=0 t j, is mixing. Moreover, for
every m ∈ N and for every ai, bi ∈ B, i = 0, 1, . . . ,m, we have

lim
n→∞

φ
(
τ;σs0(a0)σs1(a1) · · ·σsm(am)σsn(b0)σsn+1(bn+1) · · ·σsm+n(bm)

)
= φ

(
τ;σs0(a0)σs1(a1) · · ·σsm(am)

)
ψ (b0 ⊗ b1 · · · bm) , (4.5)

where ψ∞ is a homogeneous entangled Markov chain defined on the quasi-local algebraBN =
⊗

n∈NB,
with

ψ (b0 ⊗ b1 ⊗ · · · ⊗ bm) =
∑

k

∑
j0,..., jm+1
i0,...,im+1

π∞;k
√
Πki0(t∞)Πk j0(t∞) (4.6)

×

m∏
ℓ=0

√
Πiℓiℓ+1(t∞)Π jℓ jℓ+1(t∞) bℓ;iℓ jℓδim+1, jm+1 .

Proof. Let m ∈ N. Consider the tensors a = as0 ⊗ as1 ⊗ · · · ⊗ asm and b = bs0 ⊗ bs1 ⊗ · · · ⊗ bsm ∈

Bs0 ⊗Bs1 ⊗ · · · ⊗Bsm , where each asi = σsi(ai) and bsi = σsi(bi) belong to the algebra Bsi at each site si.
Consider the following expression for b̂sn , which involves the recursive application of quantum

operations:
b̂sn = E

sn+1
sn

(
σsn(bs0) ⊗ · · · ⊗ E

sn+m+1
sn+m

(
σsn+m(bsm) ⊗ 1Iσsn+m+1

)
· · ·

)
,

where Esn+1
sn is a completely positive map between the states at time sn and sn+1.
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By applying Eq (3.4), we derive the recursive relation:

Esn+m
sn+m−1

(
σsn+m−1(bsm−1) ⊗ E

sn+m+1
sn+m

(
σsn+m(bsm) ⊗ 1Iσsn+m+1

))
=

∑
im, jm, j

√
Πim j(tm+n+1)Π jm j(tm+n+1) bsm;im jm E

sn+m
sn+m−1

(
σsn+m−1(bsm−1) ⊗ σsn+m (|im⟩⟨ jm|)

)
=

∑
jm−1, jm, j
im−1,im

√
Πim−1im(tm+n)Π jm−1 jm(tm+n)

√
Πim j(tm+n+1)Π jm j(tm+n+1)

× bsm−1;im−1 jm−1 bsm;im jm σsn+m−1 (|im−1⟩⟨ jm−1|) .

By iterating this process and applying Eq (3.2), we obtain:

b̂sn =
∑

j0, j1,..., jm+1
i0,i1,...,im+1

m∏
ℓ=0

√
Πiℓiℓ+1(tn+ℓ+1)Π jℓ jℓ+1(tn+ℓ+1) bℓ;iℓ jℓ δim+1, jm+1 σsn (|i0⟩⟨ j0|) , (4.7)

where δ·,· represents the Kronecker delta, ensuring that im+1 = jm+1.
From the expression (3.3), the action of the backward entangled Markov operator Psn

sn−1 on b̂sn leads
to:

Psn
sn−1

(b̂sn) =
∑

k

ck(b; n)σsn−1 (|k⟩⟨k|) ,

where

ck(b; n) :=
∑

j0,..., jm+1
i0,...,im+1

√
Πki0(tn)Πk j0(tn)

m∏
ℓ=0

√
Πiℓiℓ+1(tn+ℓ+1)Π jℓ jℓ+1(tn+ℓ+1) bsℓ;iℓ jℓ δim+1, jm+1 .

As tn → t∞, the coefficients ck(b; n) converge to:

ck(b) :=
∑

j0,..., jm+1
i0,...,im+1

√
Πki0(t∞)Πk j0(t∞)

m∏
ℓ=0

√
Πiℓiℓ+1(t∞)Π jℓ jℓ+1(t∞) bsℓ;iℓ jℓ δim+1, jm+1 . (4.8)

For any diagonal operator c =
∑

k ck|k⟩⟨k| ∈ De and time s ≥ 0, we have:

Ps+t
s ( js+t(c)) =

∑
i,k

Πik(t)ck σs (|i⟩⟨i|) . (4.9)

By recursively applying this over several time steps, we get:

Psm+2
sm+1

(
Psm+3

sm+2

(
· · · Psn−1

sn−2

(
Psn

sn−1

(
b̂sn

))
· · ·

))
=

∑
i,k

[
Π(tm+2)Π(tm+3) · · ·Π(tn−1)

]
ik ck(b; n)σsm+1

(
|i⟩⟨i|

)
.

Thanks to the semi-group property of Π(t), this simplifies to:

Psm+2
sm+1

(
Psm+3

sm+2

(
· · · Psn−1

sn−2

(
Psn

sn−1

(
b̂sn

)
· · ·

)))
=

∑
i,k

[
Π(sn−1 − sm+1)

]
ikck(b; n)σsm+1

(
|i⟩⟨i|

)
.
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Since the Markov chain (X(t))t is ergodic, the limiting behavior of this process is given by the
following bound: ∣∣∣∣[Π(sn−1 − sm+1)

]
ikck(b; n) − [Π∞]ikck(b)

∣∣∣∣
≤

∣∣∣∣[Π(sn−1 − sm+1)
]
ik − [Π∞]ik

∣∣∣∣ck(b; n) + [Π∞]ik

∣∣∣∣ck(b; n) − ck(b)
∣∣∣∣,

where [Π∞]ik denotes the limiting transition matrix as s → ∞, and the inequality provides an upper
bound on the difference between the finite-time behavior and the asymptotic behavior of the process.

As sn → ∞ when n→ ∞, we have the convergence:

lim
n→∞

∣∣∣∣[Π(sn−1 − sm+1)
]
ik − [Π∞]ik

∣∣∣∣ = 0,

which implies that the transition matrix Π(sn−1− sm+1) converges to its asymptotic value Π∞ as the time
difference sn−1 − sm+1 increases indefinitely.

Since the sequence (ck(b; n))n converges to ck(b), we conclude that for every i, k ∈ S, the following
limit holds:

lim
n→∞

[
Π(sn−1 − sm+1)

]
ikck(b; n) = [Π∞]ikck(b).

This shows that the combined transition and coefficient sequence converges to a well-defined
asymptotic value, describing the long-term behavior of the system.

Now, consider the expression for the entangled state evolution:

φ(aσn
τ(b)) = φ

(
a ⊗ 1Ism+1 ⊗ · · · ⊗ 1Isn−1 ⊗ b̂sn

)
= ϕ0

(
Es1

s0

(
as0 ⊗ · · · E

sm+1
sm

(
am ⊗ E

sm+2
sm+1

(
1Ism+1 ⊗ · · · ⊗ E

sn
sn−1

(
1Isn−1 ⊗ b̂n

)
· · ·

)
· · ·

)))
= ϕ0

(
Es1

s0

(
as0 ⊗ E

s2
s1

(
as1 ⊗ · · · E

sm+1
sm

(
asm ⊗ P

sm+2
sm+1

(
Psm+3

sm+2

(
· · · Psn

sn−1

(
b̂n

)
· · ·

)))
· · ·

)))
.

By continuity of the initial state ϕ0 and the maps Es j+1
s j , we obtain the following limiting behavior:

lim
n→∞

φ(aσn
τ(b)) = ϕ0

(
Es1

s0

(
as0 ⊗ E

s2
s1

(
as1 ⊗ · · · E

sm+1
sm

(
asm ⊗ 1Ism+1ψ∞(b)

)
· · ·

)))
= φ(τ; a)ψ∞(b∞).

where b∞ = σ0(b0)σt∞(b1) · · ·σmt∞(am).
Finally, the definition of ψ(b), which describes the asymptotic behavior of b, is given by:

ψ(b) := ψ0

(
E

t∞
0

(
b0 ⊗ · · · ⊗ E

mt∞
(m−1)t∞

(
bm−1 ⊗ E

(m+1)t∞
mt∞

(
bm ⊗ 1I

)))))
. (4.10)

and
ψ0(a0) =

∑
k,i

π∞;k
√
Πki(t∞)Πk j(t∞)a0;i j.

This finishes the proof. □

Remark 4.3. The limiting distribution π∞ is interpreted as the asymptotic invariant distribution of the
sequence of backward Markov operator Psn+1

sn , as explained through (4.9). Theorem 4.2 shows that
the ergodicity of the classical continuous-time Markov chain implies the mixing of the associated EMC
independently of the persistent sequence (tn)n. For a periodic sequence (i.e., tn+1 = tn+T for some fixed
period T > 0), Theorem 4.2 reproduces the result of [21], where a stronger assumption—positivity of
the Markov–Dobrushin constant—was required.
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4.1. Extended analysis of two-state dynamics

Consider a simple two-state Markov chain with state space S = {0, 1}, where the Hilbert space

H ≡ C2 is spanned by the orthonormal basis vectors |0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
. The algebra of observables

is given by B ≡ M2(C), the set of all 2 × 2 complex matrices.
The transition rates between the two states are defined as follows:

• Transition from state 0 to state 1 occurs at rate q01 = α.
• Transition from state 1 to state 0 occurs at rate q10 = β.

Here, α and β are positive real numbers. The transition rate matrix Q for this system is:

Q =
(
−α α

β −β

)
.

The transition matrix Π(t) over time t is the matrix exponential Π(t) = exp(tQ), which can be
computed as:

Π(t) =
1

α + β

(
β + αe−t(α+β) α(1 − e−t(α+β))
β(1 − e−t(α+β)) α + βe−t(α+β)

)
.

In the long-time limit, as t → ∞, the system converges to a stationary distribution, with the limiting
transition matrix given by:

Π∞ =
1

α + β

(
β α

β α

)
.

The stationary distribution π∞ corresponding to this limiting behavior is:

π∞ =
β

α + β
|0⟩ +

α

α + β
|1⟩.

According to Theorem 4.2, for any persistent sequence τ = {tn}n that is asymptotically constant with
lim tn = t∞ > 0, the associated entangled Markov chain φ ≡ (π, (Esn+1

sn )) exhibits the ψ-mixing property.
This means that the limiting distribution of the entangled Markov chain is independent of the system’s
initial configuration, confirming its ergodic nature.

These results generalize the ψ-mixing property previously established in the homogeneous case
and provide a robust framework for understanding the long-term behavior of entangled dynamics in
continuous-time Markov chains.

5. Discussion

This work establishes a mixing property of a continuous-time quantum system. The central result,
Theorem 4.2, provides a concrete manifestation of the so-called ψ-mixing property. It confirms the
decorrelation of temporally distant observables a and b, a hallmark of quantum systems exhibiting
mixing behavior. In the asymptotic limit, the joint state factorizes into independent contributions from
distinct temporal regions. This decoupling indicates that the long-term dynamics are dominated by
separate influences: the state’s history, encoded in φ(τ; a), and its future asymptotic behavior, captured
by ψ∞(b). The semi-group property of the transition matrices Π(t) was instrumental in simplifying this
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analysis, revealing a cumulative evolutionary structure that clarifies the system’s long-term trajectory.
Furthermore, our treatment of diagonal operators—showing they remain diagonal under time evolution
with coefficients evolving via Π(t)—provided a significantly simplified framework for probing the
asymptotic limit.

Theorem 4.2 reveals two physically distinct limiting scenarios, corresponding to the extremes of the
time-scale parameter t∞, which warrant separate consideration.

Case 1: t∞ = 0 Here, Π(t∞) reduces to the identity matrix. The limiting state ψ∞ (4.10) simplifies to:

ψ
(
j0(b0) jt∞(b1) · · · jmt∞(bm)

)
=

∑
i

π∞;i

m∏
ℓ=0

bℓ;ii. (5.1)

This expression describes a degenerate state with support confined strictly to the diagonal algebra
De;n =

⊗
nDe. The dynamics in this limit becomes trivial, freezing the system’s correlations and

suppressing any off-diagonal (coherent) contributions.

Case 2: t∞ = ∞ In this opposite extreme, the transition matrix converges to Π∞ = π∞ ⊗ 1, yielding
Π∞;i j = π∞; j. The state ψ∞ takes the form:

ψ (b0 ⊗ b1 ⊗ · · · ⊗ bm) =
∑

j0,..., jm
i0,...,im

m∏
ℓ=0

√
π∞;iℓπ∞; jℓ bℓ;iℓ jℓ . (5.2)

Crucially, this state retains off-diagonal terms (through the independent sums over iℓ and jℓ), reflecting
a richer structure that can preserve quantum coherences. Notably, the state for t∞ = 0 can be viewed as
the diagonal restriction of the state for t∞ = ∞, highlighting a hierarchical relationship between these
limits. Despite their structural differences, the underlying Markovian process is trivial in both cases.

This work opens several compelling avenues for further investigation, naturally extending from the
established framework.

First, a fundamental question is whether the continuous-time dynamics of these entangled chains
admit a description via a Markovian master equation in the GKSL form [5, 6]. Deriving such a master
equation from our discrete-step recursive maps would not only deepen the connection to the established
theory of open quantum systems [3, 12] but also provide powerful tools for analyzing relaxation rates,
decoherence channels, and non-Markovian departures.

Second, our study invites a rigorous quantification of entanglement within this continuous-time
framework. Developing measures—such as entanglement entropy or negativity—that can track the
generation, propagation, and asymptotic decay of quantum correlations in these inhomogeneous chains
is a crucial next step. This would allow us to compare the entanglement structure of the two limiting
cases directly and explore how mixing behavior influences long-range quantum correlations.

Finally, the mathematical structure revealed here suggests potential applications beyond
foundational theory. These include the design of novel quantum algorithms that leverage controlled
mixing, the study of thermalization in complex quantum systems, and the analysis of information
scrambling in disordered models.
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