Research article Special Issues

Caputo-Fabrizio fractional integro-differential equations: Existence, uniqueness, and $ \beta $-Ulam stability results for the solutions in a Banach space

  • Published: 19 January 2026
  • MSC : 34A08, 47G20

  • The study of Ulam stability for (functional, differential, difference, integral, integro-differential, and fractional differential) equations heavily relies on inequalities. In such scientific and engineering research, fixed point theorems (FPTs) are essential instruments. This article, on one hand, focused on the $ \beta $-Ulam-Hyers stability ($ \beta $-UHS) of non-instantaneous impulsive fractional integro-differential equations (N-IIFIDEs) involving the Caputo-Fabrizio fractional derivatives (C-FFDs) in a Banach space. On the other hand, we established the existence and uniqueness (E-UR) of solutions by employing the Banach contraction mapping principle (BCMP) and Krasnoselskii's fixed point theorem (KFPT). To validate the theoretical insights, a carefully crafted example was introduced. In this way, we generalized recent interesting results.

    Citation: Entesar Aljarallah, K. Venkatachalam, El-sayed El-hady. Caputo-Fabrizio fractional integro-differential equations: Existence, uniqueness, and $ \beta $-Ulam stability results for the solutions in a Banach space[J]. AIMS Mathematics, 2026, 11(1): 1527-1546. doi: 10.3934/math.2026064

    Related Papers:

  • The study of Ulam stability for (functional, differential, difference, integral, integro-differential, and fractional differential) equations heavily relies on inequalities. In such scientific and engineering research, fixed point theorems (FPTs) are essential instruments. This article, on one hand, focused on the $ \beta $-Ulam-Hyers stability ($ \beta $-UHS) of non-instantaneous impulsive fractional integro-differential equations (N-IIFIDEs) involving the Caputo-Fabrizio fractional derivatives (C-FFDs) in a Banach space. On the other hand, we established the existence and uniqueness (E-UR) of solutions by employing the Banach contraction mapping principle (BCMP) and Krasnoselskii's fixed point theorem (KFPT). To validate the theoretical insights, a carefully crafted example was introduced. In this way, we generalized recent interesting results.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 2006. https://doi.org/10.1007/978-0-387-21593-8
    [2] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, 198 (1998).
    [3] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: Models and numerical methods, World Scientific, 2012.
    [4] G. S. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Switzerland: Gordon and Breach Science Publishers, 1993.
    [5] M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, On fractional boundary value problem involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions, Adv. Differ. Equ., 2021 (2021), 37. https://doi.org/10.1186/s13662-020-03196-6 doi: 10.1186/s13662-020-03196-6
    [6] S. Abbas, M. Benchohra, J. J. Nieto, Caputo-Fabrizio fractional differential equations with instantaneous impulses, AIMS Mathematics, 6 (2021), 2932–2946. https://doi.org/10.3934/math.2021177 doi: 10.3934/math.2021177
    [7] C. Long, J. Xie, G. Chen, D. Luo, Integral boundary value problem for fractional order Differential equations with non-instantaneous impulses, Int. J. Math. Anal., 14 (2020), 251–266. https://doi.org/10.12988/ijma.2020.912110 doi: 10.12988/ijma.2020.912110
    [8] D. Luo, Z. Luo, Existence of solutions for fractional differential inclusions with initial value condition and non-instantaneous impulses, Filomat, 33 (2019), 5499–5510.
    [9] A. Salim, M. Benchohra, J. R. Graef, J. E. Lazreg, Boundary value problem for fractional order generalized Hilfer-type fractional derivative with non-instantaneous impulses, Fractal Fract., 5 (2021), 1. https://doi.org/10.3390/fractalfract5010001 doi: 10.3390/fractalfract5010001
    [10] W. Du, M. Feakan, M. Kostia, D. Velinov, $\beta$-Ulam-Hyers stability and existence of solutions for non-instantaneous impulsive fractional integral equations, Fractal Fract., 8 (2024), 469. https://doi.org/10.3390/fractalfract8080469 doi: 10.3390/fractalfract8080469
    [11] A. S. Rafeeq, Periodic solution of Caputo-Fabrizio fractional integro-differential equation with periodic and integral boundary conditions, Eur. J. Pure Appl. Math., 15 (2022), 144–157. https://doi.org/10.29020/nybg.ejpam.v15i1.4247 doi: 10.29020/nybg.ejpam.v15i1.4247
    [12] A. Benzahi, N. Abada, N. Arar, S. A. Idris, M. S. Abdo, W. Shatanawi, Caputo-Fabrizio type fractional differential equations with non-instantaneous impulses: Existence and stability results, Alex. Eng. J., 87 (2024), 186–200. https://doi.org/10.1016/j.aej.2023.12.036 doi: 10.1016/j.aej.2023.12.036
    [13] M. A. Mohammed, R. G. Metkar, On Caputo-Fabrizio fractional integro-differential equations, TWMS J. Appl. Eng. Math., 15 (2025), 952–965.
    [14] K. Shah, R. Gul, Study of fractional integro-differential equations under Caputo-Fabrizio derivative, Math. Method. Appl. Sci., 45 (2022), 7940–7953. https://doi.org/10.1002/mma.7477 doi: 10.1002/mma.7477
    [15] V. Gupta, J. Dabas, Nonlinear fractional boundary value problem with not-instantaneous impulse, AIMS mathematics, 2 (2017), 365–376. https://doi.org/10.3934/Math.2017.2.365 doi: 10.3934/Math.2017.2.365
    [16] D. Li, Y. Li, F. Chen, X. Feng, Instantaneous and non-instantaneous impulsive boundary value problem involving the generalized $\Psi$-Caputo fractional derivative, Fractal Fract., 7 (2023), 206. https://doi.org/10.3390/fractalfract7030206 doi: 10.3390/fractalfract7030206
    [17] S. Liu, J. Wang, Y. Zhou, Optimal control of noninstantaneous impulsive differential equations, J. Franklin I., 354 (2017), 7668–7698. https://doi.org/10.1016/j.jfranklin.2017.09.010 doi: 10.1016/j.jfranklin.2017.09.010
    [18] N. A. Shah, M. A. Imran, F. Miraj, Exact solutions of time fractional free convection flows of viscous fluid over an isothermal vertical plate with Caputo and Caputo-Fabrizio derivatives, J. Prime Res. Math., 13 (2017), 56–74.
    [19] M. A. Imran, M. B. Riaz, N. A. Shah, A. A. Zafar, Boundary layer flow of MHD generalized Maxwell fluid over an exponentially accelerated infinite vertical surface with slip and Newtonian heating at the boundary, Results Phys., 8 (2018), 1061–1067. https://doi.org/10.1016/j.rinp.2018.01.036 doi: 10.1016/j.rinp.2018.01.036
    [20] N. A. Sheikh, F. Ali, M. Saqib, I. Khan, S. A. A. Jan, A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid, Eur. Phys. J. Plus, 132 (2017), 54. https://doi.org/10.1140/epjp/i2017-11326-y doi: 10.1140/epjp/i2017-11326-y
    [21] R. Agarwal, S. Hristova, D. O'Regan, Non-instantaneous impulses in Caputo fractional differential equations, Fract. Calc. Appl. Anal., 20 (2017), 595–622. https://doi.org/10.1515/fca-2017-0032 doi: 10.1515/fca-2017-0032
    [22] S. Abbas, M. Benchohra, G. M. N'Guerekata, Instantaneous and non-instantaneous impulsive integro-differential equations in Banach spaces, Abstr. Appl. Anal., 2020 (2020), 269015. https://doi.org/10.1155/2020/2690125 doi: 10.1155/2020/2690125
    [23] Y. Tian, Z. Bai, Impulsive boundary value problem for differential equations with fractional order, Differ. Equ. Dyn. Syst., 21 (2013), 253–260. https://doi.org/10.1007/s12591-012-0150-6 doi: 10.1007/s12591-012-0150-6
    [24] A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003.
    [25] M. S. Algolam, M. Chebab, M. S. Abdo, F. Alshammari, K. Aldwoah, Analysis of hybrid fractional integro-differential equations with application to cholera dynamics, Sci. Rep., 15 (2025), 33905.‏ https://doi.org/10.1038/s41598-025-10159-y doi: 10.1038/s41598-025-10159-y
    [26] Y. Jia, M. Xu, Y. Lin, D. Jiang, An efficient technique based on least-squares method for fractional integro-differential equations, Alex. Eng. J., 64 (2023), 97–105. https://doi.org/10.1016/j.aej.2022.08.033 doi: 10.1016/j.aej.2022.08.033
    [27] A. A. Hamoud, C. Kechar, A. Ardjouni, H. Emadifar, A. Kumar, L. Abualigah, On Hadamard-Caputo implicit fractional integro-differential equations with boundary fractional conditions, Kragujev. J. Math., 50 (2026), 491–504.‏
    [28] F. Mesri, A. Salim, M. Benchohra, Controllability of fractional integro-differential equations with delays and singular kernels in Fréchet spaces, Mathematics, 13 (2025), 3685. https://doi.org/10.3390/math13223685 doi: 10.3390/math13223685
    [29] B. Shiri, Y. G. Shi, D. Baleanu, The well-posedness of incommensurate FDEs in the space of continuous functions, Symmetry, 16 (2024), 1058.‏ https://doi.org/10.3390/sym16081058 doi: 10.3390/sym16081058
    [30] B. Shiri, Y. G. Shi, D. Baleanu, Ulam-Hyers stability of incommensurate systems for weakly singular integral equations, J. Comput. Appl. Math., 474 (2025), 116920. https://doi.org/10.1016/j.cam.2025.116920 doi: 10.1016/j.cam.2025.116920
    [31] F. S. Aldosary, M. Murugesan, H. Gundogdu, Nonlinear sequential fractional integro‐differential systems: Caputo-type derivatives and boundary constraints, Math. Method. Appl. Sci., 48 (2025), 15194–15218. https://doi.org/10.1002/mma.70009 doi: 10.1002/mma.70009
    [32] k. Malar, R. Ilavarasi, Existence, uniqueness and controllability results for fractional neutral integro-differential equations with non-instantaneous impulses and delay, Kragujev. J. Math., 50 (2026), 683–724.
    [33] X. Zhang, P. Agarwal, Z. Liu, X. Zhang, W. Ding, A. Ciancio, On the fractional differential equations with not instantaneous impulses, Open Phys., 14 (2016), 676–684. https://doi.org/10.1515/phys-2016-0076 doi: 10.1515/phys-2016-0076
    [34] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.‏ http://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [35] X. Yu, Existence and $\beta$-Ulam-Hyers stability for a class of fractional differential equations with non-instantaneous impulses, Adv. Differ. Equ.., 2015 (2015), 104. https://doi.org/10.1186/s13662-015-0415-9 doi: 10.1186/s13662-015-0415-9
    [36] A. Zada, S. Ali, Y. Li, Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition, Adv. Differ. Equ., 2017 (2017), 317. https://doi.org/10.1186/s13662-017-1376-y doi: 10.1186/s13662-017-1376-y
    [37] A. Zada, N. Ali, U. Riaz, Ulam's stability of multi-point implicit boundary value problem with non-instantaneous impulses, Boll. Unione Mat. Ital., 13 (2020), 305–328. https://doi.org/10.1007/s40574-020-00219-8 doi: 10.1007/s40574-020-00219-8
    [38] A. B. Makhlouf, E. S. El-Hady, H. Arfaoui, S. Boulaaras, L. Mchiri, Stability of some generalized fractional differential equations in the sense of Ulam-Hyers-Rassias, Bound. Value Probl., 2023 (2023), 8. https://doi.org/10.1186/s13661-023-01695-5 doi: 10.1186/s13661-023-01695-5
    [39] A. B. Makhlouf, E. El-Hady, S. Boulaaras, L. Mchiri, Stability results of some fractional neutral integro-differential equations with delay, J. Funct. Space., 2022 (2022), 8211420. https://doi.org/10.1155/2022/8211420 doi: 10.1155/2022/8211420
    [40] Z. Yan, Y. Song, J. H. Park, Finite-time stability and stabilization for stochastic markov jump systems with mode-dependent time delays, ISA T., 68 (2017), 141–149. https://doi.org/10.1016/j.isatra.2017.01.018 doi: 10.1016/j.isatra.2017.01.018
    [41] Z. Yan, X. Zhou, G. Chang, Z. Gao, Finite-time annular domain stability and stabilization of stochastic systems with semi-Markovian switching, IEEE T. Automat. Contr., 68 (2023), 6247–6254. https://doi.org/10.1109/TAC.2022.3228202 doi: 10.1109/TAC.2022.3228202
    [42] Z. Yan, G. Chang, Z. Z. Xing, R. Xu, J. Cheng, Annular finite-time stability and stabilization in probability for nonlinear stochastic Markov jump systems with impulsive effects, Int. J. Robust Nonlin., 36 (2026), 245–255. https://doi.org/10.1002/rnc.70137 doi: 10.1002/rnc.70137
    [43] D. Boucenna, A. Ben Makhlouf, E. S. El-hady, M. A. Hammami, Ulam-Hyers-Rassias stability for generalized fractional differential equations, Math. Method. Appl. Sci., 44 (2021), 10267–10280. https://doi.org/10.1002/mma.7406 doi: 10.1002/mma.7406
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(98) PDF downloads(8) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog