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Abstract: The study of Ulam stability for (functional, differential, difference, integral, integro-
differential, and fractional differential) equations heavily relies on inequalities. In such scientific and
engineering research, fixed point theorems (FPTs) are essential instruments. This article, on one hand,
focused on the B-Ulam-Hyers stability (8-UHS) of non-instantaneous impulsive fractional integro-
differential equations (N-IIFIDEs) involving the Caputo-Fabrizio fractional derivatives (C-FFDs) in a
Banach space. On the other hand, we established the existence and uniqueness (E-UR) of solutions by
employing the Banach contraction mapping principle (BCMP) and Krasnoselskii’s fixed point theorem
(KFPT). To validate the theoretical insights, a carefully crafted example was introduced. In this way,
we generalized recent interesting results.
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1. Introduction

Derivatives are fundamental concepts in applied mathematics, defining a function’s rate of change
and serving as a cornerstone for developing mathematical models across various real-world
applications [1-3]. The integer-order derivatives are less helpful and useful for characterizing the
memory and heredity characteristics of various materials and processes than the fractional derivatives
(FDs) and integrals of arbitrary order. Over the past three decades, FDs have gained significant
attention due to their superior ability to model complex phenomena compared to classical derivatives.
Researchers and engineers have increasingly acknowledged the importance of developing novel FDs
featuring either singular or nonsingular kernels. These advancements aim to improve the modeling
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and simulation of a wide range of complex real-world phenomena [4].

Fractional differential equations (FDEs) have gained recognition as essential tools for
mathematical modeling across various disciplines, including aerodynamics, physics, chemistry,
engineering, and many more (see e.g., [5-7] and [8,9]). Integro-differential equations (I-DEs) are a
crucial research area due to their widespread applications in various fields, such as fractional power
law and heat transfer phenomena [10, 11]. Many researchers have explored FDEs or fractional I-DEs
under different boundary conditions (BCs), as evidenced by studies in [12—-14].

In engineering, FDEs play a vital role in optimizing control systems, particularly in environments
where traditional models fail to account for lingering effects. The study of N-IIs is especially relevant in
electronic circuit design, fluid mechanics, and vibration analysis. Similarly, in physics, these equations
assist in modeling viscoelastic materials, anomalous diffusion, and reaction-diffusion processes with
delayed response times [15-17].

Moreover, financial mathematics has embraced fractional calculus as a powerful tool to predict
market trends and quantify risk. By incorporating N-IIs, models can better reflect economic shocks that
do not occur instantaneously but influence asset dynamics over time, leading to improved forecasting
and risk mitigation strategies.

Analytic solutions for a viscous fluid incorporating the FDs of Caputo and Caputo-Fabrizio (C-F)
are presented in [18]. In [19], researchers modeled a Maxwell fluid using an FD with a nonsingular
kernel, obtaining semi-analytical solutions. A comparative study in [20] examined Atangana-Baleanu
and C-FFD models for a generalized Casson fluid, leading to precise solutions. Furthermore, various
nonlinear analytic techniques have been applied to investigate the existence of solutions for nonlinear
DEs, as demonstrated in [21,22].

In the last few decades, initial boundary value problem (IBVP) research has progressed and has
been very helpful in creating a range of models of real processes in applications. Tian and Bai [23]
reported some existence findings from an IBVP involving FDs of the Caputo type, and E-UR have been
developed using the FPT (see e.g., [24]). Recent studies have shown that a significant portion of the
literature on FDEs focuses predominantly on the Caputo and Riemann-Liouville types. These works
explore a range of scenarios, including time-delay systems, impulsive effects, and various boundary
value conditions (BVCs).

In [11], authors studied the existence and approximate periodic solution of a nonlinear fractional
I-DE:

SED°x(9) = F(3, x(9), Bx(9)), 9 €[0,T],
x(0) = xo,

where ;”D° denotes the C-FFD (6 € (0, 1]).
In [25], the authors examined the existence of solutions for the following class of hybrid fractional
I-DEs involving the Caputo and Riemann-Liouville FD:

m* I"i%ki(a,x(a))
C O.r X(a) - Zi:l
D" = B(a, , 0<acx<l,
@y = B ¢

x(0) =0, x¥(0)=0, x”(0)=0,---, X" 72(0) = 0, (1)

0 1
x(,u):af x(r)dr+bf x(r)dr, O<p<u<b<l,
0 0
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where €D?" is the §-Caputo FD of order r(m* — 1 < r < m*), I?? is the §-Riemann-Liouville fractional
integral (FI) of order ¢ > 0,¢ € {wy,wy, -+ ,w,},A € C([0, T] X R,R -0), and B, k; € C([0,T] xR, R),
with £,(0,0) =0,i=0,1,--- ,m".

In [26], Legendre orthonormal polynomials and the least squares technique have been employed to
examine the following fractional I-DEs:

{v”(x) + D"v(x) + D™v(x) = A(x), x€[0,q], v>0,and{ > 2, )

v(0) = 11, V(0) =1y,

where ¢ is a positive real number, D" is the v-th Caputo FD, and D¢ is the /-th Riemann-Liouville FI.
In [27], the authors examined the E-UR of solutions for the following nonlinear fractional implicit
I-DEs of Hadamard-Caputo type with fractional BCs:

O

EuDu(p) = h(p. u(p).5 D'u(p), f K(p. t,v(0)dt).
1

u(l)=0,  aplfu(n) + 5D u()A,

3)

where y1? is the standard Hadamard FI, gHD’ is the Hadamard-Caputo FD, h : & X R} > R, K :
& X EXR — R are given functions, n € € =: (1,¢],¢ > 1, and a, 4, § are real constants.

In [28], the existence and approximate controllability of the following class of fractional I-DEs:

0 Z(i(gl)fg(s’ u(s), u,)ds + Bv(), t € R, .

u(t) = ¢(1), te H:=[-4,0],

“Du(t) + Gu(r) =

were examined in some Fréchet spaces, where CDg is the Caputo FD of order @ € (0,1), G : D(G) C
F — F is some operator defined on F, where F is the Fréchet space. The function g is some nonlinear
function and v is some control function.

In the study of DEs, commensurate equations refer to systems in which all operators (such as FDs)
share a common order. This structural uniformity often allows the use of standard analytical tools,
including classical stability analysis and transform methods. In contrast, incommensurate equations
involve operators of genuinely different, non-multiple orders, reflecting multiscale or heterogeneous
dynamics. Such equations typically model complex phenomena with competing memory effects or
temporal behaviors and require more sophisticated analytical frameworks, as well as tailored numerical
schemes.

In [29,30], the authors obtained the existence of a mild solution for an incommensurate FDE of the
form

DUy =filt, Y1, -5 W),

Cbaly2 :f2(t’yl9 e 9yv)9
(%)

CDalyV :fv(t,}’l,- L »yv),

with the initial condition
[0(0), ..., (O] = [Yo,15 s Yo
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on [0,7], where 7 € R (real numbers), y; : [0,7] — R, a; € (0,1), and v € N (natural numbers).
The UHS of these equations in the spaces of continuous and piecewise continuous functions is studied
in [30].

In [31], the authors examined the E-UR for the following fractional I-DEs:

(D™ + ASDUNA (1) = (1, A1(1), Ay (1),C D71 Ay (1), I Ax(1)) ©
(€D + AD™ YA (1) = Pa(t, A (1), Ax(0),C DT2A (D), I A\ (1)),
with the following BCs:
Ai(1) = nAy(ay) + ntAi(a)
TA(T) = 51A2(by) + 52TAL(b2) o

Ax(t) = 01A (1) + 0aTA (1)
TAL(T) = mAI(w1) + mTA|(W2)

where €D, D are the Caputo FDs of order o, a,, 1 < a;,a, < 2, respectively, r;, s;, 0 € {1,2},
VY,i=1,2€ C(JXxRxR), and a;, b;,w;, t; € [0,T],i € {1,2}. In [32], the authors examined the E-UR
and controllability for the following fractional neutral I-DEs and N-IIs with infinite delay:

CD,’[V(Z) —A(t,v,)] = Bu(t) + F(t, Vi, f H(, s, vs)ds), t € (g, sl
0

k:05192""9m (8)
v(t) = Ji(v(te)) + gt v(te)), t € (te, sil, k=1,2,--- ,m
Vo = (D € Bh’ re (—OO, 0),

where CD{ is the Caputo FD of order r € (0,1) and J = [0, T]. The operator B is the infinitesimal
generator of some semigroup.

Expanding further, our study on the initial value problem (IVP) for nonlinear implicit FDEs with
non-instantaneous impulses (N-IIs) (see e.g., [33]) provides a crucial bridge between theoretical
mathematics and practical applications. By incorporating the C-FFD, we enhance the capacity of
fractional calculus to model systems with memory-dependent characteristics, allowing for a more
nuanced understanding of dynamic processes.

One of the principal challenges associated with these equations stems from their implicit structure,
wherein variable relationships are not defined through direct or explicit formulations. This inherent
complexity demands the application of sophisticated analytical tools and numerical schemes to extract
reliable and meaningful solutions. Moreover, the integration of N-IIs introduces additional layers of
intricacy, as it necessitates a nuanced treatment of abrupt transitions that occur progressively over
designated time intervals rather than at discrete moments.

The periodic solutions for the following fractional Volterra-Fredholm I-DE:

()] T
5" D°x(®) = F(9, x(D), f G (K, x(K)dk, f Ga(k, x())dk). # € [0, T,
0 0
T
x(0) = xo, x(0) = x(T) + f H,[x(9)]d9,
0
have been established in [13], where ¥ D° denotes the C-FFD (6 € (0, 1]).
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In essence, our research provides a comprehensive framework for analyzing the interplay between
FDs and N-IIs, offering new perspectives on mathematical theory and practical implementation across
multiple disciplines. By pushing the boundaries of contemporary analysis, we aim to equip researchers,
engineers, and decision-makers with deeper insights into complex systems that evolve over time.

Motivated by earlier research, the project aims to explore N-IIs and C-F I-DEs with BCs (with
b:K0<191 Sﬁ2<"'<l9mSKmSKm+1 :I)

FD°z(9) = F(9, 2(8), Bz(9)), 9 € J : (ki, 1411, 0<6<1,

z() = H;(19, Z(ﬂ)z e @nk] i=1,..,m, ©)

z(b) - 7'(b) = f ) Gk, z2(k))dk,
b

where the CF- FD of order § is ¥ D?, F : [b, T]XRXR — R; G : [b, T]XR —» R & H; : [J;, k] xR —
R is continuous, Bz({}) = foﬂ x(9, k, z(k))dk, and x € C(D,R*) with domain D = {(#,k) e RZ : b <k <
¥ < T

Motivated by the aforementioned factors, our work aims to close the noted research gap. The
following summarizes the main contributions of the study.

I) To examine S-UHS of the N-IIFIDE involving the C-FFD in a Banach space.

II) To establish the E-UR of the solutions for the N-IIFIDE involving the C-FFD using Banach and
Krasnoselskii’s FPT.

III) To validate our results, an example is provided.

The remainder of this article is organized as follows. Section 2 introduces essential lemmas and
foundational notions that form the basis for the main theoretical results. Sections 3 and 4 investigate
the E-UR and B-UHS of solutions for the problem formulations specified in Eq (9). Section 5 give an
example to verify the results.

2. Preliminaries

We define the space of piecewise continuous functions as
‘@%([b’ z]’HQ) = {Z : [b’ I] —-R:ze C((ﬂk, 19‘/€+1]’IR)} .

Take z(9;) and z(9;) with z(9;) = z(9;) satisfying ||z]| ¢ = sup {|z(F)| : b < I < T}.
Set 2% ([b, T],R) : {z e Z€(b,I,R) : 2 € ZE"([b, Z],R)} with norm
Izl ¢ := max {l|zll p¢ , 1Z'|| 2}

Definition 2.1. ( [1]) The Caputo FD of order 6 > 0, n — 1 < § < n (n € N), for F (a C"([0, #])), is
described as

1

CDC.F() = I"°D'F(9) =
o F() ©)) T =9)

)
f (0 — k)" FY (k)dk.
0
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Definition 2.2. ( [34]) Let 6 € (0, 1], fractional C-FD of order § for a function F (a C'([0,])) is
defined by

CF DO (F(®)) = — f ﬂF'(ﬂ)exp[—éu]dﬁ 9> b
~5J, -6l ’

Definition 2.3. Let 6 € (0, 1], fractional C-F integral of order ¢ for a function F is defined by

2(1 - 6)

CF 76 _
BED) = 5550

F@@) + Fdd, 9 > b,

70,
(2-6)20) Jo
where Z2(-) is some normalization constant (#?(0) = Z(1) = 1).
Lemma 2.1. Letn <8 <n+ 1. Then ¢F Dg+z(0) =0, if z(9¥) is a constant function.

Lemma 2.2. Given continuous functions H;(-) : [%,x] — R, for a continuous function

g: PE€(b,T]) - R, then

T _
mmaaLG«ammwQ£QMW)
tas 6)9«5) ﬁ §(&)dd ¥ € [b, 4],
2(9) =y Hi@), 9 € (9, k), (10)
2(1-0)
H() + 5755580) + 555 S (0o
_(2—52)697(5) g, ¥ € (ki, Vi1 ],

is a solution of the system given by

FDo7(9) = g(9), € (ki 9i411,0 <6 < 1,
z(9) =H (9, 2()) Be Wkl i=1,...,m

T
z(b) —Z'(b) = f G(k, z(k))dk. (11)
b

Proof. Assume that z(1#) satisfies (11). Integrating (11) for ¢ € [b, ¥,], we get

_ _2a-9) __
am—n®+@_®@@ﬂm+@—®@wnﬂ

On the other hand, if ¢ € (x;,9;41],i = 1,2,--- ,m and again integrating (11), we have

) 21 - 8)
z(9) = z(k;) + mg(ﬂ) +

T
g(hdd. (12)

25 t
FIY T f g(9)d?. (13)

Next, employing the impulsive condition, z(J}) = H;(), ¢ € (9;, k;], we get

z(k;) = Hi(k;). (14)
Consequently, from (13) and (14), we get
~ 2(1-9) 26 *
2(¥) = Hi(k;) + mé’(ﬁ) + m ‘fb g(@)dd, (15)
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and

o 2(1 - 6) 26 *
20) = H0) + o) + s [

20 i
_ m‘fb‘ g(hdd, v € (ki Fiy1].

Now utilizing the condition z(b) — z’(b) = f: G(k, z(k))dk, we obtain

T
z(T) = H,,(x,,) + f G(k,z(k)dk, ¥ € [b, T].
b

(16)

7)

Hence, using the FDs and above lemmas, this shows that Eqs (12), (16) and (17) imply (10). Now, we

recall one of the main tools in our study, see, e.g., [24].

O

Theorem 2.3. (KFPT) For a closed bounded convex subset S of a Banach space B, a contraction
O : S8 —> B and O : S - B, a continuous mapping with O**(8S) relatively compact. If O*(x) +

O*(y) € S, VYx,y €S, then the mapping O* + O™ has at least one FP.
3. Main results

We utilize the following hypothesis to prove the main results:
(H,): A continuous function F' with some constants K, K, > 0:

|[F(3,A1, B1) — F(9,A2, By)| < K |A1 — Ayl + K> |By — By,
YA,B,A)»,B, €R, € J.

(H,): A constant N > 0 exists: |z(, ¢, A1) —z2(F, ¢, B))| < N|A; — By|.

(H3): |H;(3, Vi) — Hi(}, V)| < Ly, |V1 = Vo, for Vi, V, € R.

(Hy): A constant K5 > 0 exists: |G(?,U)| < Kg, ¥ ¢ € Jand U € R.

(Hs): A constant Kr > 0 exists: |F (3, A1, By))| < Kp, V¢ € Jand A1, B; € R.
(Hg): A function ®;(9), exists with i = 1,2,--- , m:

|H;(9, Wi, el < 0:;(3), &€, si].V Wi,¢1 €R.

Theorem 3.1. Let (H,) — (H,) hold consequently:

M : max{ max L, +( 20 =9 + 203 —b)
i=12m 2-8)20) 2-06)A0)

2(1 - 90) N 26(T - b)
2-0)Z20) 2-6F©)

)(Kl + KoN)(D i1 + ki),

Lh,.+KG(I—b)+( )(K1+K2N)}< 1,

then the problem (9) admits a unique solution on the interval [b, T].

(18)
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Proof. Let the operator P be defined as follows:

Hons 2(k) + 7 Gk, 2(0)dk + 5290 F (9, 2(8), B2(9))

T
+a5755w Jy F@0,2(9), Ba(®)), 9 € [b, 7],

(Pz)(P) =4  H(), 9 e @, kl,i=1,2,..
1ﬂm+0§;@nﬂamymw»+aw%®wazwymwmw
“ F(9, 2(89), Bz(8))d¥, 9 € (ki Diilyi= 1,2, ..om

T 5)J(5) b

We first show that P is a contraction.
Case 1: For z,y € % ([b, T],R) and ¢ € [b, ], we have

|(P2)(®) — (PY)®)| < Ly, |2(k) — y(0)| dx

T
+ KG‘fb |Z(K) - y(K)| dk

2(1 -9)
2-oze) KN |2(0) = y(0)| di
20 ad
+ m([ﬂ + KZN)ﬁ |Z(K) - y(1<)|d/<,

2(1-9) N 26(T -Db)
2-0)20) 2-8Z()

< Lh,.+KG(iZ—b)+(

)(K1 + KzN)]

2@ -y, -

Case 2: For @ € (9;, k],

[(P2)®) — (PY)(®)| < |Hi(D, 2(8)) — Hi(D, y@®))|,

< Lh,.”z—y

PE "

Case 3: For 9 € (k;, ¥;41], we have

|(P2)®) — (Py)(®)|
ﬂ&mmm—Hmymﬂ
2(1 -
2o &9@
2(1-9)
T 2020
2(1 - 96) i
T 2-020) ), |F(19, Z(ﬂ),BZ(ﬂ))—F(ﬁ,y(ﬂ),By(ﬁ))|dﬂ,
<P‘+( 2(1 - 6) 4_2(5(z—b)
" 29 26) T 2=0)20)

|F<ﬁ 2(9), Bz(9)) — F(®,y(®), By(®))|

b |F<z9, z(8), Bz(9)) — F(9, y(®), By(®))| do)

ym+&mwp+ﬂ|

i+1

Therefore, from the cases above, P is a contraction because M < 1. Consequently, the problem
stated in (9) admits a unique solution on [b, T]. O
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Theorem 3.2. Ler (Hy) — (He) be satisfied. Let L; := Supyepy. . 4i(#) < oo,y 1= maxL, < 1 (¥

i=1,2,---,m),and B,, ={z € PC(J,R) : |zl py < r}). Then problem (9) has at least one solution on
[b, T].

Proof. We define the operators Q and S on B,,, by (withi=1,2,--- ,m)

Hm(Km’ Z(Km))’ ﬁ € [b’ ﬂl]»
(Q2)(@) =1 HW,z(P), ¥ € (¥, «il,
Hi(k;, 2(k;)), z € (kj, Vi1

and (withi=1,2,...,m)

f Gk, Z(K))dK + (22(61);)(6) g(®)
(25)—}@ A * g(9)a, 9 € (b, %],
S2)®) =1 0 9 € B 1),
(22;1);)(5)g(19)+ 25D b * g(9)d
(26)—@«5) , 8()dd, 1 € (ki, Dig1].

We employ KFPT and prove in four steps as follows.

Step 1: The norm of the sum of Oz and Sy is still in B, ,.
Take z,y € B,

Case 1: For ¢ € [b, 9],

2(1-9)

m“’(ﬂ 2(19), Bz(1))|

|0z + Sy| < |Hy(kns 2(k,))| + fb ) IG(x, (k)| dk +

26(T-b) (7
2] — 26(T - b
-9 , 2%x-H) )(Km]

2-0)20)  2-0)20)

< KF+KG(E—b)+(

<r

Case 2: For each 9 € (¢, ],
|0z + Sy| < |H(S, W, ()| < M.

Case 3: For ¢ € (x;, 9411,
|0z + Sy| < |Hi(xi, 2(x;))| +

N 20(T -b)
2 -8)A(9)
26(T -Db) i
- m L |F(K, Z(K), BZ(K))dKl ,
( 21 = 6) 26(T - b)
<L;+ +
2-8)Z20) 2-06)F©)

2(1 -9)
(2 - 6)2(5)

f |F(k, z(k), Bz(k))dk|
b

|F(x, z(k), Bz(k))|

) (Kp)(Wip1 + i),

<r
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Thus, Oz + Sy € B, .
Step 2: The operator Q is a contraction on B, ,.
Case 1: For z;,z, € B,, and ¥ € [b, ],

102, () — Qz,(D)| < Li |21 (k) — Z2(kin)| < Li |21 — 25| 55 -
Case 2: For ¢ € (9;,1],i =1,2,--- ,m,
102,(F) — Qz,(D)| < Lil|z) - 2ol 5 -
Case 3: For ¢ € («;, 9311,
102,(#) — Qz,(D)| < Li ||z — 2ol ¢ -
We deduce:
102,(F) — Qz,(D)| < Lillz1 — 22l ¢

which proves that Q is a contraction.
Step 3: The operator S is continuous.

Let z, be a sequence: z, — z in % (|b, T],R).
Case 1: For 9 € [b, V4],

1S 2,() — Sz(P)| < [(z “b)+ ( 2(1 - 6) 26(T - b) )]

2-50)20)  2-020)
|F3, 2,8, Bz(9)) - F(9, 2(9), Bz(8))

PE "

Case 2: For ©# € (9;, k],
IS z,(#) — Sz()| = 0.

Case 3: For ¢ € («;, 411, with (i = 1,2,--- , m),

2(1 - 6) 26(T - b)
G020 T Cosme) U T
|F(3,2,8), Bz(9)) — F(9, 2(9), Bz(9))

ISz,(F) — Sz()| <

PEC

Therefore, we conclude that n — oo, ||Sz,(#) — S z(})|| o — O.
Step 4: Compactness of operator S.
First, note that S is uniformly bounded on B, ,, i.e.,

21 =)L 26T -b)L,
2-0)20G)  (2-08)2(5)

||SZ||S( )(1+r)<r.

Case 1: Ford € [b,1],0<V, <V, <9,2z€ B,

21-0)L; 26T -b)L,
2-0)2(5) (2-06)2()

|SV2_SV1|S(

)(1 +r) (Vo = V).
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Case 2: For ¥ € (¢, k1,9 <V, <V, <K,z € By,
ISV, =SV =0.

Case 3: For ¢ € (Kj,ﬁi+1],l<i <Vi<V, <1, € Bp,r»

2(1-0)L 25T -b)L,
ISV2 =SV S((z—é)gﬂ(@ Moy ) AR )

From the above cases, we get [SV, —SV;| — 0 as V, — V) and § is equicontinuous. Then, §
is relatively compact by equicontinuity and boundedness. Consequently, S is compact by the Ascoli-
Arzela theorem. Hence, problem (9) admit at least one solution. |

4. Stability in the sense of 5-Ulam

The stability of a system is fundamental in both theoretical and practical contexts, ensuring
reliability in applications such as transportation systems, which demand smooth and safe operations.
Mathematical stability plays a critical role in the analysis of differential equations governing such
systems, which has been extensively studied by researchers, leading to valuable results (see [35-37]),
see also [38, 39] for the Ulam stability of some FDEs. as well as some other kinds of stability,
e.g., [40—42]. Ulam stability of FDEs has a long history and nice results (see, e.g., [43]). Roughly
speaking, it answers the question of whether an approximate solution of an equation lies close (in
some sense) to its exact solution or not.

Let J = [b, T] and &% (J,R) be the B-Banach space of continuous function form J into R with the
p-norm ||zlly = sup {lz@)F’ : 9 € .0 < B <1}, ¥z € CU,R).

We also need the piecewise continuous S-Banach space

PE (b, TL,R) :={F : [b,T] > R: F € C(t, %], R},
and there exists z(9;) and z(¥9) with z(¥) = z(¥) satisfying the PB-norm

IFllps = sup {IF@)F : 9 € 1,0 <B < 1},

Definition 4.1. Equation (9) is 8-UHS with respect to v, € Z% (J,R,) and a real number C;,5 > 0
exists:

CF no —
{| D2(®) — F(9, 2(9), Bz(9))| < v, (19)

12(#) — Hi(, 2(9)| < v,, ve @il i=1,-,m,
and fory € % of (19), there exists a mild solution z € % of (9) with
2@ -y < Cpopf, el

Theorem 4.1. Assuming that the hypotheses (Hy) — (H3) are satisfied, it follows that the problem
defined by (9) possesses 3-UHS.
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Proof. Denote by z the unique solution of

“D°7(9) = F(&,2(), Bo(9)), ¥ € (ki D],

z(9) = Hi(9, z(19)), e,k i=1,...m

2(b) = 2/ (b) = [° G, 2(k))dk,

and we get

(Km) + ﬁ G(k, z(k))dK + (zzg)jza)F(ﬂ, 2(9), Bz())
+ 5575 o * F(9, 2(9), Bz(9))d,
z(0) =3 H®),

H, (Kl) + (ZZESI)_;)((;)F(ﬁ 2®). Bz()) +

Te- 6)/’(6) X “ F (9, 2(9), Bz(9))d?,

0<o6<1,
(20)

9 € [b, Y],
9 € (9, kil, (21)

- 6)](5) b F (@, 2(9), Bz(9))dd
¥ € (ki Vis1].

Lety € P%"(J,R) be a solution of Eq (19). Then, in view of relation (21), it follows that for every

¥ € (k;, ¥;1], we have

2(1-9)
(2-06)7(0)

20
Y jl: F(k,z(x), Bx(k))

26 i
+ m i F(k, z(«), Bx(k))dk|,

2(1-9) + 26(9i41 — ki)
2-0)Z0) Q-6)A() vr

and for (¢4, k;],i = 1,2, ...,m, we have

[v(®) - Hitos, y(x0) -

= Ur

12(3) — Hi(, 2(9))| < v,
For each ¢ € [b, ¢#;], we have

F(k, z(k), Bx(k))dk

T
y(@) = Hi(kn, (ki) + f Gk, z(k))dk + 2020 g («, 2(x), Bz(«))
b

2-0)Z(9)

+ L fz F(k, z(k), Bz(k))d«k
2-0)20) Jy ’ ’ ’
2(1 —9) N 26(T - D)
S 2-620)  C-626) "
Case 1: For each ¥ € [b, ], we get

[y(@) - 29| < |y = Hi(kn, Y (k)

T
- fb G(k, z(k))dx — (22(15%1% z(x), Bz(k))
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26 <
— m ‘J; F(K, Z(K), BZ(K))dK‘
+——3i——jqn ), B2()d
(2-6)(@(6) \ K,ZK, Z\ K K

- L fz F(k, z(x), Bz(k))d«k
(2-0)Z0©) Jv T

2

2(1 = 6) 26(K; + K,N)(T — b)
Sa-oze)V Tt T e 20 [y =25
Consequently,
26(K; + KoN)Y(E b)Y 2(1 - 6) A
[L« 2-0)2() )}b_%g(@—®@wf”iﬁ
ly® - 2| < Croptfs 9 € b, 9],
where

2(1-6) s
((2—6).@«5) Ur+ Lhi)

1 — (26(K1+K2N)(Z—b) )ﬂ '
2=0)2(6)

C fvB =

Case 2: For ¢ € (¢, «;],i = 1,2,--- ,m, we have

ly@® -z < |y@) - Hi@, y@)|’
+ [Hi(®, y(9)) — Hi(8, 2(9))

L,-Ki o
Svf"'(%) |y_x|Pﬁ’

8

which implies that
|y(ﬁ) - Z(ﬁ)|ﬁ < Cf»Va,B ’o 19 € (ﬁi’ Ki]a l = 1’ 2, -e.,m,

under which

Case 3: For ¢ € («x;, ¥;411,i = 1,2,--- ,m, we have

2(1 - 6)

mF(’G y(x), By(k))

y@) -2 < |Hi) +

+ Lfl F(k,y(x), By(k))dx
Q2-0P0) Jy T

(22)

(23)
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26 i F B d i
s f (k, y(K), By(K))dk

[m f |F (k. y(x), By(x)) = F(k,z(x), Bz(x))| dx

f |F (. y(0), By () = Flo, 200), Ba(i)| di] .

(2 5)9(6)
( 2(1 = &)@y —Ki))ﬂ (25(K1 + KoN)(04y — i))ﬁ
<|v, + + ly-12|,,.
(2 -6)Z() 2 -8)Z(0) 7B
This implies
1 - (25(K1 + KoN) Wiy — )
2 - 6P 76
2(1 = 6)(i1 —
. [1 +( 2= 020 ) ]Uf Aorp:
Thus,
y@®) - 2@ < Cp 0,
where

2(1-6)(Fi41~Kiyvr )ﬁ
L+ ( -0)20)
~ (25<K1 +KoN) (i1 =) )ﬁ '
2-020)

C fvB =

Summarizing Eqs (22)—(24) = (9) is S-Ulam stable with respect to 9J,.

5. Example

(24)

In this section, we consider some particular cases of the nonlinear FIDE to apply our results in the
study of existence and Ulam stabilities, specifically, UHS and UHR. Consider the nonlinear C-F of the

form:
FD°72(9) = F(9,2(89), Bz(9)), 9 € J : (ki 1411, 0<6<1,

z(%) = H/(3, z(19)), e @kl i=1,..m

T
z(b) — 7/ (b) = f G(k, z(k))dk.
b

The following examples are particular cases of the FIDE given by (24).
Consider the C-F of the form:

0
D) = 2+ 55 [ g zdi
_ )
z(19) = 20+ e,
, _ 2 il
Z(b) —Z (b) - J; 10+|z(K)|d

(25)

(26)
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Set

F(@@,z(9), Bz(1)) = lZ + Bz(¥),

and

1 1
Bz(%) = d
2(d) = 10 f kexp(9? — 1) + 4Z(K) o

B 2z
G(ﬂ’Z(K))_fl 10 + 20|’

which is a nonlinear FIDE involving the Hadamard FD. In this case, @ = % Set

1 1
F(®, 22F 157
D z,n) =~z o7

and 9 € [1, 2]. Using the hypothesis (H;), we get

1 1
|F(9,A, B)) — F(¥,Az, By)| < 1 |A; — Ay + 10 |B) — By,
VAi,Bi,A, B €R,

and

|Z(ﬁ’ <P9A1) - Z(ﬁ’ SD’ Bl)' <

A, - B
exp(ﬁ2—1)+4|l !l
1
<—|A; - By.
_5|1 1l

Hence the assumptions (H, — H3) are satisfiedand 1 <6 <2, b=1, T =2, K| = ‘—1‘, K, =

L Ko=L1 N=1L 6=1 ) =1 andL, =L By using Theorem 3.1, we conclude that:
2(1-9) 26(T - b)
* * Ki + KoN)(@iy1 + 1) < 1
" ((2—6)@(6) (2 — 6)2(5) (Ki + KoN)(@ i1 + ki)
and

2(1-9) N 26(T -Db)
2-0)Z0) 2-0A0)

Lhi+KG(z—b)+( )(K1+K2N)<l.

According to Theorem 3.1, there is a unique solution of (26) on [1, 2]. Further, we get the solution
z of problem (26) below:

z(¥) = % r( ) fg (- K) + 5eﬂ+2<1+lzl) fO T K)dKfl lgi(l;zlk)ldk S

- %, ? € (1,2],

z(b) — z'(b) = 2(1|i(|1z9<)1|9>|> g )fﬁo ¥ =2t + sen -
+ foﬁ o z(k)dk — r( ) fﬂ @ =0+ T

: ﬁe o ﬂ) o ¥ e (1,2].
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For ¢ € (0, 1], we obtain

_2(1-9) 26(K; + K>N)(T - b)
|y—z|Pﬁ_—(2_5)9(6)u,+th.+ Goapo) S 0784
For 9 € (1, 2], we get
o] = v+ 2SO = ko ’
A 2= 06)2(5)
20(K; + KoN)(Wiv1 — ki) s
( =6 70) ) < 1.5723.

This establishes that the system of Eqs (27) exhibits S-UHS with respect to the norm v, = 1.
6. Conclusions

This article investigates the S-UHS for the N-IIFIDE incorporating the C-FFD within a Banach
space. Furthermore, findings regarding uniqueness and existence are proven. Banach’s FPTs are used
to display the uniqueness result, while KFPTs are used to examine the existence results. Lastly, we
provide an example that demonstrates the consistency of the theoretical findings. In this way, we filled
the gab existing in the literature for this particular system of FDE. In the future, we plan to do the
following:

1) Investigate E-UR for a generalized version of the current C-F BVP with various FD types using a
novel approach.
2) Study B-UHS for the following generalized version of (9):

D) = ) AF(D, 20), BUD)), D € (i, D] 0<s<l,
i=1

2(9) = Hi(¥, 2(9)), de@nkl, i=1,..,m, (28)

T
z(b) -7/ (b) = f G(k, z(k))dk.
b
3) Examine the E-UR and g-UHS for (9) involving different FDs.
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