Research article Special Issues

Density results on the coefficients of the triple product $ L $-functions

  • Published: 16 January 2026
  • MSC : 11F30, 11F11, 11F66

  • Let $ H_{k}^{\ast} $ denote the set of normalized primitive holomorphic Hecke cusp forms of even integral weight $ k $ for the full modular group. Denote by $ \lambda_{f\times f\times f}(n) $ the $ n $th coefficient of the triple product $ L $-function $ L(f\times f\times f, s) $ attached to $ f\in H_{k}^{\ast} $. Suppose $ Q(\underline x) $ is a primitive integral positive-definite binary quadratic form of fixed discriminant $ D < 0 $ with the class number $ h(D) = 1 $. In this paper, we study the distribution of $ \lambda_{f\times f\times f}(n) $ on the set of all primes and its subset $ \{p:p = Q(\underline x)\} $ and obtain the analytic density and the natural density of the above sets. These results generalize previous ones.

    Citation: Ying Han, Huixue Lao. Density results on the coefficients of the triple product $ L $-functions[J]. AIMS Mathematics, 2026, 11(1): 1382-1411. doi: 10.3934/math.2026059

    Related Papers:

  • Let $ H_{k}^{\ast} $ denote the set of normalized primitive holomorphic Hecke cusp forms of even integral weight $ k $ for the full modular group. Denote by $ \lambda_{f\times f\times f}(n) $ the $ n $th coefficient of the triple product $ L $-function $ L(f\times f\times f, s) $ attached to $ f\in H_{k}^{\ast} $. Suppose $ Q(\underline x) $ is a primitive integral positive-definite binary quadratic form of fixed discriminant $ D < 0 $ with the class number $ h(D) = 1 $. In this paper, we study the distribution of $ \lambda_{f\times f\times f}(n) $ on the set of all primes and its subset $ \{p:p = Q(\underline x)\} $ and obtain the analytic density and the natural density of the above sets. These results generalize previous ones.



    加载中


    [1] L. Chiriac, Comparing Hecke eigenvalues of newforms, Arch. Math., 109 (2017), 223–229. https://doi.org/10.1007/s00013-017-1072-x doi: 10.1007/s00013-017-1072-x
    [2] L. Chiriac, On the number of dominating Fourier coefficients of two newforms, Proc. Amer. Math. Soc., 146 (2018), 4221–4224. https://doi.org/10.1090/proc/14145 doi: 10.1090/proc/14145
    [3] P. Deligne, La Conjecture de Weil, I. Publ. Math. Inst. Hautes Études Sci., 43 (1974), 273–307.
    [4] G. D. Hua, Deterministic comparison of cusp form coefficients over certain sequences, Ramanujan J., 63 (2024), 1089–1107. https://doi.org/10.1007/s11139-023-00805-2 doi: 10.1007/s11139-023-00805-2
    [5] H. Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, American Mathematical Society, Providence, 17 (1997).
    [6] H. X. Lao, F. J. Qiao, Sign changes of the coefficients of triple product $L$-functions, J. Korean Math. Soc., 61 (2024), 899–922.
    [7] H. X. Lao, On comparing Hecke eigenvalues of cusp forms, Acta. Math. Hungar., 160 (2020), 58–71. https://doi.org/10.1007/s10474-019-00996-5 doi: 10.1007/s10474-019-00996-5
    [8] Y. K. Lau, G. S. Lü, Sums of Fourier coefficients of cusp forms, Q. J. Math., 62 (2011), 687–716.
    [9] H. F. Liu, Mean value estimates of the coefficients of product $L$-functions, Acta Math. Hungar., 156 (2018), 102–111. https://doi.org/10.1007/s10474-018-0839-2 doi: 10.1007/s10474-018-0839-2
    [10] G. S. Lü, A. Sankaranarayanan, On the coefficients of triple product $L$-functions, Rocky Mountain J. Math., 47 (2017), 553–570.
    [11] J. Meher, K. D. Shankhadhar, G. K. Viswanadham, On the coefficients of symmetric power $L$-functions, Int. J. Number Theory, 14 (2018), 813–824. https://doi.org/10.1142/S1793042118500495 doi: 10.1142/S1793042118500495
    [12] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Stud. Adv. Math., Cambridge Univ. Press, Cambridge, 46 (1995).
    [13] L. Vaishya, Deterministic comparison of Hecke eigenvalues at the primes represented by a binary quadatic form, Int. J. Math., 33 (2022), 2250082.
    [14] P. J. Wong, On the Chebotarev-Sato-Tate phenomenon, J. Number Theory, 196 (2019), 272–290. https://doi.org/10.1016/j.jnt.2018.09.010 doi: 10.1016/j.jnt.2018.09.010
    [15] A. Y. Zou, H. X. Lao, S. Luo, Some density results on sets of primes for Hecke eigenvalues, J. Math., 2021, 2462693.
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(76) PDF downloads(7) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog