Let $ H_{k}^{\ast} $ denote the set of normalized primitive holomorphic Hecke cusp forms of even integral weight $ k $ for the full modular group. Denote by $ \lambda_{f\times f\times f}(n) $ the $ n $th coefficient of the triple product $ L $-function $ L(f\times f\times f, s) $ attached to $ f\in H_{k}^{\ast} $. Suppose $ Q(\underline x) $ is a primitive integral positive-definite binary quadratic form of fixed discriminant $ D < 0 $ with the class number $ h(D) = 1 $. In this paper, we study the distribution of $ \lambda_{f\times f\times f}(n) $ on the set of all primes and its subset $ \{p:p = Q(\underline x)\} $ and obtain the analytic density and the natural density of the above sets. These results generalize previous ones.
Citation: Ying Han, Huixue Lao. Density results on the coefficients of the triple product $ L $-functions[J]. AIMS Mathematics, 2026, 11(1): 1382-1411. doi: 10.3934/math.2026059
Let $ H_{k}^{\ast} $ denote the set of normalized primitive holomorphic Hecke cusp forms of even integral weight $ k $ for the full modular group. Denote by $ \lambda_{f\times f\times f}(n) $ the $ n $th coefficient of the triple product $ L $-function $ L(f\times f\times f, s) $ attached to $ f\in H_{k}^{\ast} $. Suppose $ Q(\underline x) $ is a primitive integral positive-definite binary quadratic form of fixed discriminant $ D < 0 $ with the class number $ h(D) = 1 $. In this paper, we study the distribution of $ \lambda_{f\times f\times f}(n) $ on the set of all primes and its subset $ \{p:p = Q(\underline x)\} $ and obtain the analytic density and the natural density of the above sets. These results generalize previous ones.
| [1] |
L. Chiriac, Comparing Hecke eigenvalues of newforms, Arch. Math., 109 (2017), 223–229. https://doi.org/10.1007/s00013-017-1072-x doi: 10.1007/s00013-017-1072-x
|
| [2] |
L. Chiriac, On the number of dominating Fourier coefficients of two newforms, Proc. Amer. Math. Soc., 146 (2018), 4221–4224. https://doi.org/10.1090/proc/14145 doi: 10.1090/proc/14145
|
| [3] | P. Deligne, La Conjecture de Weil, I. Publ. Math. Inst. Hautes Études Sci., 43 (1974), 273–307. |
| [4] |
G. D. Hua, Deterministic comparison of cusp form coefficients over certain sequences, Ramanujan J., 63 (2024), 1089–1107. https://doi.org/10.1007/s11139-023-00805-2 doi: 10.1007/s11139-023-00805-2
|
| [5] | H. Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, American Mathematical Society, Providence, 17 (1997). |
| [6] | H. X. Lao, F. J. Qiao, Sign changes of the coefficients of triple product $L$-functions, J. Korean Math. Soc., 61 (2024), 899–922. |
| [7] |
H. X. Lao, On comparing Hecke eigenvalues of cusp forms, Acta. Math. Hungar., 160 (2020), 58–71. https://doi.org/10.1007/s10474-019-00996-5 doi: 10.1007/s10474-019-00996-5
|
| [8] | Y. K. Lau, G. S. Lü, Sums of Fourier coefficients of cusp forms, Q. J. Math., 62 (2011), 687–716. |
| [9] |
H. F. Liu, Mean value estimates of the coefficients of product $L$-functions, Acta Math. Hungar., 156 (2018), 102–111. https://doi.org/10.1007/s10474-018-0839-2 doi: 10.1007/s10474-018-0839-2
|
| [10] | G. S. Lü, A. Sankaranarayanan, On the coefficients of triple product $L$-functions, Rocky Mountain J. Math., 47 (2017), 553–570. |
| [11] |
J. Meher, K. D. Shankhadhar, G. K. Viswanadham, On the coefficients of symmetric power $L$-functions, Int. J. Number Theory, 14 (2018), 813–824. https://doi.org/10.1142/S1793042118500495 doi: 10.1142/S1793042118500495
|
| [12] | G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Stud. Adv. Math., Cambridge Univ. Press, Cambridge, 46 (1995). |
| [13] | L. Vaishya, Deterministic comparison of Hecke eigenvalues at the primes represented by a binary quadatic form, Int. J. Math., 33 (2022), 2250082. |
| [14] |
P. J. Wong, On the Chebotarev-Sato-Tate phenomenon, J. Number Theory, 196 (2019), 272–290. https://doi.org/10.1016/j.jnt.2018.09.010 doi: 10.1016/j.jnt.2018.09.010
|
| [15] | A. Y. Zou, H. X. Lao, S. Luo, Some density results on sets of primes for Hecke eigenvalues, J. Math., 2021, 2462693. |