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Abstract: Let H∗k denote the set of normalized primitive holomorphic Hecke cusp forms of even
integral weight k for the full modular group. Denote by λ f× f× f (n) the nth coefficient of the triple
product L-function L( f × f × f , s) attached to f ∈ H∗k . Suppose Q(x) is a primitive integral positive-
definite binary quadratic form of fixed discriminant D < 0 with the class number h(D) = 1. In this
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ones.
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1. Introduction

The density of a set of prime numbers measures its size. There are several notions of density, such
as analytic density and natural density, which in general are distinct. Triple product L-functions, as
vital automorphic L-functions, are investigated by some scholars (see, e.g., [6, 10]). In this paper, we
focus on the distribution of coefficients of the triple product L-functions on the set of all primes and its
subset, and we obtain the analytic density and the natural density of the above sets.

Let H∗k denote the set of normalized primitive holomorphic Hecke cusp forms of even integral
weight k for S L(2,Z). f ∈ H∗k at the cusp∞ has Fourier expansion

f (z) =

∞∑
n=1

λ f (n)n
k−1

2 e2πiz,

where λ f (n) is real and satisfies the multiplicative property

λ f (m)λ f (n) =
∑

d|(m,n)

λ f (
mn
d2 ).
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In particular, for each prime p and r ∈ N, one has

λ2
f (pr) = 1 + λ f (p2) + λ f (p4) + · · · + λ f (p2r). (1.1)

In 1974, Deligne [3] proved the Ramanujan–Petersson conjecture

|λ f (n)| 6 d(n),

where d(n) is the divisor function. Deligne’s result showed that there exist α f (p), β f (p) ∈ C satisfying

α f (p) + β f (p) = λ f (p), α f (p)β f (p) = |α f (p)| = |β f (p)| = 1. (1.2)

It can be inferred from |λ f (p)| 6 2 that there is a unique θ f (p) ∈ [0, π] such that

λ f (p) = eiθ f (p) + e−iθ f (p) = 2 cos θ f (p). (1.3)

We introduce the definition of analytic density. A set S consisting of primes is said to have the analytic
density κ > 0 if the following is satisfied:∑

p∈S

1
pσ
∼ (1 + o(1))κ

∑
p

1
pσ

= −(1 + o(1))κ log(σ − 1), as σ→ 1+.

In this paper, let Q(x) (x ∈ Z2) be a primitive integral positive-definite binary quadratic form of fixed
discriminant D < 0 with the class number h(D) = 1. Let f ∈ H∗k1

and g ∈ H∗k2
be two distinct Hecke

eigenforms. In [13], Vaishya investigated deterministic comparison of Fourier coefficients λ j
f (pm) ( j =

1, 2) at the primes represented by a binary quadratic form Q(x). Denote by λ f× f× f (n) the nth coefficient
of the Dirichlet expansion of the triple product L-function L( f × f × f , s) attached to f ∈ H∗k1

. In [4],
Hua studied the analytic density of the sets {p : λ j

f× f× f (p) < λ
j
g×g×g(p)} and their respective subsets

{p : p = Q(x) for some x ∈ Z2 and λ j
f× f× f (p) < λ j

g×g×g(p)}, where j = 1, 2.
The first aim of this paper is to prove the following results on analytic density.

Theorem 1.1. (1) Let f ∈ H∗k1
and g ∈ H∗k2

be two distinct Hecke eigenforms. Then the two sets

X2 = {p : λ f× f× f (p2) < λg×g×g(p2)}

and
Y2 = {p : λ2

f× f× f (p2) < λ2
g×g×g(p2)}

have analytic densities at least
41

2704
and

8231
2056392

, respectively.
(2) Let f ∈ H∗k1

and g ∈ H∗k2
be two distinct Hecke eigenforms. Then the two sets

X3 = {p : λ f× f× f (p3) < λg×g×g(p3)}

and
Y3 = {p : λ2

f× f× f (p3) < λ2
g×g×g(p3)}

have analytic densities at least
211

57600
and

1051157
572166400

, respectively.
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Theorem 1.2. (1) Let f ∈ H∗k1
and g ∈ H∗k2

be two distinct Hecke eigenforms. Then the two sets

A2 = {p : p = Q(x) for some x ∈ Z2 and λ f× f× f (p2) < λg×g×g(p2)}

and
B2 = {p : p = Q(x) for some x ∈ Z2 and λ2

f× f× f (p2) < λ2
g×g×g(p2)}

have analytic densities at least
41

5408
and

8231
4112784

, respectively.
(2) Let f ∈ H∗k1

and g ∈ H∗k2
be two distinct Hecke eigenforms. Then the two sets

A3 = {p : p = Q(x) for some x ∈ Z2 and λ f× f× f (p3) < λg×g×g(p3)}

and
B3 = {p : p = Q(x) for some x ∈ Z2 and λ2

f× f× f (p3) < λ2
g×g×g(p3)}

have analytic densities at least
211

115200
and

1051157
1144332800

, respectively.

Some authors also considered the density for linear combinations of two Fourier coefficients
corresponding to two distinct automorphic representations. In [15], for any given integer j > 1, Zou et
al. arrived at a lower bound for the analytic density of the set

{p : a < c1λ f (p j) + c2λg(p j) < b},

where a, b, c1, c2 ∈ R, a < b. Hua [4] derived a lower bound for the analytic density of the set

{p : p = Q(x) for some x ∈ Z2 and a < c1λ f (p j) + c2λg(p j) < b}.

For the triple product L-function L( f × f × f , s), we establish the following results.

Theorem 1.3. Let a, b, c1, c2 ∈ R, a < b.
(1) Let f ∈ H∗k1

and g ∈ H∗k2
be two distinct Hecke eigenforms. Then the set

F1 = {p : a < c1λ f× f× f (p) + c2λg×g×g(p) < b}

has an analytic density at least f (1, a, b, c1, c2), where

f (1, a, b, c1, c2) =
(a2 + b2 + 4ab)(5c2

1 + 5c2
2) + 132(c4

1 + c4
2) + 150c2

1c2
2 + a2b2

2(64(|c1| + |c2|)2 + 8(|a| + |b|)(|c1| + |c2|) + |ab|)2

−
5c2

1 + 5c2
2 + ab

2(64(|c1| + |c2|)2 + 8(|a| + |b|)(|c1| + |c2|) + |ab|)
. (1.4)

(2) Let f ∈ H∗k1
and g ∈ H∗k2

be two distinct Hecke eigenforms. Then the set

F2 = {p : a < c1λ f× f× f (p2) + c2λg×g×g(p2) < b}

has an analytic density at least f (2, a, b, c1, c2), where

f (2, a, b, c1, c2)

AIMS Mathematics Volume 11, Issue 1, 1382–1411.



1385

=
−2ab(a + b)(c1 + c2) + (a2 + b2 + 4ab)(42c2

1 + 42c2
2 + 2c1c2) − 1490(a + b)(c3

1 + c3
2)

2(1296(|c1| + |c2|)2 + 36(|a| + |b|)(|c1| + |c2|) + |ab|)2

+
252ab(c2

1c2 + c1c2
2) + 18226(c4

1 + c4
2) + 2980(c3

1c2 + c1c3
2) + 10584c2

1c2
2 + a2b2

2(1296(|c1| + |c2|)2 + 36(|a| + |b|)(|c1| + |c2|) + |ab|)2

−
42c2

1 + 42c2
2 + 2c1c2 − (a + b)(c1 + c2) + ab

2(1296(|c1| + |c2|)2 + 36(|a| + |b|)(|c1| + |c2|) + |ab|)
. (1.5)

(3) Let f ∈ H∗k1
and g ∈ H∗k2

be two distinct Hecke eigenforms. Then the set

F3 = {p : a < c1λ f× f× f (p3) + c2λg×g×g(p3) < b}

has an analytic density at least f (3, a, b, c1, c2), where

f (3, a, b, c1, c2)

=
(a2 + b2 + 4ab)(211c2

1 + 211c2
2) + 1095678(c4

1 + c4
2) + 267126c2

1c2
2 + a2b2

2(14400(|c1| + |c2|)2 + 120(|a| + |b|)(|c1| + |c2|) + |ab|)2

−
211c2

1 + 211c2
2 + ab

2(14400(|c1| + |c2|)2 + 120(|a| + |b|)(|c1| + |c2|) + |ab|)
. (1.6)

Theorem 1.4. Let a, b, c1, c2 ∈ R, a < b.
(1) Let f ∈ H∗k1

and g ∈ H∗k2
be two distinct Hecke eigenforms. Then the set

E1 = {p : p = Q(x) for some x ∈ Z2 and a < c1λ f× f× f (p) + c2λg×g×g(p) < b}

has an analytic density at least e(1, a, b, c1, c2), where

e(1, a, b, c1, c2) =
(a2 + b2 + 4ab)(5c2

1 + 5c2
2) + 132(c4

1 + c4
2) + 150c2

1c2
2 + a2b2

4(64(|c1| + |c2|)2 + 8(|a| + |b|)(|c1| + |c2|) + |ab|)2

−
5c2

1 + 5c2
2 + ab

4(64(|c1| + |c2|)2 + 8(|a| + |b|)(|c1| + |c2|) + |ab|)
. (1.7)

(2) Let f ∈ H∗k1
and g ∈ H∗k2

be two distinct Hecke eigenforms. Then the set

E2 = {p : p = Q(x) for some x ∈ Z2 and a < c1λ f× f× f (p2) + c2λg×g×g(p2) < b}

has an analytic density at least e(2, a, b, c1, c2), where

e(2, a, b, c1, c2)

=
−2ab(a + b)(c1 + c2) + (a2 + b2 + 4ab)(42c2

1 + 42c2
2 + 2c1c2) − 1490(a + b)(c3

1 + c3
2)

4(1296(|c1| + |c2|)2 + 36(|a| + |b|)(|c1| + |c2|) + |ab|)2

+
252ab(c2

1c2 + c1c2
2) + 18226(c4

1 + c4
2) + 2980(c3

1c2 + c1c3
2) + 10584c2

1c2
2 + a2b2

4(1296(|c1| + |c2|)2 + 36(|a| + |b|)(|c1| + |c2|) + |ab|)2

−
42c2

1 + 42c2
2 + 2c1c2 − (a + b)(c1 + c2) + ab

4(1296(|c1| + |c2|)2 + 36(|a| + |b|)(|c1| + |c2|) + |ab|)
. (1.8)
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(3) Let f ∈ H∗k1
and g ∈ H∗k2

be two distinct Hecke eigenforms. Then the set

E3 = {p : p = Q(x) for some x ∈ Z2 and a < c1λ f× f× f (p3) + c2λg×g×g(p3) < b}

has an analytic density at least e(3, a, b, c1, c2), where

e(3, a, b, c1, c2) =
(a2 + b2 + 4ab)(211c2

1 + 211c2
2) + 1095678(c4

1 + c4
2) + 267126c2

1c2
2 + a2b2

4(14400(|c1| + |c2|)2 + 120(|a| + |b|)(|c1| + |c2|) + |ab|)2

−
211c2

1 + 211c2
2 + ab

4(14400(|c1| + |c2|)2 + 120(|a| + |b|)(|c1| + |c2|) + |ab|)
. (1.9)

In the set S ⊆ P, where P is the set of all prime numbers, the natural density of the set S equals

d(S ) if and only if lim
x→∞

#{p ≤ x|p ∈ S }
#{p ≤ x|p ∈ P}

= d(S ). Meher et al. [11] studied the distribution of the signs

of sequence {λ f (p j)}. For j = 1, 2, Chiriac [1] proved that the analytic density of the set {p : λ j
f (p) <

λ
j
g(p)} is at least

1
16

. In [2], he applied the pair-Sato–Tate conjecture to evaluate the natural density of

the set {p : λ f (p) < λg(p)}, which equals
1
2

. Here we prove the following.

Theorem 1.5. Let f , g ∈ H∗k be two distinct nonzero cusp forms, and j ≥ 1 is an integer. Then the

natural density of the set {p : λ j
f× f× f (p) ≶ λ j

g×g×g(p)} is
1
2

.

The classical Landau lemma indicates that sequences {λ f (n)}n≥1 have infinite sign transformations
(see [11]). For any even positive integer j, Zou et al. [15] determined that the natural density of the set

{p : λ f (p)λ f (p j) < 0} is
1
2

. Extending the method in [15], we formulate Theorems 1.6 and 1.7.

Theorem 1.6. Let f ∈ H∗k be a nonzero cusp form.
(1) The sets

Pi = {p : λ f× f× f (pi) > 0} and P′i = {p : λ f× f× f (pi) < 0}

have a natural density
1
2

, where i = 1, 3.
(2) The sets

P2 = {p : λ f× f× f (p2) > 0} and P′2 = {p : λ f× f× f (p2) < 0}

have natural densities
2α
π

+
sin2α
π

and 1 −
2α
π
−

sin2α
π

, respectively, where α ≈ 0.5236.

Theorem 1.7. Let f ∈ H∗k be a nonzero cusp form.
(1) The sets

P̄2 = {p : λ f× f× f (p)λ f× f× f (p2) > 0}

and
P̄′2 = {p : λ f× f× f (p)λ f× f× f (p2) < 0}

have a natural density
1
2

.
(2) The sets

P̄3 = {p : λ f× f× f (p)λ f× f× f (p3) > 0}
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and
P̄′3 = {p : λ f× f× f (p)λ f× f× f (p3) < 0}

have natural densities
2α
π

+
sin2α
π

and 1 −
2α
π
−

sin2α
π

, respectively, where α ≈ 0.7045.

Remark 1.1. When the natural density of a set exists, its analytic density also exists, and they are
equal (see [12]). Hence, the above three theorems are also applicable to the analytic density.

2. Preliminaries

In this section, we introduce some facts and lemmas that will be useful in the proof of the main
results in this paper.

Let f ∈ H∗k be a Hecke eigenform. The jth symmetric power L-function associated to f is defined
as

L(sym j f , s) =
∏

p

j∏
m=0

(1 − α f (p) j−mβ f (p)m p−s)−1, Re (s) > 1,

which can be expanded into a Dirichlet series,

L(sym j f , s) =

∞∑
n=1

λsym j f (n)
ns =

∏
p

(1 +
λsym j f (p)

ps + · · · +
λsym j f (pm)

pms + · · ·), Re (s) > 1.

Obviously, λsym j f (n) is a real multiplicative function. At prime values, it is given by

λ f (p j) = λsym j f (p) =

j∑
m=0

α f (p) j−mβ f (p)m = U j(λ f (p)/2),

where U j(x) represents the jth Chebyshev polynomial of the second kind.
Let f ∈ H∗k1

, g ∈ H∗k2
be two distinct Hecke eigenforms. For i, j ≥ 1, the Rankin–Selberg L-function

related to symi f and sym jg is defined as

L(symi f × sym jg, s) =
∏

p

i∏
m=0

j∏
n=0

(1 − α f (p)i−mβ f (p)mαg(p) j−nβg(p)n p−s)−1, Re (s) > 1.

Similarly, we can also rewrite the aforementioned expression as

L(symi f × sym jg, s) =

∞∑
n=1

λsymi f×sym jg(n)
ns =

∏
p

(1 +

∞∑
v=1

λsymi f×sym jg(pv)
pvs ), Re (s) > 1,

where λsymi f×sym jg(n) is a real multiplicative function and satisfies

λsymi f×sym jg(p) = λsymi f (p)λsym jg(p). (2.1)

Define the triple product L-function L( f × f × f , s) attached to f as

L( f × f × f , s) =
∏

p

(1 −
α f (p)3

ps )−1(1 −
α f (p)

ps )−3(1 −
α f (p)−1

ps )−3(1 −
α f (p)−3

ps )−1
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=

∞∑
n=1

λ f× f× f (n)
ns , Re (s) > 1.

By [9, (2.5)], we know that

L( f × f × f , s) = L( f , s)2L(sym3 f , s).

Define rQ(n) as

rQ(n) := #{x ∈ Z2 : n = Q(x)}.

The generating function θQ(τ) associated with Q(x) is given by a specific formula,

θQ(τ) =
∑
x∈Z2

qQ(x) =

∞∑
n=0

rQ(n)qn, q = e(τ), Im(τ) > 0.

This function θQ(τ) belongs to the space M1(Γ0(|D|), χD) (see, e.g., [5, Theorem 10.9]), where χD is the

Dirichlet character modulo |D| defined by the Jacobi symbol χD(d) =

(D
d

)
. According to Weil’s bound,

we have bound rQ(n) � nε.
The character sum r(n; D) is explicitly given in terms of the Jacobi symbol χD (see [5, (11.9),

(11.10)]), with specific values

r(n; D) = ωD

∑
d|n

χD(d), where ωD =


6, i f D = −3,
4, i f D = −4,
2, i f D < −4.

It is known that r(n; D) counts the number of representations of a positive integer n by all the reduced
forms of fixed discriminant D. For the quadratic form Q(x) of discriminant D < 0 with class number
h(D) = 1, we have

rQ(n) = r(n; D) = ωD

∑
d|n

χD(d).

In particular, rQ(p) = ωD(1+χD(p)). Hence, the prime p is represented by Q(x) if and only if χD(p) = 1.
Motivated by this fact, we define the characteristic function

1Q(p) =


rQ(p)
2ωD

, i f p = Q(x) f or some x ∈ Z2,

0, otherwise.
(2.2)

This implies that
rQ(p)
ωD

is 2 or 0 according to whether p is represented by Q(x) or not.

Next, we will introduce and prove some lemmas.

AIMS Mathematics Volume 11, Issue 1, 1382–1411.
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Lemma 2.1. [13, Lemma 3.1] Let f ∈ H∗k1
and g ∈ H∗k2

be two distinct Hecke eigenforms. When
σ→ 1+, for each i, j ≥ 0, we have∑

p

λ2
f (p j)

pσ
=

∑
p

1
pσ

+ O(1) and
∑

p

λ f (pi)λg(p j)
pσ

= O(1).

Furthermore, ∑
p

λ2
f (p j)χD(p)

pσ
= O(1),

∑
p

λ f (pi)λg(p j)χD(p)
pσ

= O(1).

In addition, ∑
p

λ f (pi)λ f (p j)
pσ

= O(1), where i , j.

Lemma 2.2. Let f ∈ H∗k be a Hecke eigenform. When σ → 1+, for any j, h ≥ 1, 0 ≤ i ≤ j and
0 ≤ k ≤ h, we have

(1)
∑

p

λ f (pi)λ f (p j)λ f (pk)λ f (ph)
pσ

=


O(1), k + h − i − j is odd or h − k > i + j,

(1 + i)
∑
p

1
pσ

+ O(1), k + h − i − j is even and h − k ≤ j − i,

(1 + i −
h − k + i − j

2
)
∑
p

1
pσ

+ O(1), k + h − i − j is even and j − i < h − k ≤ i + j.

(2)
∑

p

λ f (pi)λ f (p j)λ f (pk)
pσ

=


∑
p

1
pσ

+ O(1), i + j − k is even and j − i ≤ k ≤ i + j,

O(1), otherwise.

Proof. From [15], we know that

λ f (pi)λ f (p j) =

i∑
l=0

λsymi+ j−2l f (p). (2.3)

Furthermore, (2.1) implies

λ f (pi)λ f (p j)λ f (pk)λ f (ph) =

i∑
l1=0

k∑
l2=0

λsymi+ j−2l1×symk+h−2l2 f (p).

The Rankin–Selberg functions related to the above are entire functions if and only if i + j − 2l1 ,

k + h − 2l2 holds. Let 2(l2 − l1) = k + h − i − j = b ≥ 0, and set

nl1,l2 = #{(l2, l1) : 2(l2 − l1) = k + h − i − j = b, l1 = 0, 1, ..., i and l2 = 0, 1, ..., k}.

Noting that values of l2 − l1 that are at most k, when b > 2k, nl1,l2 = 0. In other words, i + j − 2l1 ,

k + h − 2l2. Obviously, in the cases where b is odd or b > 2k (namely, h − k > i + j), we infer∑
p

λ f (pi)λ f (p j)λ f (pk)λ f (ph)
pσ

= O(1).
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If b is even, we deal with it in two cases. When b ≤ 2(k − i) (namely, h − k ≤ j − i), we have

∑
p

λ f (pi)λ f (p j)λ f (pk)λ f (ph)
pσ

= (1 + i)
∑

p

1
pσ

+ O(1).

When 2(k − i) < b ≤ 2k (namely, j − i ≤ h − k ≤ i + j), we conclude that

∑
p

λ f (pi)λ f (p j)λ f (pk)λ f (ph)
pσ

= (1 + i − (
b
2
− (k − i)))

∑
p

1
pσ

+ O(1)

= (1 + i −
h − k + i − j

2
)
∑

p

1
pσ

+ O(1).

By referring to (2.1) and (2.3), we arrive at

λ f (pi)λ f (p j)λ f (pk) =

i∑
l=0

λsymi+ j−2l f×symk f (p). (2.4)

Following the proof as in (1), if i + j − k is even and j − i ≤ k ≤ i + j, then the constant term in (2.4)
is 1. Thus, the second assertion holds.

Lemma 2.3. Let f ∈ H∗k1
and g ∈ H∗k2

be two distinct Hecke eigenforms. When σ → 1+, for any
j, h ≥ 1, 0 ≤ i ≤ j and 0 ≤ k ≤ h, we have

(1)
∑

p

λ f (pi)λ f (p j)λg(pk)
pσ

= O(1).

(2)
∑

p

λ f (pi)λ f (p j)λg(pk)λg(ph)
pσ

=


∑
p

1
pσ

+ O(1), i = j, k = h,

O(1), otherwise.

Proof. (1) λ f (pi)λ f (p j)λg(pk) =
i∑

l=0
λsymi+ j−2l f×symkg(p) is given similar to (2.4). The relation shows that

the associated Dirichlet series can be decomposed into L(symi+ j f × symkg, s)L(symi+ j−2 f × symkg, s) ·
· · L(sym j−i f × symkg, s)G(s), where G(s) can be given in terms of a Euler product that converges
absolutely for Re (s) > 1

2 and G(s) , 0 at s = 1. Therefore, (1) follows from the fact that the
Rankin–Selberg L-function L(symi f × sym jg, s) is an entire function except for the case when i = j
and f = g, in which case it has simple poles at s = 0, 1.
(2) The relation

λ f (pi)λ f (p j)λg(pk)λg(ph) =

i∑
l1=0

k∑
l2=0

λsymi+ j−2l1 f (p)λsymk+h−2l2 g(p)

implies the second assertion by a similar method.
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Lemma 2.4. Let f ∈ H∗k1
and g ∈ H∗k2

be two distinct Hecke eigenforms. Then we have
(1) ∑

p

λ f× f× f (p2) − λg×g×g(p2)
pσ

= O(1),

∑
p

(λ f× f× f (p2) − λg×g×g(p2))2

pσ
= 82

∑
p

1
pσ

+ O(1).

(2) ∑
p

(λ f× f× f (p3) − λg×g×g(p3))2

pσ
= 422

∑
p

1
pσ

+ O(1).

Proof.

∑
p

(λ f× f× f (p2) − λg×g×g(p2))2

pσ

=
∑

p

λ2
f× f× f (p2)

pσ
+

∑
p

λ2
g×g×g(p2)

pσ
− 2

∑
p

λ f× f× f (p2)λg×g×g(p2)
pσ

. (2.5)

For j = 2m, we learn from Lau and Lü [8] that

λ
j
f (p) = Am +

∑
1≤r≤m−1

Cm(r)λsym2r f (p) + λsym2m f (p),

where

Am =
(2m)!

m!(m + 1)!
, Cm(r) =

(2m)!(2r + 1)
(m − r)!(m + r + 1)!

, m > 1.

In particular, we have λ6
f (p) = 5 + 9λ f (p2) + 5λ f (p4) + λ f (p6), λ4

f (p) = 2 + 3λ f (p2) + λ f (p4) and
λ2

f (p) = 1 + λ f (p2).
By the definition of the triple product L-functions, we have

λ f× f× f (p2) = α f (p)6 + 3α f (p)4 + 9α f (p)2 + 10 + 9β f (p)2 + 3β f (p)4 + β f (p)6

= λ f (p)6 − 3λ f (p)4 + 6λ f (p)2 − 4
= 1 + 6λ f (p2) + 2λ f (p4) + λ f (p6). (2.6)

Thus,

λ2
f× f× f (p2) = 1 + 12λ f (p2) + 4λ f (p4) + 2λ f (p6) + 36λ2

f (p2) + 4λ2
f (p4)

+ λ2
f (p6) + 24λ f (p2)λ f (p4) + 12λ f (p2)λ f (p6) + 4λ f (p4)λ f (p6), (2.7)

λ f× f× f (p2)λg×g×g(p2) = 1 +
∑

i=2,4,6

kiλ f (pi) +
∑

j=2,4,6

k jλg(p j) +
∑

i, j=2,4,6

ki jλ f (pi)λg(p j), (2.8)
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where k2 = 6, k4 = 2, k6 = 1, k22 = 36, k24 = 12, k26 = 6, k42 = 12, k44 = 4, k46 = 2, k62 = 6, k64 =

2, k66 = 1.
By Lemma 2.1 and (2.5), we deduce that

∑
p

λ f× f× f (p2) − λg×g×g(p2)
pσ

= O(1) and
∑

p

(λ f× f× f (p2) − λg×g×g(p2))2

pσ
= 82

∑
p

1
pσ

+ O(1).

Now we study λ f× f× f (p3). For j = 2m + 1, from [8] we obtain

λ
j
f (p) = Bmλ f (p) +

∑
1≤r≤m−1

Dm(r)λsym2r+1 f (p) + λsym2m+1 f (p), (2.9)

where

Bm =
2(2m + 1)!
m!(m + 2)!

, Dm(r) =
(2m + 1)!(2r + 2)

(m − r)!(m + r + 2)!
, m > 1.

According to the definition of the triple product L-functions and (2.9), we have

λ f× f× f (p3) = α f (p)9 + 3α f (p)7 + 9α f (p)5 + 20α f (p)3 + 27α f (p)
+ 27β f (p) + 20β f (p)3 + 9β f (p)5 + 3β f (p)7 + β f (p)9

= λ f (p)9 − 6λ f (p)7 + 15λ f (p)5 − 13λ3
f (p)

= 7λ f (p) + 11λ f (p3) + 6λ f (p5) + 2λ f (p7) + λ f (p9). (2.10)

Therefore,

λ2
f× f× f (p3) = 49λ2

f (p) + 154λ f (p)λ f (p3) + 84λ f (p)λ f (p5) + 28λ f (p)λ f (p7) + 14λ f (p)λ f (p9)

+ 121λ2
f (p3) + 132λ f (p3)λ f (p5) + 44λ f (p3)λ f (p7) + 22λ f (p3)λ f (p9) + 36λ2

f (p5)

+ 24λ f (p5)λ f (p7) + 12λ f (p5)λ f (p9) + 4λ2
f (p7) + 4λ f (p7)λ f (p9) + λ2

f (p9), (2.11)

λ f× f× f (p3)λg×g×g(p3) =
∑

i, j=1,3,5,7,9

ki jλ f (pi)λg(p j),

where k11 = 49, k13 = 77, k15 = 42, k17 = 14, ..., k91 = 7, k93 = 11, k95 = 6, k97 = 2, k99 = 1.
By analogy with (2.5), we finally conclude from Lemma 2.1 that (2) holds.

Lemma 2.5. Let f ∈ H∗k1
and g ∈ H∗k2

be two distinct Hecke eigenforms. Then we have

(1)
∑

p=Q(x)
f or some x∈Z2

(λ f× f× f (p2) − λg×g×g(p2))2

pσ
= 41

∑
p

1
pσ

+ O(1).

(2)
∑

p=Q(x)
f or some x∈Z2

(λ f× f× f (p3) − λg×g×g(p3))2

pσ
= 211

∑
p

1
pσ

+ O(1).

Proof. To avoid repetition, we only prove the first case.
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In this lemma, because the summation extends over the primes that can be expressed in the form
Q(x), we introduce the characteristic function 1Q(p) (2.2) and obtain∑

p=Q(x)
f or some x∈Z2

(λ f× f× f (p2) − λg×g×g(p2))2

pσ
=

∑
p

(λ f× f× f (p2) − λg×g×g(p2))21Q(p)
pσ

=
1

2ωD

∑
p

(λ f× f× f (p2) − λg×g×g(p2))2rQ(p)
pσ

=
1
2

∑
p

(λ f× f× f (p2) − λg×g×g(p2))2(1 + χD(p))
pσ

=
1
2

(
∑

p

λ2
f× f× f (p2)

pσ
+

∑
p

λ2
g×g×g(p2)

pσ
− 2

∑
p

λ f× f× f (p2)λg×g×g(p2)
pσ

)

+
1
2

(
∑

p

λ2
f× f× f (p2)χD(p)

pσ
+

∑
p

λ2
g×g×g(p2)χD(p)

pσ
− 2

∑
p

λ f× f× f (p2)λg×g×g(p2)χD(p)
pσ

).

By (2.7), (2.8) and Lemma 2.1, we prove (1).

Lemma 2.6. Let f ∈ H∗k1
and g ∈ H∗k2

be two distinct Hecke eigenforms. Then we have
(1)∑

p

λ2
f× f× f (p2) − λ2

g×g×g(p2)

pσ
= O(1) and

∑
p

(λ2
f× f× f (p2) − λ2

g×g×g(p2))2

pσ
= 32924

∑
p

1
pσ

+ O(1).

(2) ∑
p

(λ2
f× f× f (p3) − λ2

g×g×g(p3))2

pσ
= 2102314

∑
p

1
pσ

+ O(1).

Proof. Substituting (1.1) into (2.7), we have

λ2
f× f× f (p2) = 42 + 53λ f (p2) + 45λ f (p4) + 7λ f (p6) + 5λ f (p8) + λ f (p10) + λ f (p12)

+ 24λ f (p2)λ f (p4) + 12λ f (p2)λ f (p6) + 4λ f (p4)λ f (p6). (2.12)

Hence,

λ4
f× f× f (p2) = 2500 + 6161λ2

f (p2) + 5457λ2
f (p4) + 1001λ2

f (p6) + 41λ2
f (p8) + λ2

f (p10) + λ2
f (p12)

+
∑

i=2,4,6,
8,10,12

kiλ f (pi) +
∑

i, j=2,4,
6,8,10,12

i, j

ki jλ f (pi)λ f (p j) +
∑

i, j,h=2,
4,6,8,10,12

i, j,h

ki jhλ f (pi)λ f (p j)λ f (ph),

where k2 = 8540, k4 = 7948, k6 = 3740, k8 = 1172, ..., k248 = 336, k268 = 312, k468 = 40.

λ2
f× f× f (p2)λ2

g×g×g(p2) = 1764 +
∑

i=2,4,6,
8,10,12

kiλ f (pi) +
∑

j=2,4,6,
8,10,12

k jλg(p j) +
∑

i, j=2,4,
6,8,10,12

k′i jλ f (pi)λg(p j)

+
∑

i, j=2,4,
6,8,10,12

i, j

ki jλ f (pi)λ f (p j) +
∑

i, j=2,4,
6,8,10,12

i, j

ki jλg(pi)λg(p j) +
∑

i, j,h=2,4,
6,8,10,12

j,h

ki jhλ f (pi)λg(p j)λg(ph)
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+
∑

i, j,h=2,4,
6,8,10,12

i, j

ki jhλ f (pi)λ f (p j)λg(ph) +
∑

i, j,h,l=2,4,
6,8,10,12
i, j,h,l

ki jhlλ f (pi)λ f (p j)λg(ph)λg(pl),

where k2 = 2226, k4 = 1890, k6 = 294, k8 = 210, ..., k24 = 1008, k26 = 504, k46 = 168, ..., k4624 =

96, k4626 = 48, k4646 = 16.
To see that (1) holds, we use Lemmas 2.1 and 2.3.

Now we study the case when λ f× f× f (p3). Substituting (1.1) into (2.11), we have

λ2
f× f× f (p3) = 211 + 211λ f (p2) + 162λ f (p4) + 162λ f (p6) + 41λ f (p8) + 41λ f (p10) + 5λ f (p12)

+ 5λ f (p14) + λ f (p16) + λ f (p18) + 154λ f (p)λ f (p3) + 84λ f (p)λ f (p5) + 28λ f (p)λ f (p7)
+ 14λ f (p)λ f (p9) + 132λ f (p3)λ f (p5) + 44λ f (p3)λ f (p7) + 22λ f (p3)λ f (p9)
+ 24λ f (p5)λ f (p7) + 12λ f (p5)λ f (p9) + 4λ f (p7)λ f (p9). (2.13)

Hence,

λ4
f× f× f (p3) = 96853 + 96853λ2

f (p2) + 46824λ2
f (p4) + 46824λ2

f (p6) + 2417λ2
f (p8)

+ 2417λ2
f (p10) + 41λ2

f (p12) + 41λ2
f (p14) + λ2

f (p16) + λ2
f (p18)

+
∑

i=2,4,6,8,10,
12,14,16,18

kiλ f (pi) +
∑

i, j=2,4,6,8,
10,12,14,16,18

i, j

ki jλ f (pi)λ f (p j) +
∑
i, j=1,
3,5,7,9

i, j

ki jλ f (pi)λ f (p j)

+
∑

i=2,4,6,8,10,
12,14,16,18
j,h=1,3,5,7,9

j,h

ki jhλ f (pi)λ f (p j)λ f (ph) +
∑

i, j,h,l=
1,3,5,7,9
i, j,h,l

ki jhlλ f (pi)λ f (p j)λ f (ph)λ f (pl),

where k2 = 89042, k4 = 68364, k6 = 68364, k8 = 17302, ..., k1579 = 2016, k3579 = 3168.

λ2
f× f× f (p3)λ2

g×g×g(p3) = 44521 +
∑

i=2,4,6,8,10,
12,14,16,18

kiλ f (pi) +
∑

j=2,4,6,8,10,
12,14,16,18

k jλg(p j) +
∑
i, j=1,
3,5,7,9

i, j

ki jλ f (pi)λ f (p j)

+
∑

i, j=2,4,
6,8,10,12,
14,16,18

ki jλ f (pi)λg(p j) +
∑
i, j=1,
3,5,7,9

i, j

ki jλg(pi)λg(p j) +
∑

i=2,4,6,8,10,
12,14,16,18
j,h=1,3,5,7,9

j,h

ki jhλ f (pi)λg(p j)λg(ph)

+
∑

h=2,4,6,8,10,
12,14,16,18
i, j=1,3,5,7,9

i, j

ki jhλ f (pi)λ f (p j)λg(ph) +
∑

i, j=1,3,5,7,9
h,l=1,3,5,7,9

i, j,h,l

ki jhlλ f (pi)λ f (p j)λg(ph)λg(pl),

where k2 = 44521, k4 = 34182, k6 = 34182, k8 = 8651, ..., k7959 = 48, k7979 = 16.
From the calculations above, we show that (2) holds.
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Lemma 2.7. Let f ∈ H∗k1
and g ∈ H∗k2

be two distinct Hecke eigenforms. Then we have
(1) ∑

p=Q(x)
f or some x∈Z2

(λ2
f× f× f (p2) − λ2

g×g×g(p2))2

pσ
= 16462

∑
p

1
pσ

+ O(1).

(2) ∑
p=Q(x)

f or some x∈Z2

(λ2
f× f× f (p3) − λ2

g×g×g(p3))2

pσ
= 1051157

∑
p

1
pσ

+ O(1).

Proof. Lemma 2.7 readily follows from the preceding analysis in Lemmas 2.5 and 2.6.

3. Proof of Theorems 1.1 and 1.2

In order to demonstrate Theorems 1.1 and 1.2, we introduce the lemma below.

3.1. Lemma

Lemma 3.1. Let f ∈ H∗k1
and g ∈ H∗k2

be two distinct Hecke eigenforms. Then

(1) |λ f× f× f (p2) − λg×g×g(p2)| ≤ 52 and |λ f× f× f (p3) − λg×g×g(p3)| ≤ 240.
(2) |λ2

f× f× f (p2) − λ2
g×g×g(p2)| ≤ 2028 and |λ2

f× f× f (p3) − λ2
g×g×g(p3)| ≤ 23920.

Proof. From [7, Lemma 3.1], for any j ≥ 1, we find that

|λ f (p j) − λg(p j)| ≤ 4[
j + 1

2
], (3.1)

where [t] denotes the integral part of t. Hence, (2.6), (2.10), and (3.1) yield

|λ f× f× f (p2) − λg×g×g(p2)|
≤ |λ f (p6) − λg(p6)| + 2|λ f (p4) − λg(p4)| + 6|λ f (p2) − λg(p2)| ≤ 52

and |λ f× f× f (p3) − λg×g×g(p3)| ≤ 240.
From [15, Lemma 6], for any j ≥ 1, 0 ≤ i ≤ j, we have

|λ f (pi)λ f (p j) − λg(pi)λg(p j)| ≤ 2(i j + j + δ), (3.2)

where δ =

i + 1, 2 - (i + j),
0, 2 | (i + j).

By (2.12), (2.13), (3.1), and (3.2), we arrive at

|λ2
f× f× f (p2) − λ2

g×g×g(p2)| ≤ 2028 and |λ2
f× f× f (p3) − λ2

g×g×g(p3)| ≤ 23920.
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3.2. Proof of Theorem 1.1

We consider the set X2 = {p : λ f× f× f (p2) < λg×g×g(p2)}. In order to establish the lower bound for the
analytic density of the set X2, we analyze the following summation and obtain∑

p∈X2

(λ f× f× f (p2) − λg×g×g(p2))2

pσ

=
∑
p∈X2

|λ f× f× f (p2) − λg×g×g(p2)||λ f× f× f (p2) − λg×g×g(p2)|
pσ

≤ 2704
∑
p∈X2

1
pσ

+ O(1), as σ→ 1+. (3.3)

If p < X2, then λ f× f× f (p2) ≥ λg×g×g(p2). Applying the first assertion in Lemma 2.4 yields:∑
p<X2

(λ f× f× f (p2) − λg×g×g(p2))2

pσ
≤ 52

∑
p<X2

λ f× f× f (p2) − λg×g×g(p2)
pσ

= 52(
∑

p

λ f× f× f (p2) − λg×g×g(p2)
pσ

−
∑
p∈X2

λ f× f× f (p2) − λg×g×g(p2)
pσ

)

≤ 52(O(1) +
∑
p∈X2

λ f× f× f (p2) − λg×g×g(p2)
pσ

)

≤ 2704
∑
p∈X2

1
pσ

+ O(1), as σ→ 1+. (3.4)

Now we combine the estimates from (3.3) and (3.4) to get∑
p

(λ f× f× f (p2) − λg×g×g(p2))2

pσ

=
∑
p∈X2

(λ f× f× f (p2) − λg×g×g(p2))2

pσ
+

∑
p<X2

(λ f× f× f (p2) − λg×g×g(p2))2

pσ

≤ 5408
∑
p∈X2

1
pσ

+ O(1), as σ→ 1+. (3.5)

Lemma 2.4 and (3.5) lead to

82
∑

p

1
pσ

+ O(1) =
∑

p

(λ f× f× f (p2) − λg×g×g(p2))2

pσ
≤ 5408

∑
p∈X2

1
pσ

+ O(1), as σ→ 1+.

This shows that the analytic density of the set X2 is at least
41

2704
.

We discuss the set Y2 = {p : λ2
f× f× f (p2) < λ2

g×g×g(p2)}. This proof parallels the approach taken in
that X2, with the primary distinction lying in the substitution of Lemma 2.4 for Lemma 2.6.∑

p∈Y2

(λ2
f× f× f (p2) − λ2

g×g×g(p2))2

pσ
≤ 4112784

∑
p∈Y2

1
pσ

+ O(1), as σ→ 1+.
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∑
p<Y2

(λ2
f× f× f (p2) − λ2

g×g×g(p2))2

pσ
≤ 4112784

∑
p∈Y2

1
pσ

+ O(1), as σ→ 1+.

Now, by combining the estimates above, we derive that

32924
∑

p

1
pσ

+ O(1) =
∑

p

(λ2
f× f× f (p2) − λ2

g×g×g(p2))2

pσ
≤ 8225568

∑
p∈Y2

1
pσ

+ O(1), as σ→ 1+.

The preceding discussion confirms that the analytic density of the set Y2 is at least
8231

2056392
.

Similarly, we consider the sets X3 and Y3.∑
p∈X3

(λ f× f× f (p3) − λg×g×g(p3))2

pσ
≤ 57600

∑
p∈X3

1
pσ

+ O(1), as σ→ 1+.

∑
p<X3

(λ f× f× f (p3) − λg×g×g(p3))2

pσ
≤ 57600

∑
p∈X3

1
pσ

+ O(1), as σ→ 1+.

Combining these two estimates and Lemma 2.4 implies that

422
∑

p

1
pσ

+ O(1) =
∑

p

(λ f× f× f (p3) − λg×g×g(p3))2

pσ
≤ 115200

∑
p∈X3

1
pσ

+ O(1), as σ→ 1+.

This shows that the analytic density of the set X3 is at least
211

57600
.

∑
p∈Y3

(λ2
f× f× f (p3) − λ2

g×g×g(p3))2

pσ
≤ 57216640

∑
p∈Y3

1
pσ

+ O(1), as σ→ 1+.

∑
p<Y3

(λ2
f× f× f (p3) − λ2

g×g×g(p3))2

pσ
≤ 57216640

∑
p∈Y3

1
pσ

+ O(1), as σ→ 1+.

According to Lemma 2.6, as σ→ 1+, we have

2102314
∑

p

1
pσ

+ O(1) =
∑

p

(λ2
f× f× f (p3) − λ2

g×g×g(p3))2

pσ
≤ 114433280

∑
p∈Y3

1
pσ

+ O(1).

This directly yields that the analytic density of the set Y3 is at least
1051157

572166400
.

3.3. Proof of Theorem 1.2

We focus on the set A2 = {p : p = Q(x) for some x ∈ Z2 and λ f× f× f (p2) < λg×g×g(p2)}. By the
characteristic function (2.2) and Lemma 3.1, we have∑

p∈A2, p=Q(x)
f or some x∈Z2

(λ f× f× f (p2) − λg×g×g(p2))2

pσ
=

1
2ωD

∑
p∈A2

(λ f× f× f (p2) − λg×g×g(p2))2rQ(p)
pσ
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=
1

2ωD

∑
p∈A2

|λ f× f× f (p2) − λg×g×g(p2)||λ f× f× f (p2) − λg×g×g(p2)|rQ(p)
pσ

≤ 2704
∑
p∈A2

1
pσ

+ O(1), as σ→ 1+.

If p < A2, then λ f× f× f (p2) ≥ λg×g×g(p2) or p cannot be represented by Q(x) for any x ∈ Z2. In the

second case, rQ(n) = 0. Moreover, |
rQ(p)
ωD
| ≤ 2. This results in the following estimate by Lemma 2.4

(1):

∑
p<A2, p=Q(x)
f or some x∈Z2

(λ f× f× f (p2) − λg×g×g(p2))2

pσ
=

1
2ωD

∑
p<A2

(λ f× f× f (p2) − λg×g×g(p2))2rQ(p)
pσ

≤
26
ωD

(
∑

p

(λ f× f× f (p2) − λg×g×g(p2))rQ(p)
pσ

−
∑
p∈A2

(λ f× f× f (p2) − λg×g×g(p2))rQ(p)
pσ

)

≤ 52(O(1) +
1

2ωD

∑
p∈A2

(λ f× f× f (p2) − λg×g×g(p2))rQ(p)
pσ

)

≤ 2704
∑
p∈A2

1
pσ

+ O(1), as σ→ 1+.

The two estimates above imply

∑
p=Q(x)

f or some x∈Z2

(λ f× f× f (p2) − λg×g×g(p2))2

pσ

=
∑

p∈A2, p=Q(x)
f or some x∈Z2

(λ f× f× f (p2) − λg×g×g(p2))2

pσ
+

∑
p<A2, p=Q(x)
f or some x∈Z2

(λ f× f× f (p2) − λg×g×g(p2))2

pσ

≤ 5408
∑
p∈A2

1
pσ

+ O(1), as σ→ 1+. (3.6)

On combining Lemma 2.5 and (3.6), we infer that

41
∑

p

1
pσ

+ O(1) =
∑

p=Q(x)
f or some x∈Z2

(λ f× f× f (p2) − λg×g×g(p2))2

pσ
≤ 5408

∑
p∈A2

1
pσ

+ O(1), as σ→ 1+.

This shows that the analytic density of the set A2 is at least
41

5408
.

We deal with the set B2 = {p : p = Q(x) for some x ∈ Z2 and λ2
f× f× f (p2) < λ2

g×g×g(p2)}. This proof
follows the same line as that of A2, and the main difference is the use of Lemmas 2.6 and 2.7 instead
of Lemmas 2.4 and 2.5.
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∑
p∈B2, p=Q(x)
f or some x∈Z2

(λ2
f× f× f (p2) − λ2

g×g×g(p2))2

pσ
≤ 4112784

∑
p∈B2

1
pσ

+ O(1), as σ→ 1+.

∑
p<B2, p=Q(x)
f or some x∈Z2

(λ2
f× f× f (p2) − λ2

g×g×g(p2))2

pσ
≤ 4112784

∑
p∈B2

1
pσ

+ O(1), as σ→ 1+.

Now we combine the two estimates and utilize Lemma 2.7 to get

16462
∑

p

1
pσ

+ O(1) =
∑

p=Q(x) f or
some x∈Z2

(λ2
f× f× f (p2) − λ2

g×g×g(p2))2

pσ
≤ 8225568

∑
p∈B2

1
pσ

+ O(1),

as σ→ 1+.

It is evident that the analytic density of the set B2 is at least
8231

4112784
.

Similarly, we turn to the sets A3 and B3.∑
p∈A3, p=Q(x)
f or some x∈Z2

(λ f× f× f (p3) − λg×g×g(p3))2

pσ
≤ 57600

∑
p∈A3

1
pσ

+ O(1), as σ→ 1+.

∑
p<A3, p=Q(x)
f or some x∈Z2

(λ f× f× f (p3) − λg×g×g(p3))2

pσ
≤ 57600

∑
p∈A3

1
pσ

+ O(1), as σ→ 1+.

Hence, from Lemma 2.5, we find that

211
∑

p

1
pσ

+ O(1) =
∑

p=Q(x)
f or some x∈Z2

(λ f× f× f (p3) − λg×g×g(p3))2

pσ

≤ 115200
∑
p∈A3

1
pσ

+ O(1), as σ→ 1+.

We thus demonstrate that the analytic density of the set A3 is at least
211

115200
.

∑
p∈B3, p=Q(x)
f or some x∈Z2

(λ2
f× f× f (p3) − λ2

g×g×g(p3))2

pσ
≤ 57216640

∑
p∈B3

1
pσ

+ O(1), as σ→ 1+.

∑
p<B3, p=Q(x)
f or some x∈Z2

(λ2
f× f× f (p3) − λ2

g×g×g(p3))2

pσ
≤ 57216640

∑
p∈B3

1
pσ

+ O(1), as σ→ 1+.
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In view of Lemma 2.7, we deduce that

1051157
∑

p

1
pσ

+ O(1) =
∑

p=Q(x)
f or some x∈Z2

(λ2
f× f× f (p3) − λ2

g×g×g(p3))2

pσ

≤ 114433280
∑
p∈B3

1
pσ

+ O(1), as σ→ 1+.

This shows that the analytic density of the set B3 is at least
1051157

1144332800
.

4. Proof of Theorems 1.3 and 1.4

To prove Theorems 1.3 and 1.4, we provide the following lemmas.

4.1. Some lemmas

Lemma 4.1. [15, Lemma 4] Let K(p) be a set of real numbers, and |K(p)| ≤ B with a absolute bound
B. Suppose that there exist two absolute constants m,M such that∑

p

K2(p)
pσ

= m
∑

p

1
pσ

+ O(1)

and ∑
p

K(p)
pσ

= M
∑

p

1
pσ

+ O(1),

as σ→ 1+. Then the set {p : K(p) < 0} has an analytic density at least
m − MB

2B2 .

Lemma 4.2. [4, Lemma 2.3] Let K(p) be a set of real numbers, and |K(p)| ≤ B with a absolute bound
B. Suppose that there exist two absolute constants c,C such that∑

p

K2(p)1Q(p)
pσ

= c
∑

p

1
pσ

+ O(1)

and ∑
p

K(p)1Q(p)
pσ

= C
∑

p

1
pσ

+ O(1),

as σ → 1+. Then the set {p : p = Q(x) f or some x ∈ Z2 and K(p) < 0} has an analytic density at

least
c −CB

2B2 .

4.2. Proof of Theorem 1.3

Set

S i(p) = (c1λ f× f× f (pi) + c2λg×g×g(pi) − a)(c1λ f× f× f (pi) + c2λg×g×g(pi) − b)
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= c2
1λ

2
f× f× f (pi) + c2

2λ
2
g×g×g(pi) + 2c1c2λ f× f× f (pi)λg×g×g(pi)

− (a + b)(c1λ f× f× f (pi) + c2λg×g×g(pi)) + ab, i = 1, 2, 3. (4.1)

Therefore,

∑
p

S i(p)
pσ

= c2
1

∑
p

λ2
f× f× f (pi)

pσ
+ c2

2

∑
p

λ2
f× f× f (pi)

pσ
+ 2c1c2

∑
p

λ f× f× f (pi)λg×g×g(pi)
pσ

− (a + b)
∑

p

c1λ f× f× f (pi) + c2λg×g×g(pi)
pσ

+ ab
∑

p

1
pσ

and ∑
p

S 2
i (p)
pσ

= a2b2
∑

p

1
pσ

− 2ab(a + b)
∑

p

c1λ f× f× f (pi) + c2λg×g×g(pi)
pσ

− 2(a + b)
∑

p

(c1λ f× f× f (pi) + c2λg×g×g(pi))3

pσ

+ ((a + b)2 + 2ab)
∑

p

(c1λ f× f× f (pi) + c2λg×g×g(pi))2

pσ
+

∑
p

(c1λ f× f× f (pi) + c2λg×g×g(pi))4

pσ
,

where

(c1λ f× f× f (pi) + c2λg×g×g(pi))2 = c2
1λ

2
f× f× f (pi) + 2c1c2λ f× f× f (pi)λg×g×g(pi) + c2

2λ
2
g×g×g(pi),

(c1λ f× f× f (pi) + c2λg×g×g(pi))3 = c3
1λ

3
f× f× f (pi) + 3c2

1c2λ
2
f× f× f (pi)λg×g×g(pi)

+ 3c1c2
2λ f× f× f (pi)λ2

g×g×g(pi) + c3
2λ

2
g×g×g(pi),

(c1λ f× f× f (pi) + c2λg×g×g(pi))4 = c4
1λ

4
f× f× f (pi) + 4c3

1c2λ
3
f× f× f (pi)λg×g×g(pi)

+ 6c2
1c2

2λ
2
f× f× f (pi)λ2

g×g×g(pi)

+ 4c1c3
2λ f× f× f (pi)λ3

g×g×g(pi) + c4
2λ

4
g×g×g(pi).

Because the proofs for these three cases are similar, to avoid redundancy, we only prove the third case.
We derive by (1.2) and (2.10) that

|λ f× f× f (p3)| ≤ |α f (p)|9 + 3|α f (p)|7 + 9|α f (p)|5 + 20|α f (p)|3 + 27|α f (p)|
+ 27|β f (p)| + 20|β f (p)|3 + 9|β f (p)|5 + 3|β f (p)|7 + |β f (p)|9 = 120.

Thus,

|λ f× f× f (p3)λg×g×g(p3)| ≤ 14400, |λ2
f× f× f (p3)| ≤ 14400.

Following the formula of (4.1), we find that

|S 3(p)| ≤ 14400(|c1| + |c2|)2 + 120(|a| + |b|)(|c1| + |c2|) + |ab|.
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Lemma 2.1 gives ∑
p

S 3(p)
pσ

= (211c2
1 + 211c2

2 + ab)
∑

p

1
pσ

+ O(1), as σ→ 1+. (4.2)

Now we calculate λ3
f× f× f (p3), λ2

f× f× f (p3)λg×g×g(p3) and λ3
f× f× f (p3)λg×g×g(p3).

λ3
f× f× f (p3) = λ2

f× f× f (p3)λ f× f× f (p3)

=
∑

i=1,3,5,7,9

kiλ f (pi) +
∑

i=1,3,5,7,9
j=2,4,6,8,10,
12,14,16,18

ki jλ f (pi)λ f (p j),

λ2
f× f× f (p3)λg×g×g(p3)

=
∑

i=1,3,5,7,9

kiλg(pi) +
∑

i=2,4,6,8,
10,12,14

j=1,3,5,7,9

ki jλ f (pi)λg(p j) +
∑

i, j=1,3,5,7,9
i, j

h=1,3,5,7,9

ki jhλ f (pi)λ f (p j)λg(ph),

λ3
f× f× f (p3)λg×g×g(p3) =

∑
i=1,3,5,7,9
j=1,3,5,7,9

ki jλ f (pi)λg(p j) +
∑

i=2,4,6,8,10,
12,14,16,18
j=1,3,5,7,9
h=1,3,5,7,9

ki jhλ f (pi)λ f (p j)λg(ph).

It follows from Lemmas 2.1 and 2.2 in combination with Lemma 2.3 that∑
p

S 2
3(p)
pσ

= ((a2 + b2 + 4ab)(211c2
1 + 211c2

2) + 1095678(c4
1 + c4

2)

+ 267126c2
1c2

2 + a2b2)
∑

p

1
pσ

+ O(1), as σ→ 1+. (4.3)

According to Lemma 4.1, we obtain that the set F3 has an analytic density at least f (3, a, b, c1, c2),
where f (3, a, b, c1, c2) is defined as in (1.6).
Next, we present the results of the first and second cases.
Case 1:

|S 1(p)| ≤ 64(|c1| + |c2|)2 + 8(|a| + |b|)(|c1| + |c2|) + |ab|.

∑
p

S 1(p)
pσ

= (5c2
1 + 5c2

2 + ab)
∑

p

1
pσ

+ O(1), as σ→ 1+. (4.4)

∑
p

S 2
1(p)
pσ

= ((a2 + b2 + 4ab)(5c2
1 + 5c2

2) + 132(c4
1 + c4

2) + 150c2
1c2

2 + a2b2)
∑

p

1
pσ

+ O(1), (4.5)
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as σ → 1+. According to Lemma 4.1, we obtain that the set F1 has an analytic density at least
f (1, a, b, c1, c2), where f (1, a, b, c1, c2) is defined as in (1.4).
Case 2:

|S 2(p)| ≤ 1296(|c1| + |c2|)2 + 36(|a| + |b|)(|c1| + |c2|) + |ab|.

∑
p

S 2(p)
pσ

= (42c2
1 + 42c2

2 + 2c1c2 − (c1 + c2)(a + b) + ab)
∑

p

1
pσ

+ O(1), as σ→ 1+. (4.6)

∑
p

S 2
2(p)
pσ

= (−2ab(a + b)(c1 + c2) + (a2 + b2 + 4ab)(42c2
1 + 42c2

2 + 2c1c2)

− (a + b)(1490(c3
1 + c3

2) + 252(c2
1c2 + c1c2

2)) + 18226(c4
1 + c4

2) + 2980(c3
1c2 + c1c3

2)

+ 10584c2
1c2

2 + a2b2)
∑

p

1
pσ

+ O(1), as σ→ 1+. (4.7)

In light of Lemma 4.1, we obtain that the set F2 has an analytic density at least f (2, a, b, c1, c2), where
f (2, a, b, c1, c2) is defined as in (1.5).

4.3. Proof of Theorem 1.4

Set

S i(p) = (c1λ f× f× f (pi) + c2λg×g×g(pi) − a)(c1λ f× f× f (pi) + c2λg×g×g(pi) − b), i = 1, 2, 3.

∑
p

S i(p)1Q(p)
pσ

=
1

2ωD

∑
p

S i(p)rQ(p)
pσ

=
1
2

∑
p

S i(p)(1 + χD(p))
pσ

.

∑
p

S 2
i (p)1Q(p)

pσ
=

1
2ωD

∑
p

S 2
i (p)rQ(p)

pσ
=

1
2

∑
p

S 2
i (p)(1 + χD(p))

pσ
.

We invoke (4.4) and (4.5) to compute∑
p

S 1(p)1Q(p)
pσ

= (
5
2

c2
1 +

5
2

c2
2 +

1
2

ab)
∑

p

1
pσ

+ O(1), as σ→ 1+,

∑
p

S 2
1(p)1Q(p)

pσ
= ((a2 + b2 + 4ab)(

5
2

c2
1 +

5
2

c2
2) + 66(c4

1 + c4
2)

+ 75c2
1c2

2 +
1
2

a2b2)
∑

p

1
pσ

+ O(1), as σ→ 1+.
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With reference to Lemma 4.2, we obtain that the set E1 has an analytic density at least e(1, a, b, c1, c2),
where e(1, a, b, c1, c2) is defined as in (1.7).

For E2, applying (4.6) and (4.7), we have∑
p

S 2(p)1Q(p)
pσ

= (21c2
1 + 21c2

2 + c1c2 −
1
2

(c1 + c2)(a + b) +
1
2

ab)
∑

p

1
pσ

+ O(1), as σ→ 1+.

∑
p

S 2
2(p)1Q(p)

pσ
= (−ab(a + b)(c1 + c2) + (a2 + b2 + 4ab)(21c2

1 + 21c2
2 + c1c2)

− (a + b)(745(c3
1 + c3

2) + 126(c2
1c2 + c1c2

2)) + 9113(c4
1 + c4

2) + 1490(c3
1c2 + c1c3

2)

+ 5292c2
1c2

1 +
1
2

a2b2)
∑

p

1
pσ

+ O(1), as σ→ 1+.

Following Lemma 4.2, we derive that the set E2 has an analytic density at least e(2, a, b, c1, c2), where
e(2, a, b, c1, c2) is defined as in (1.8).

For E3, employing (4.2) and (4.3), we have∑
p

S 3(p)1Q(p)
pσ

=
1
2

(211c2
1 + 211c2

2 + ab)
∑

p

1
pσ

+ O(1), as σ→ 1+.

∑
p

S 2
3(p)1Q(p)

pσ
=

1
2

((a2 + b2 + 4ab)(211c2
1 + 211c2

2) + 1095678(c4
1 + c4

2)

+ 267126c2
1c2

1 + a2b2)
∑

p

1
pσ

+ O(1), as σ→ 1+.

Lemma 4.2 shows that the set E3 has an analytic density at least e(3, a, b, c1, c2), where e(3, a, b, c1, c2)
is defined as in (1.9).

5. Proof of Theorem 1.5

5.1. Lemma

We define the Pair-Sato–Tate measure and state the Pair-Sato–Tate conjecture, which will be used
to prove Theorem 1.5 (see [14, Theorem 1.1]).

Definition 5.1. The Pair-Sato–Tate measure µ2
S T is a probability measure on the interval [0, π] and

µ2
S T =

4
π2 sin2 θ f dθ f sin2 θgdθg.

Lemma 5.2. (Pair-Sato–Tate conjecture) Let f , g ∈ H∗k be two nonzero cusp forms and θ f (p), θg(p) be
Frobenius angles at p of f and g, respectively. The sequence (θ f (p), θg(p)) based on the Pair-Sato–Tate
measure µ2

S T is uniformly distributed on [0, π]2. In particular, for any two subintervals I1 ⊆ [0, π] and
I2 ⊆ [0, π], we have

lim
x→∞

#{p ≤ x|(θ f (p), θg(p)) ∈ I1 × I2}

#{p ≤ x|p ∈ P}
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= µ2
S T (I1 × I2)

=
4
π2

∫
I1

sin2 θ f dθ f

∫
I2

sin2 θgdθg.

5.2. Proof of Theorem 1.5

By (1.2) and (1.3), we have

λ f× f× f (p) = λ3
f (p) = 8 cos3 θ f (p). (5.1)

Expressing λ j
f× f× f (p) > λ j

g×g×g(p) in trigonometric form gives

cos3 j θ f (p) > cos3 j θg(p). (5.2)

The following will analyze the parity of j to prove Theorem 1.5.
Case 1: When j is even, function cos3 j θ is decreasing on interval [0,

π

2
] and increasing on interval

[
π

2
, π], and its graph is symmetrical about line θ =

π

2
. The ranges of θ f (p) and θg(p) that satisfy (5.2)

are shown in the shaded area of the Figure 1.

Figure 1. Range map of θ f (p) and θg(p).

Decompose the shaded area of Figure 1 into two regions:

D1 = {(θ f (p), θg(p)) : 0 ≤ θ f (p) ≤
π

2
, θ f (p) ≤ θg(p) ≤ π − θ f (p)},

D2 = {(θ f (p), θg(p)) :
π

2
≤ θ f (p) ≤ π, π − θ f (p) ≤ θg(p) ≤ θ f (p)}.

Based on Lemma 5.2, we first perform the calculation for region D1. Applying formula
∫

sin2 xdx =

x
2
−

sin 2x
4

+ C yields∫ π
2

0
sin2 θ f dθ f

∫ π−θ f

θ f

sin2 θgdθg =

∫ π
2

0
sin2 θ f (

π

2
− θ f +

sin2θ f

2
)dθ f
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=
π

2

∫ π
2

0
sin2 θ f dθ f −

∫ π
2

0
θ f sin2 θ f dθ f +

1
2

∫ π
2

0
sin2 θ f sin 2θ f dθ f .

Each integral in the above expression can be calculated using integration by parts.

π

2

∫ π
2

0
sin2 θ f dθ f =

π2

8
,

1
2

∫ π
2

0
sin2 θ f sin 2θ f dθ f =

1
4
.

∫ π
2

0
θ f sin2 θ f dθ f =

1
2

∫ π
2

0
θ f (1 − cos 2θ f )dθ f =

1
2

∫ π
2

0
θ f dθ f −

1
2

∫ π
2

0
θ f cos 2θ f dθ f =

π2

16
+

1
4
.

In summary,

4
π2

∫ π
2

0
sin2 θ f dθ f

∫ π−θ f

θ f

sin2 θgdθg =
1
4
.

Similarly, the integral result for region D2 is
1
4

. This indicates that the natural density of set {p :

λ
j
f× f× f (p) > λ j

g×g×g(p)} is
1
2

. In view of symmetry, the natural density of set {p : λ j
f× f× f (p) < λ j

g×g×g(p)}

is also
1
2

.

Case 2: When j is odd, the function cos3 j θ is decreasing on [0, π], and its graph is centrally symmetric
about point (

π

2
, 0). The ranges of θ f (p) and θg(p) that satisfy (5.2) are indicated by the shaded area in

the Figure 2.

Figure 2. Range map of θ f (p) and θg(p).

The shaded area in Figure 2 is defined by

D3 = {(θ f (p), θg(p)) : 0 ≤ θ f (p) ≤ π, θ f (p) ≤ θg(p) ≤ π}.
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Similarly, by performing calculations on region D3, we obtain

4
π2

∫ π

0
sin2 θ f dθ f

∫ π

θ f

sin2 θgdθg =
1
2
.

This indicates that the natural density of the set {p : λ j
f× f× f (p) ≶ λ j

g×g×g(p)} is
1
2

.

6. Proof of Theorems 1.6 and 1.7

6.1. Lemma

The definition of the Sato–Tate measure is given, followed by a statement of the Sato–Tate
conjecture (see [11, Theorem 2.3]), which will be used to prove Theorems 1.6 and 1.7.

Definition 6.1. The Sato–Tate measure µS T is a probability measure on the interval [0, π] and µS T =
2
π

sin2 θdθ.

Lemma 6.2. (Sato–Tate conjecture) Let f ∈ H∗k be a nonzero cusp form. The sequence {θp} based
on the Sato–Tate measure µS T is uniformly distributed on [0, π]. In particular, for any subinterval
I ⊆ [0, π], we have

lim
x→∞

#{p ≤ x|θp ∈ I}
#{p ≤ x|p ∈ P}

= µS T (I) =
2
π

∫
I
sin2 θdθ.

6.2. Proof of Theorem 1.6

For simplicity, θ f (p) will be replaced by θ in the next context.
Define the characteristic function ε(θ) = sgn(λ f× f× f (p)) = sgn(8 cos3 θ) with the help of (5.1).

Calculate the natural density d(P1) and d(P′1) of sets P1 = {p : λ f× f× f (p) > 0} and P′1 = {p :
λ f× f× f (p) < 0}. According to the definition of natural density and Lemma 6.2, we know

d(P1) =
2
π

∫
{θ:ε(θ)=1}∩[0,π]

sin2 θdθ =
2
π

∫ π
2

0
sin2 θdθ =

1
2

and

d(P′1) =
2
π

∫
{θ:ε(θ)=−1}∩[0,π]

sin2 θdθ =
2
π

∫ π

π
2

sin2 θdθ =
1
2
.

For P3 and P′3,

λ f× f× f (p3) = λ f (p)9 − 6λ f (p)7 + 15λ f (p)5 − 13λ f (p)3

= 512 cos9 θ − 768 cos7 θ + 480 cos5 θ − 104 cos3 θ.

The definition of natural density and Lemma 6.2 imply

d(P3) =
2
π

∫
{θ:ε(θ)=1}∩[0,π]

sin2 θdθ and d(P′3) =
2
π

∫
{θ:ε(θ)=−1}∩[0,π]

sin2 θdθ,
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where the characteristic function ε(θ) = sgn(512 cos9 θ − 768 cos7 θ + 480 cos5 θ − 104 cos3 θ). Then,

2
π

∫ π

0
ε(θ) sin2 θdθ =

2
π

∫
{θ:ε(θ)=1}∩[0,π]

sin2 θdθ +
2
π

∫
{θ:ε(θ)=−1}∩[0,π]

(−1) sin2 θdθ

= d(P3) − d(P′3).

Performing a transformation on the integral t = θ −
π

2
leads to

2
π

∫ π

0
ε(θ) sin2 θdθ =

2
π

∫ π
2

− π2

ε3(t) cos2 tdt = T3,

where ε3(t) := −sgn(512 sin9 t − 768 sin7 t + 480 sin5 t − 104 sin3 t) is an odd function in [−
π

2
,
π

2
]. Then

T3 = 0. In other words,

d(P3) − d(P′3) = 0.

d(P3) + d(P′3) = 1 implies d(P3) = d(P′3) =
1
2

.
Now we consider P2 and P′2.

λ f× f× f (p2) = λ f (p)6 − 3λ f (p)4 + 6λ f (p)2 − 4
= 64 cos6 θ − 48 cos4 θ + 24 cos2 θ − 4.

In view of Lemma 6.2, one has

d(P2) =
2
π

∫
{θ:ε(θ)=1}∩[0,π]

sin2 θdθ,

where

ε(θ) = sgn(λ f× f× f (p2)) = sgn(64 cos6 θ − 48 cos4 θ + 24 cos2 θ − 4)

= sgn(64 sin6 t − 48 sin4 t + 24 sin2 t − 4) =: ε2(t). (6.1)

Noting (6.1), we learn that ε2(t) is an even function in [−
π

2
,
π

2
]. Then

2
π

∫ π

0
ε(θ) sin2 θdθ =

2
π

∫ π
2

− π2

ε2(t) cos2 tdt =
4
π

∫ π
2

0
ε2(t) cos2 tdt.

It is easy to see that

d(P2) =
4
π

∫
{t:ε2(t)=1}∩[0, π2 ]

cos2 tdt. (6.2)

Denote by α the zero point of the function h(t) = 64 sin6 t−48 sin4 t+24 sin2 t−4 in [0,
π

2
]. Substituting

x for sin2 t, we write f (x) := 64x3−48x2 + 24x−4, x ∈ [0, 1]. Its derivative f ′(x) = 192(x− 1
4 )2 + 12 >
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0 implies f (x) is monotonically increasing in the interval [0, 1]. Therefore, h(t) is monotonically
increasing in [0,

π

2
]. In view of h(0) < 0 and h(

π

2
) > 0, h(t) has a unique zero α in [0,

π

2
]. Using

MATLAB, we know that α approximately equal to 0.5236 and

ε2(t) = 1, t ∈ [0,
π

2
]⇔ t ∈ (α,

π

2
].

Using (6.2), we have

d(P2) =
4
π

∫ π
2

α

cos2 tdt = 1 −
2α
π
−

sin 2α
π

.

d(P2) + d(P′2) = 1 implies d(P′2) =
2α
π

+
sin 2α
π

.

6.3. Proof of Theorem 1.7

The proof of Theorem 1.7 is similar to that of Theorem 1.6, both being proved using Lemma 6.2.

λ f× f× f (p)λ f× f× f (p2) = λ f (p)9 − 3λ f (p)7 + 6λ f (p)5 − 4λ f (p)3

= 512 cos9 θ − 384 cos7 θ + 192 cos5 θ − 32 cos3 θ.

Recalling the definition of natural density and Lemma 6.2, we deduce

d(P̄2) =
2
π

∫
{θ:ε(θ)=1}∩[0,π]

sin2 θdθ and d(P̄′2) =
2
π

∫
{θ:ε(θ)=−1}∩[0,π]

sin2 θdθ,

where

ε(θ) = sgn(λ f× f× f (p)λ f× f× f (p2)) = sgn(512 cos9 θ − 384 cos7 θ + 192 cos5 θ − 32 cos3 θ)

= −sgn(512 sin9 t − 384 sin7 t + 192 sin5 t − 32 sin3 t)
=: ε4(t).

It is obvious to see that ε4(t) is an odd function. Then 2
π

∫ π

0
ε(θ) sin2 θdθ = 0. In other words,

d(P̄2) − d(P̄′2) = 0.

d(P̄2) + d(P̄′2) = 1 implies d(P̄2) = d(P̄′2) =
1
2

.

Now we consider P̄3 and P̄′3.

λ f× f× f (p)λ f× f× f (p3) = λ f (p)12 − 6λ f (p)10 + 15λ f (p)8 − 13λ f (p)6

= 4096 cos12 θ − 6144 cos10 θ + 3840 cos8 θ − 832 cos6 θ.

From Lemma 6.2, we find that

d(P̄3) =
2
π

∫
{θ:ε(θ)=1}∩[0,π]

sin2 θdθ and d(P̄′3) =
2
π

∫
{θ:ε(θ)=−1}∩[0,π]

sin2 θdθ,
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1410

where

ε(θ) = sgn(λ f× f× f (p)λ f× f× f (p3)) = sgn(4096 cos12 θ − 6144 cos10 θ + 3840 cos8 θ − 832 cos6 θ)

= sgn(4096 sin12 t − 6144 sin10 t + 3840 sin8 t − 832 sin6 t)
=: ε5(t).

An analysis similar to that in Theorem 1.6 shows that h(t) = 4096 sin12 t − 6144 sin10 t + 3840 sin8 t −
832 sin6 t has a unique zero α in (0,

π

2
]. Using MATLAB, we know α ≈ 0.7045.

ε5(t) = 1, t ∈ [0,
π

2
]⇔ t ∈ (α,

π

2
]. (6.3)

It follows from (6.3) that

d(P̄3) =
4
π

∫ π
2

α

cos2 tdt = 1 −
2α
π
−

sin 2α
π

.

d(P̄3) + d(P̄′3) = 1 implies d(P̄′3) =
2α
π

+
sin 2α
π

.

7. Conclusions

This paper presents a total of seven theorems, including the analytic and natural density of the
given sets. The proofs of the first four theorems rely on the relationships between the triple product
L-functions, symmetric power L-functions, and Rankin–Selberg L-functions as well as the tools
in analytic number theory in connection with these automorphic L-functions. Based on the now-
proven Sato–Tate conjecture (or pair-Sato–Tate conjecture), we introduce the characteristic functions
to establish the natural density of the sets in the last three theorems.
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