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Abstract: Let H; denote the set of normalized primitive holomorphic Hecke cusp forms of even
integral weight k for the full modular group. Denote by A sx(n) the nth coefficient of the triple
product L-function L(f X f X f, s) attached to f € H;. Suppose Q(x) is a primitive integral positive-
definite binary quadratic form of fixed discriminant D < 0 with the class number #(D) = 1. In this
paper, we study the distribution of Az« (n) on the set of all primes and its subset {p : p = Q(x)} and
obtain the analytic density and the natural density of the above sets. These results generalize previous
ones.
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1. Introduction

The density of a set of prime numbers measures its size. There are several notions of density, such
as analytic density and natural density, which in general are distinct. Triple product L-functions, as
vital automorphic L-functions, are investigated by some scholars (see, e.g., [6, 10]). In this paper, we
focus on the distribution of coefficients of the triple product L-functions on the set of all primes and its
subset, and we obtain the analytic density and the natural density of the above sets.

Let H; denote the set of normalized primitive holomorphic Hecke cusp forms of even integral
weight k for S L(2,Z). f € H] at the cusp oo has Fourier expansion

f(z) = Z A (myn'T e,
n=1
where A/(n) is real and satisfies the multiplicative property

mn
AmAgm) = > ().
d|(m,n)
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In particular, for each prime p and r € N, one has
(") =1+ A,(p*) + Ap(p*) + -+ + 2,(p™). (1.1)
In 1974, Deligne [3] proved the Ramanujan—Petersson conjecture
| (m)] < d(n),
where d(n) is the divisor function. Deligne’s result showed that there exist a(p), 8(p) € C satisfying

ay(p) + Br(p) = Ap(p), ar(p)Br(p) = lap(p)l = Br(p)l = 1. (1.2)
It can be inferred from [A¢(p)| < 2 that there is a unique 6¢(p) € [0, 7] such that
A(p) = P + 7P =2 cos ,(p). (1.3)

We introduce the definition of analytic density. A set S consisting of primes is said to have the analytic
density « > 0 if the following is satisfied:

> Lo+ o(k Y L (1 +o(kloglo - 1), aso 1"
P P

peS

In this paper, let Q(x) (x € Z?) be a primitive integral positive-definite binary quadratic form of fixed
discriminant D < 0 with the class number /(D) = 1. Let f € H; and g € H;, be two distinct Hecke

eigenforms. In [13], Vaishya investigated deterministic comparison of Fourier coefficients /lj;(pm) (J=
1, 2) at the primes represented by a binary quadratic form Q(x). Denote by A s (1) the nth coeflicient
of the Dirichlet expansion of the triple product L-function L(f X f X f,s) attached to f € H; . In [4],
g,xgxg(p)} and their respective subsets
(P p = Q) for some x € Z2 and A . (p) < AP}, Where j = 1,2.

The first aim of this paper is to prove the following results on analytic density.

Hua studied the analytic density of the sets {p : /l}X (P < A

Theorem 1.1. (1) Let f € H; and g € H,, be two distinct Hecke eigenforms. Then the two sets

Xa = {p 1 Appxs(PD) < Aggxe(P*))

and
2

Yo ={p : Ay s (P7) < Appre (P}
41 8231

d ,
2704 " 2056392
(2) Let f € Hy and g € H;, be two distinct Hecke eigenforms. Then the two sets

have analytic densities at least respectively.

X3 = {p: Apspup(PP) < Aggng(P))

and

Y3 = {p 1 A e (P7) < g (P}
211 1051157

57600 " 572166400’

have analytic densities at least respectively.
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Theorem 1.2. (1) Let f € H; and g € H; be two distinct Hecke eigenforms. Then the two sets

Ay =1{p: p = Q) for some x € Z* and Ay sx;(P°) < Agwgxg(P)}

and
B, ={p: p=0)for some x € 7* and /lfcxfxf(pZ) < ﬂ;xgxg(pz)}
41 8231

5408 “" 4112788
(2) Let f € H; and g € H; be two distinct Hecke eigenforms. Then the two sets
1 2

have analytic densities at least respectively.

As ={p: p = Q) for some x € Z* and Ay px;(P”) < Agwexg(P*)}

and
By ={p: p = Qx) for some x € Z* and A} ;, (p*) < Ay pree (P}

211 1051157
and —m————————,
115200 1144332800

Some authors also considered the density for linear combinations of two Fourier coefficients
corresponding to two distinct automorphic representations. In [15], for any given integer j > 1, Zou et
al. arrived at a lower bound for the analytic density of the set

have analytic densities at least respectively.

{p:a<cidp(p)) + cady(p’) < b,
where a, b, ¢y, c; € R, a < b. Hua [4] derived a lower bound for the analytic density of the set
{p:p=0() for some x € Z* and a < c;A,(p’) + c2A,(p’) < b}.

For the triple product L-function L(f X f X f, s), we establish the following results.
Theorem 1.3. Let a,b,ci,co € R, a < b.
(1) Let f € H; and g € H, be two distinct Hecke eigenforms. Then the set

Fi={p:a<cdppxp(p) + cadgxexe(p) < b}
has an analytic density at least f(1,a, b, c1, c;), where
(@ + b* + 4ab)(5¢t + 5¢3) + 132(c} + ¢3) + 150cic; + a*b?
2(64(lc1| + leal)* + 8(lal + 1b)(lc1| + |eal) + labl)?
5¢2 + 5¢5 + ab
2(64(Ic1| + le2h)? + 8(lal + bD(e1| + leal) + labl)’

f(17a’b’ cl’CZ) =

(1.4)

(2) Let f € H; and g € H, be two distinct Hecke eigenforms. Then the set
Fr={p:a< Cl/lfxfxf(pZ) + CZ/ngng(pz) < b}
has an analytic density at least f(2,a, b, cy,c,), where

fQ2,a,b,cy,c7)
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B —2ab(a + b)(c; + ¢2) + (@> + b* + 4ab)(42€% + 42c§ + 2cicy) — 1490(a + b)(c? + cg)
- 2(1296(|c1| + lea))? + 36(lal + [B)(lc1| + |eal) + |abl)?
252ab(c%c2 + clcé) + 18226(c‘11 + c‘z‘) + 2980(031’62 + clcg) + 10584C%C% + a’b?
+
2(1296(|c1| + leal)? + 36(lal + [b))(lc1| + leal) + labl)?
42¢3 + 425 + 2cica — (a + b)(cy + ¢2) + ab
2(1296(|c1| + lea)? + 36(lal + [bD(lc1] + lc2]) + labl)’

(1.5)

(3) Let f € H and g € H,, be two distinct Hecke eigenforms. Then the set

F3={p:a<cidyupep(P) + C2lgxgug(p’) < b}
has an analytic density at least (3, a, b, cy, c2), where

fB,a,b,ci, )
_ (@ + b+ 4ab)2116} +21163) + 1095678(c} + cf) +267126¢ic3 + a*b”
2(14400(|c1] + leah? + 120(lal + 1bD (el + lcal) + labl)?
ZIIC% + 211c§ +ab
2(14400(Ic| + leal)? + 120(lal + 1bI)(c1| + leal) + labl)

(1.6)

Theorem 1.4. Leta,b,c;,co €R, a < b.
(1) Let f € H; and g € H, be two distinct Hecke eigenforms. Then the set

E\ ={p: p = 0) for some x € Z* and a < c1dxfx(P) + C2dgugxg(P) < b}

has an analytic density at least e(1,a, b, c1, c;), where

(@ + b* + 4ab)(5¢% + 5¢3) + 132(ct + ¢3) + 150c3c3 + a*b?
4(64(Ic1| + |e2)* + 8(lal + 1bI)(lc1| + leal) + |abl)?
56‘% + 50% +ab
4(64(c1| + leaD)? + 8(lal + 1B)(Ic1] + Ical) + labl)’

e(1,a,b,c1,c2) =

(1.7)

(2) Let f € H; and g € H, be two distinct Hecke eigenforms. Then the set
E, ={p: p=0)for some x € 7> and a < Cl/lfxfxf(pz) + clegxgxg(pZ) < b}
has an analytic density at least e(2, a, b, c1, c;), where

8(29 a, b’ C1, C2)
B —2ab(a + b)(c| + ¢2) + (a®> + b* + 4ab)(42c% + 42c§ + 2cicy) — 1490(a + b)(cf + cg)
- 4(1296([c1| + |c2)* + 36(lal + [BD(|c1| + |e2l) + |abl)?
252ab(cicy + c1c3) + 18226(c} + ¢3) + 2980(cics + ¢1¢3) + 10584cics + a*b?
4(1296(|cy| + |2 + 36(lal + [b])(|c1| + |c2) + labl)?
42¢2 +42¢5 + 2cic2 — (a + b)(c1 + ¢2) + ab
4(1296(|c1| + lc2)? + 36(lal + 1b)(lc1| + |eal) + labl)’

+

(1.8)
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(3) Let f € H; and g € H; be two distinct Hecke eigenforms. Then the set
Es={p:p= Q) for some x € Z* and a < ¢\ dppus(P°) + C2Agxgns(p’) < b}

has an analytic density at least e(3,a, b, cy, c;), where

(@ + b? + 4ab)(211c% + 211c2) + 1095678(c? + ¢3) + 26712632 + a*b?
4(14400(]c1| + lea))? + 120(al + 1b)(lc1] + lcal) + lab])?
2112 +211¢% + ab
4(14400(|c1] + leal)? + 120(lal + [BI)(|c1] + leal) + labl)’

6(39a$ba chZ) =

(1.9)

In the set S C P, where P is the set of all prime numbers, the natural density of the set S equals

#{p <
d(S) if and only if lim P =HP €5}
X—00 #{p < x|p c P}

of sequence {A(p’)}. For j = 1,2, Chiriac [1] proved that the analytic density of the set {p : ﬂj;.(p) <

= d(S). Meher et al. [11] studied the distribution of the signs

; 1
A;(p)} is at least 6 In [2], he applied the pair-Sato—Tate conjecture to evaluate the natural density of
1
the set {p : A4(p) < 4,(p)}, which equals 5 Here we prove the following.

Theorem 1.5. Let f,g € H; be two distinct nonzero cusp forms, and j > 1 is an integer. Then the

. . 1
natural density of the set {p : /l}xfx Ap)s AP} IS 3

The classical Landau lemma indicates that sequences {As(n)},>; have infinite sign transformations
(see [11]). For any even positive integer j, Zou et al. [15] determined that the natural density of the set

. 1
{p: Ap(p)As(p’) <O} is 7 Extending the method in [15], we formulate Theorems 1.6 and 1.7.

Theorem 1.6. Let f € H; be a nonzero cusp form.
(1) The sets

Pi={p: /lfxfxf(pi) > 0} and P; ={p: /lf'xf'xf(pi) < 0}

have a natural density %, wherei =1, 3.
(2) The sets

Py ={p: /lfxfxf(pz) >0} and P, ={p: /lfxfxf(pz) < 0}
sin2a 2 sin2a

and 1 — — —
T T

a
have natural densities — + , respectively, where a ~ 0.5236.
Vs

Theorem 1.7. Let f € H; be a nonzero cusp form.
(1) The sets

Py =1{p : Apxpup(D)Asssxr(p) > 0}
and
Py =1{p : Apxpup (D) Asxr(p) < 0}

1
have a natural density X
(2) The sets
Ps = {p : Apxpxs (D) Ay (p7) > 0}
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and
P,3 = {p . /lfxfxf(p)/lfxfxf(p‘%) < 0}
.. 20 sin2a 20 sin2a )
have natural densities — + and 1 — — — , respectively, where a =~ 0.7045.
n n n

Remark 1.1. When the natural density of a set exists, its analytic density also exists, and they are
equal (see [12]). Hence, the above three theorems are also applicable to the analytic density.

2. Preliminaries

In this section, we introduce some facts and lemmas that will be useful in the proof of the main
results in this paper.

Let f € H; be a Hecke eigenform. The jth symmetric power L-function associated to f is defined
as

J
Lisym/f,s) = [ || (1= ar)™"Bs(p)y"p™)", Re () > 1,

p m=0
which can be expanded into a Dirichlet series,

; J sym/ /lsmf "
L(Symjf,s)_Z symf() 1—[(1 ypf(p) ,..+%(sp)+...), Re(s)>1.

n=1

Obviously, Agmir(n) is a real multiplicative function. At prime values, it is given by

J
AP = Agmip () = D (Y "Br(p)" = Uj(44(p)/2),
=0

where U (x) represents the jth Chebyshev polynomial of the second kind.
Let f € H; ,g € H;, be two distinct Hecke eigenforms. For i, j > 1, the Rankin—Selberg L-function
related to sym' f and sym’g is defined as

L(sym'f x sym’g, 5) = f][][Ia—aﬂm“%Am%%@y"g@v'ﬂ*,Re@>>L

p m=0 n=0

Similarly, we can also rewrite the aforementioned expression as

(o8] (o8]

. . /ls i jo (711 /1 i
L(sym'f x sym’g, ) = Z M _ l—[(l " Z M) Re (s) > 1,
: p

n Vs
n=1 4 v=1

where Agymirxsymig(17) 18 a real multiplicative function and satisfies

/lsymifxsymjg (P) = /lsym"f(p)/lsymjg (P) (2 1)
Define the triple product L-function L(f X f X f, s) attached to f as

as(p)’ LR a’f(sp))_3(1 B af(l?s)_l)_3(1 i le(PS)_3 =
P’ P P

ufxfxf@—[Ia

AIMS Mathematics Volume 11, Issue 1, 1382—-1411.
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(o)

- —Afxfxsf(”), Re (s) > 1.

n=1 n

By [9, (2.5)], we know that
L(f X f X f. ) = L(f, )’ L(sym’ f, ).
Define ry(n) as
ro(n) := #{x € Z* : n = Q).

The generating function 6y(7) associated with Q(x) is given by a specific formula,

[Se]

Op(7) = Z qQ@ = Z ro(n)q",q = e(r), Im(t) > 0.

EEZZ n=0

This function 6y (7) belongs to the space M, (I'o(|D|), xp) (see, e.g., [5, Theorem 10.9]), where yp is the

D
Dirichlet character modulo |D| defined by the Jacobi symbol yp(d) = (3) According to Weil’s bound,

we have bound ryp(n) < n®.
The character sum r(n; D) is explicitly given in terms of the Jacobi symbol yp (see [5, (11.9),
(11.10)]), with specific values

6, if D= -3,
r(n; D) = wp Z)(D(d), where wp =34, if D = -4,
din 2, if D < —4.

It is known that r(n; D) counts the number of representations of a positive integer n by all the reduced
forms of fixed discriminant D. For the quadratic form Q(x) of discriminant D < 0 with class number
h(D) =1, we have

ro(n) = r(n; D) = wp ) xo(d).

dln

In particular, ro(p) = wp(1+xp(p)). Hence, the prime p is represented by QO(x) if and only if yp(p) = 1.
Motivated by this fact, we define the characteristic function

ro(p) . 2
~ = Z )
o) = {20y i P = QW for some x 0
0, otherwise.
ro(p)
Wp

This implies that is 2 or 0 according to whether p is represented by Q(x) or not.
Next, we will introduce and prove some lemmas.

AIMS Mathematics Volume 11, Issue 1, 1382—-1411.
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Lemma 2.1. [I3, Lemma 3.1] Let f € H; and g € H; be two distinct Hecke eigenforms. When
o — 1%, foreach i, j > 0, we have

A2(p! i j
D f(f ) _ > i(, +O(1) and Yy A (PIALp) )jg(p]) = 0(1).
, P y P p p

Furthermore,

A (p’ )XD(P) 2(P),(p ) p(p)
Z’” 1)Zf s AP — o).
)2
In addition, . .
Ar(pHAs(p’
Z—f(p)o_f(p) = O(1), where i # j.
p
Lemma 2.2. Let f € H; be a Hecke eigenform. When o — 1%, for any j,h > 1, 0 < i < jand
0 <k < h, we have

0 Z Ar(PHA(p)A(PH)A(p")

o
o), k+h—i—jisoddorh—k>i+ j,
(1+i)2pi+0(1) k+h—i—jisevenand h—k < j—1i,
(1+i—%)2—+0<1) kth—i—jisevenand j—i<h—-k<i+ ]

. . 1
(PP (PY |2 —=+00), i+ j—kisevenand j—i<k<i+ ]
@) ={%p
o(1), otherwise.
Proof. From [15], we know that

APHALP) = Y Aty (P). (2.3)

=0

Furthermore, (2.1) implies

i k
PO PP = D0 Agisrtsymienas 1(P).

11=0 =0

The Rankin—Selberg functions related to the above are entire functions if and only if i + j — 2/, #
k+h—-2lholds. Let2(l, —l;))=k+h—-i—j=b >0, and set

ny., = #{(lz, ll) . 2(12 - l]) =k+h-i- ] = b, ll = O, 1, ...,iand lz = O, 1, ,k}

Noting that values of [, — [; that are at most k, when b > 2k, n;,;,, = 0. In other words, i + j — 2I, #
k + h — 2l,. Obviously, in the cases where b is odd or b > 2k (namely, h — k > i + j), we infer

Z (P (P A (PHA(P")

= o(1).
pO'

p

AIMS Mathematics Volume 11, Issue 1, 1382—-1411.
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If b is even, we deal with it in two cases. When b < 2(k — i) (namely, h — k < j — i), we have

Z A(PHA(pHA(PO)AL(P") _

1
1+ — +0(1).
= <+z>Zp]p(,+ (1)

p

When 2(k — i) < b < 2k (namely, j—i < h—k <i+ j), we conclude that

5 A PHA(PHAPIA (P

. b . 1
- (1+z—(§—(k—z)))zp:l?+0(l)

p

h—k+i—j 1
=(1l+i-—— — 4+ 0(1).
(1+i ) §p -+
By referring to (2.1) and (2.3), we arrive at
AP = " Agesaipsymt 1 (D)- 24)

=0

Following the proof as in (1), if i + j —kiseven and j —i < k < i + j, then the constant term in (2.4)
is 1. Thus, the second assertion holds.

Lemma 2.3. Let f € H, and g € H; be two distinct Hecke eigenforms. When o= — 1%, for any
Jh>1,0<i< jand 0 <k < h, we have

A(pHA(pHA,(pF
(1) ) AL oqy,
p

1
i i k h o(1 , - .’ k= h,
@Y YOOI _ DERTONEEY
P p o(1), otherwise.

Proof. (1) Af(p")/lf(pj)/lg(pk) = 2 Adgymiti2 pxsymig(P) 18 given similar to (2.4). The relation shows that
=0

the associated Dirichlet series can be decomposed into L(sym'*/ f x symfg, s)L(sym*/=2 f x sym*g, s) -
.- L(sym/™ f x sym*g, s)G(s), where G(s) can be given in terms of a Euler product that converges
absolutely for Re (s) > % and G(s) # 0 at s = 1. Therefore, (1) follows from the fact that the
Rankin—Selberg L-function L(sym'f X sym’g, s) is an entire function except for the case wheni = j
and f = g, in which case it has simple poles at s = 0, 1.

(2) The relation

i k
APOUPIALPIP") = D" Aggmieran ((PYAggienas ()
11=0 =0

implies the second assertion by a similar method.

AIMS Mathematics Volume 11, Issue 1, 1382—-1411.
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Lemma 2.4. Let f € H and g € H be two distinct Hecke eigenforms. Then we have

(1)
Z /lfxfxf(pz) - /1g><g><g(p2) — 0(1)
p r
2\ 2\)2
Z (Apxpxr(P7) Gfnggxg(p )" 822 LG +0(1).
p p p P
(2)
2 Apxps(P) = Ao PD* >, Loy,
P P b -
Proof.

Z (/lfxfxf(pz) - /1g><g><g(p2))2
p()’

p P? p p”

p
2 2
5 By P) 5 BxoxeP?) 5 Yxpxs PV s (P7) 2.5)
P p”

For j = 2m, we learn from Lau and Lii [8] that

Xp)=An+ > Cu(MAgmer (D) + Asgmn (D),

1<r<m-1

where
2m)! 3 Cm)!2r+1)

m = VN Cm - bl
mm+ D O T m e+ D)
In particular, we have /l?(p) = 5+ 92:(p?) + 54,(p*) + A,(p°), ﬂ}‘.(p) = 2+ 324(p*) + A,(p*) and

LUp) = 1+ A4(p?).
By the definition of the triple product L-functions, we have

mz 1.

Apxpxp(PD) = ap(p)® + 3ap(p)* + 9a,(p)* + 10 + 9B,(p)* + 3B8,(p)* + Br(p)°
= A4(p)° = 34(p)* + 614(p)* — 4
=1+ 644(p*) + 22:(p*) + 2:(p°). (2.6)

Thus,

B (P7) = 1+ 122,(p%) + 42,(p*) + 22,(p%) + 3645(p?) + 445(p")
+ 3(p%) + 242,(pP) A, (p*) + 122,(pH) A, (%) + 42, (pH A, (P°), (2.7)

Apepxs P s = 1+ D (P + D k(P + Y k(PP (2.8)

i=2,4,6 Jj=2,4,6 i,j=2,4,6

AIMS Mathematics Volume 11, Issue 1, 1382—-1411.
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where ky = 6,ky = 2,ks = 1,kpo = 36,koy = 12,kog = 6,ksp = 12,ksy = 4, kss = 2,ker = 6,kes =
2, k66 = 1
By Lemma 2.1 and (2.5), we deduce that

Apserr(P?) = Agrges (P Apepxr(P?) = Agxps(P?))” 1
Z f><f><f(p ) ngxg(p ) = 0(1) and Z ( fxfxf(p ) gxgxg(p ) _ 822 — +0(1).
p° > p’ ) p

p

Now we study A sy < (p®). For j = 2m + 1, from [8] we obtain

AP = Budy(P) + > DM A 1(P) + Agmines (P, (2.9)

1<r<m-1

where
3 22m + 1)! B Cm+ D!Q2r+2)

" mlm+2)) Dnlr) = m-r)m+r+2)!

m> 1.
According to the definition of the triple product L-functions and (2.9), we have

Appxr(P) = @y (p)’ + 3ap(p) +9a,(p)’ + 20a4(p)’ + 27as(p)
+27B4(p) + 2084(p)* + 9B,(p)’ + 3B4(p) + Bs(p)’
= A4(p)’ = 64,(p)’ +1524(p)’ = 1325(p)
= TA5(p) + 1LA:(p?) + 62:(p°) + 22:(p") + A:(P°). (2.10)

Therefore,

B f (D7) = 4905(p) + 1542,(p) A, (P7) + 842, (p)As(P7) + 28A4(p)As(pT) + 142,(p)As(p°)
+ 12105(p°) + 1322,(pHA,(P°) + 4424,(p) A (p') + 222, (pP)Ap(p”) + 365(p")
+2425(P)As(p") + 122 A5 (p°) + 445(pT) + 42, (p)As(P°) + AH(p7), (2.11)

Apepxr (P e = D ki (PP,
i,j=1,3,5,7,9

where k]] = 49,k13 = 77,k15 = 42,k17 = 14, ...,kg] = 7,k93 = 11,](95 = 6, k97 = 2,k99 =1.
By analogy with (2.5), we finally conclude from Lemma 2.1 that (2) holds.

Lemma 2.5. Let f € H; and g € H;, be two distinct Hecke eigenforms. Then we have

2 2y_ 2))2 1
0 5 (Apxxr(P7) a s (P _ 413 — +0(1).
p=0 p v b
for some xeZ?
1 3y 2 3))2 1
(2) Z ( fxfxf(p ) a- g><g><g(p )) -211 Z — + 0(1)
p=0(x) P PP

for some xeZ?

Proof. To avoid repetition, we only prove the first case.
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In this lemma, because the summation extends over the primes that can be expressed in the form
QO(x), we introduce the characteristic function 14, (2.2) and obtain

Z (/lfxfxf(pz) - /1g><g><g(p2))2 _ Z (/lfxfxf(pz) - /ngng(pz))le(p)
p=0(x) p” p p”
for some xeZ?
1 Z (A (D) = Agxgns (D) 0(P) Z (Apxpxf(P?) = Agugng (P + xp(P))
2wp p° T2 p°

Z fxfxf(p Z /lgxgxg(p ) _ 22 /lfxfxf(p )/lgxgxg(p ))

p p p p

< Fx (P Wo(p) XX(P Wp(p) Apxpx (P )/lxx(P Wp(p)
fff FXIXf
+§(E +E Ciaa —2E 87878 ).

P > P P

By (2.7), (2.8) and Lemma 2.1, we prove (1).

Lemma 2.6. Let f € H; and g € H; be two distinct Hecke eigenforms. Then we have
(1)

2 -2 ))?
Z f><f><f(p gxgxg(p ) _ 0(1) and Z ( fxfxf(p ) — ngXg(p )) = 329242 LO_ + 0(1)
p 7 P

2)

Z (B f(P) = B (PP

1
= 2102314 E — + O(1).
pU' p(T

p
Proof. Substituting (1.1) into (2.7), we have

Afcxfx f(p2) =42 + 532,(p?) + 452,(p*) + TA:(p®) + 5,(p*) + A,(p'") + A:(p")
+242,(pHAp(pY) + 122,(pP) A (p®) + 42, (pH A (). (2.12)
Hence,

Ay (P7) = 2500 + 6161.45(p?) + 545705(p") + 1001.5(p°) + 41.45(p°) + 43(p'") + 5(p"?)
RGP+ D kPO Y kPO,

i=2,4,6, i,j=24, i,j,h=2,
8,10,12 6.8,10,12 4,6,8,10,12
i#] i# jth

where k2 = 8540, k4 = 7948,](6 = 3740, kg = 1172, ...,k248 = 336,k268 = 312, k468 = 40.

B P (P = 1764+ > ks (P + D kA0 + > KA (p)A,(p)

i=2,4,6, j=2,4.6, i,j=2.4,
8,10,12 8,10,12 6,8,10,12
o c o
D kgD + ) KPP+ ) Kindf(p)A(p)A(p")
i,j=2.4, i,j=2,4, i,j,h=24,
6,8,10,12 6,8,10,12 6,8,10,12
i#j i#] Jj#h
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£ 0 KPP+ Y K (AP,

i,j;h=2,4, i, jih,1=2.,4,
6.8.10,12 6.8.10,12
i#] i#j,htl

where k, = 2226,k, = 1890,ks = 294, kg = 210, ...,k = 1008, kys = 504, kys = 168, ..., kse04 =
96, k4626 = 48, k4646 = 16
To see that (1) holds, we use Lemmas 2.1 and 2.3.

Now we study the case when Ay sx(p?). Substituting (1.1) into (2.11), we have

B (P7) = 211+ 2112,(p%) + 1622,(p*) + 1622,(p°) + 414,(p°) + 414,(p"") + 52,(p"?)

+52(p") + 4(p'%) + A4p(p"*) + 1542,(p) A, (p?) + 842,(p)As(P”) + 28,(p)A(p")
+ 142,(p)A,(p°) + 1322,(pHAp(P°) + 44,(p)A(p") + 224(p7)A4(P°)
+ 24P (PT) + 1246(P7)Ap(P7) + 44PN AL(P). (2.13)

Hence,

Ay (D7) = 96853 + 968537(p°) + 46824.25(p*) + 46824.45(p°) + 241705(p°)
+241725(p"%) + 4125(p") + 415(p") + 3(p") + 3(p")

O kY Y kPP + D kyd(pHA(p))

i=2,4,6,8,10, i,j=2,4,6,8, i,j=1,
12,14,16,18 10,12,14,16,18 3,579
i£] i#]j
i j h j j h /
0 kPO PIAEN + D Kud (PP PP,
i=2,4,6,8,10, i,joh,l=
12,14,16,18 1,3,5,7,9
jh=1,3,5,79 i# jEh#l
JEh

where k, = 89042, k4 = 68364, k¢ = 68364, kg = 17302, ..., ki579 = 2016, k3579 = 3168.

By (P ) = 44521+ > k(P + Y k(P + D ki (p)A(p)

i=2,4,6,8,10, J=2,4,6,8,10, i,j=1,
12,14,16,18 12,14,16,18 3,579
i£]
j j i j i j h
0 kAP + D k(PP + D K df(p)A(p)A(p")
i,j=24, i,j=1, i=2,4,6,8,10,
6,8,10,12, 3,5,7,9 12,14,16,18
14,16,18 i#] jh=13,5,19
j#h
i j h i j h /
o kPPN DT K (AP AP,
h=2,4.,6,3,10, i,j=1,3,5,7.9
12,14,16,18 h,l=1,3,5,79
i,j=1,3,5,7,9 i#j,h#l

i#]j

where k, = 44521, ks = 34182, kg = 34182, kg = 8651, ..., k7959 = 48, k7979 = 16.
From the calculations above, we show that (2) holds.
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Lemma 2.7. Let f € H; and g € H be two distinct Hecke eigenforms. Then we have

(1
(B 1 (D7) = D e (PP))? 1
> PR S 6462 ) — + O(D).
=01 p » P
for some xeZ?
(2)

(L (P) = 2, (PP !
Z FXFxf 8%8x8 = 1051157 Z — +0(1).
~ p(r

(o
P=00) p

for some xeZ?
Proof. Lemma 2.7 readily follows from the preceding analysis in Lemmas 2.5 and 2.6.
3. Proof of Theorems 1.1 and 1.2

In order to demonstrate Theorems 1.1 and 1.2, we introduce the lemma below.

3.1. Lemma

Lemma 3.1. Let f € H; and g € H; be two distinct Hecke eigenforms. Then

(1) fofxf(pz) - /lgxgxg(pz)l <52 and |/1f><f><f(p3) - /lgxgxg(pB)l < 240.

() 10 f (D7) = A (PP < 2028 and |5, 1 (P7) = Ay ()] < 23920.

§Xgxg
Proof. From [7, Lemma 3.1], for any j > 1, we find that
A - AP < A1
where [7] denotes the integral part of . Hence, (2.6), (2.10), and (3.1) yield

|/1f><f><f(p2) - /lg><g><g(p2)|
< [24(P%) = (PO + 214,(pY) = (P + 614,(p*) — A,(pP)] < 52

and |/lf><f><f(p3) - /ngng(P3)| < 240.
From [15, Lemma 6], forany j > 1, 0 <i < j, we have

(PN (D) = A(P) A (P < 20 + j + 6),

i+1, 243G+ )), .
where § = o By (2.12), (2.13), (3.1), and (3.2), we arrive at
0, 2|1+ )).
|/1fcxfxf(P2) — /lgxgxg(;ﬂ)l < 2028 and |/1§Xfxf(p3) — ﬂﬁxgxg(l?3)| < 23920.

3.1

(3.2)
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3.2. Proof of Theorem 1.1

We consider the set X; = {p : dpxsxr(P?) < Agwgxe(p?)}. In order to establish the lower bound for the
analytic density of the set X,, we analyze the following summation and obtain

Z (/lfxfxf(pz) - /lgxgxg(pz))z

a
PEX> p

_ Z |/lf><f><f(p2) - ﬂgxgxg(pz)”/lfxfxf(pz) - /lgxgxg(pz)l

a
PEX> p

1
<2704 >" — +0(1), as o — 1", (3.3)

PeXs

If p ¢ Xo, then Apysxr(P?) = Agxexe(P?). Applying the first assertion in Lemma 2.4 yields:

Z (/lfxfxf(pz) - /1g><g><g(l72))2 <5 Z /lfxfxf(pz) - /lg><g><g(p2)

a (on
pEXo p PEX> p

= 52(2 Apxpxf(P?) = Agwaxg(P?) B Z Apxxf(P?) = /lgxgxg(Pz))
p

a a
p peXs p

/lfxfxf(pz) - /ngng(pz)

<52(0(1) + . )
1
<2704 Y — +0(1), aso — 1", (3.4)
PeX>

Now we combine the estimates from (3.3) and (3.4) to get

Z (/lfxfxf(pz) - /1g><g><g(p2))2
p po—

_ Z (/1j'><f><f(p2) - /1g><g><g(P2))2 + Z (/lfxfxf(pz) - /1g><g><g(pz))2

o o
PEX) p pExs p

1
<5408 >° — +0(1), as o — 1", (3.5)

PeXs
Lemma 2.4 and (3.5) lead to

1 _ (/1f><f><f(p2) - /lg><g><g(p2))2 1 +
822F+0(1)_Z - <5408 >° — +0(1), as o — 1",
p p

PeXy

This shows that the analytic density of the set X is at least 704"

We discuss the set Y, = {p : /lfcx I f(pz) < A3y exe(PP)). This proof parallels the approach taken in

that X,, with the primary distinction lying in the substitution of Lemma 2.4 for Lemma 2.6.

Z (/l?‘xfxf(pz) - /l§><g><g(p2))2

o
PeYs p

1
<4112784 3" — + O(1), as o — 1",

PeY?
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(o (DD = 2o (PD)? 1
P Ciallal <4112784 )" — + O(1), as o — 1*.

a
PEY> p PEY>

Now, by combining the estimates above, we derive that

1 (B (PP = e (PD)? 1
32024 ) — +o() = y LI T 28295568 )" — +0(1), aso - 1.
> p ? p peY2
231

The preceding discussion confirms that the analytic density of the set Y, is at least 3056303

Similarly, we consider the sets X3 and Y3.

Ao (D) — 1 32 1
Z (Apxpr(P7) = Agugng(P7)) < 57600 Z — +0(1), aso — 1"

p€X3 po— p€X3

Ao (D) — 1 3302 1
Z (Apspxr(P7) . exexe(P”)) < 57600 Z — +0(1), aso — 1"
PEX3 P Pexs

Combining these two estimates and Lemma 2.4 implies that

1 A 3 -4 X ?))? 1
422§:_+0(1): E‘( 1xps(P7) ~ Agxexg(P7) < 115200 E — +0(1), aso — 17,
P P’ 7
P P PEX;

This shows that th lytic density of the set X3 is at least .
is shows that the analytic density of the set X; is at least -0

Z (s s (P7) = Ao (P

1
< 57216640 E — +0(1), as o — 1.
po— a

p€Y3 p€Y3

(s f(P) = B (P))? 1
Z XfXf gXgxg < 57216640 Z — + 0(1)’ as o — 17,

g
p¢Y; p PEY3

According to Lemma 2.6, as o — 1%, we have

(s f(P7) = Ve (P)) 1
3 Lot gxexg < 114433280 ) — + O(1).
P° "

p PEY3
1051157
572166400

1
21023142 — +0(1) =
pO’
P

This directly yields that the analytic density of the set Y3 is at least

3.3. Proof of Theorem 1.2

We focus on the set A, = {p : p = Q(x) for some x € Z? and Ay s (P?) < Agxexe(p?)}. By the
characteristic function (2.2) and Lemma 3.1, we have

(/1f><f><f'(p2) - /lg><g><g(pz))2 _ 1 Z (/lf><f><f(P2) - Agxgxg(pz))er(p)
p7  2wp

p(T
PEA2, p=0(x) PEA2

for some xeZ?
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1 Z |/1f><f><f(p2) - /lgxgxg(pz)l|/lf><f><f(p2) - ﬂgxgxg(pz)lrQ(p)

= a
2wp = P

1
<2704 )" — +0(1), as o — 1*.

PEA2

If p ¢ As, then Apypur(p?) = Agxexg(p®) Or p cannot be represented by Q(x) for any x € Z*. In the
ro(p)

Wp

second case, ro(n) = 0. Moreover, |

(1):

| < 2. This results in the following estimate by Lemma 2.4

(/lfxfxf(pz) - /nggxg(pz))z _ 1 Z (/1f><f><f(p2) - /nggxg(pz))er(p)
PA2. p=0) p” 2wp
for some xeZ?

< 26 57 Creos) = A Vrep) _ o A t) = sl
“p P PEA2 p
2y _ 2
< 52(0(1) + — 3 (Apxrxr (P) = Agrgxe(PDro(p)
2(,()D ey p(T

a
PEA2 p

)

p

)
1
<2704 )" — +0(1), as o — 1*.
PEA2
The two estimates above imply

(/lfxfxf(pz) - /1g><g><g(p2))2

a
P=00x) p

for some xeZ?

_ (/lfxfxf(pz) - /1g><g><g(p2))2 + (ﬂfxfxf(pz) - /ngng(pz))z
pes. p=0) pe P2 P=0) pe
for some xeZ? for some xeZ?
1
<5408 >° — +0(1), as o — 1", (3.6)
PEA2

On combining Lemma 2.5 and (3.6), we infer that

Aooro s 2 -1 2\\2 1
Z Apxsr(P7) = Apxos(P7)) 354082 — +0(1), aso — 1".

o
P=0(» p prn
for some xeZ?

1
41) —+03) =

This shows that the analytic density of the set A, is at least 5103
We deal with the set B, = {p : p = Q(x) for some x € Z? and /lfcxfxf(pz) < Ao (P} This proof
follows the same line as that of A,, and the main difference is the use of Lemmas 2.6 and 2.7 instead

of Lemmas 2.4 and 2.5.
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(/l;xfxf(pz) - Aéxgxg(pz))z

a
pEBs. p=0) p

1
<4112784 ' — +0(1), as o —> 1",

PEB,

for some xeZ?

(/ljzfxfxf(pz) - Aéxgxg(pz))z

o
P#B1. p=0(2) p
for some xeZ?

1
<4112784 ' — +0(1), as o —> 1",

PEB,

Now we combine the two estimates and utilize Lemma 2.7 to get

(s f (P?) = Ao (P’ 1
ekl S <8225568 | — + O(1),

1
164622 o o(l) =
P

=0 for p pebs
some x€Z?
aso — 17,
Iti ident that th lytic density of th t B, is at least 8231
1 1aen n 1 ns1 1 —_.
S €vide a € analytic aensity o € S€U Dy 1S at 1€as 4112784

Similarly, we turn to the sets A3 and Bs.

(/lfxfxf(p3) - /lgxgxg(p3))2
pO’

1
< 57600 Y — +0(1), as o — 1",

PEA3, p=0(x) PEA3

for some xeZ?
A (P) = Axos D) _ o
o

1
D= +0), aso - 1.

p¢As3, p=0(x) DPEA3

for some xeZ?

Hence, from Lemma 2.5, we find that

1
211 ) —+0(1) =
P

Z (/lfxfxf(pS) - /lg><g><g(p3))2
p=0(x) p”

for some xeZ?

1
< 115200 > — +0(1), as o — 1",

PEA3

We thus demonstrate that the analytic density of the set A; is at least T15200°

(/livxfxf(pS) - /1§><g><g(p3))2
pO’

1
< 57216640 »° — + O(1), as o — 1*.
PEB3, p=0(x) peB;3
for some xeZ?

(ﬂix s P?) = B (P))?

o
pEB3, p=0(x) p
for some xeZ?

1
< 57216640 »° — + O(1), as o — 1*.

PEB3
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In view of Lemma 2.7, we deduce that

! (s (DY) = 22, e (D))
1051157 Z — +0() = Z P V) Lo
» P P=0(x) p

for some xeZ?

1
< 114433280 »° — + O(1), as o — 1.

PEB3

1051157

This sh that th lytic density of the set Bj is at least ————.
is shows that the analytic density of the set Bj; is at leas 144332300

4. Proof of Theorems 1.3 and 1.4
To prove Theorems 1.3 and 1.4, we provide the following lemmas.

4.1. Some lemmas

Lemma 4.1. [15, Lemma 4] Let K(p) be a set of real numbers, and |K(p)| < B with a absolute bound
B. Suppose that there exist two absolute constants m, M such that

ZKZETP) :mZI%+0(1)

p P

and

ZK;f) :MZ}%+O(1),
p P
m-— MB

2B
Lemma 4.2. [4, Lemma 2.3] Let K(p) be a set of real numbers, and |K(p)| < B with a absolute bound
B. Suppose that there exist two absolute constants c, C such that

ZKZ(P)lQ(P) :cZL+0(1)
p p? p p?

as o — 17. Then the set {p : K(p) < 0} has an analytic density at least

and

K(p)lo(p) 1
§ =C § — +0(1),
p pU p pU ’ ( )

as o — 1%. Then the set {p : p = Q(x) for some x € Z> and K(p) < 0} has an analytic density at
c—CB

least ———
east ——

4.2. Proof of Theorem 1.3
Set

Si(p) = (Cl/lfxfxf(pi) + C2/lg><g><g(pi) - a)(cl/lfxfxf(pi) + C2/lg><g><g(pi) - b)
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= C%/lffxfxf(pl) + Cz/lzxgxg(pi) + 2C]CZ/lefo(pi)/ngng(pi)

— (a + b)(C1dxpxf(P') + Coadgxgxe(P)) +ab, i=1,2,3. “4.1)

Therefore,

;S

(P Ao e (P 2 A i
D) _ & Z f><fxf ‘3 Z f><f><(]; L0 Z Ixpxf(P) Agxexe(P')

p p7
c /1 X i +cC /l % i 1
—(a+b)Z 14xxr (P) + €2 Agxexs(P) cay L
p 2 pT
and
S? 1
S Y
p P > P
—2ab(a + b) Z C1dpxpx (D) + C2Agxgxe(P') 2+ Z (€1 px (DY) + C2Agrgne(P))?
p p(r p(r
+ ((d + b)Z + 2Clb) Z (Cl/lefo(pi) + Czngng(pi))z . Z (Cl/lfxfxf(Pi) + Czﬂgxgxg(pi))LL’
p po— > pO’
where

(C1xpxr(P) + C2Agxgxg(P))’ = A5 1y s (D)) + 20102 A p s (D) Agigg(P) + 3 Ao (P
(C1dpxx (D) + C2Agxgne(P)) = Cf/lfcx (P + Bty /(P Agxgne(P)

+ 361C%/lfxfxf(pi)/léxgxg(pi) + C3/1§ngg(l7i),
(€1 g (D) + Colgxgng(P)* = 1AL 1 (D) + 4127, 1 /(D) s (P)

+ 6615 A 1 (D) Vg (P

+ 40163 (D) g (P) + g (P)-

Because the proofs for these three cases are similar, to avoid redundancy, we only prove the third case.
We derive by (1.2) and (2.10) that

s (PO < g (p) + 3lap(p)I” + las(p)P + 20la,(p)F + 274 (p)|
+27187(p)| + 20185(p) + 9B, (PIF + 3B()” + B(p)I” = 120.

Thus,
(P g (P < 14400, 1, (p)] < 14400,
Following the formula of (4.1), we find that

1S3(p)l < 14400(c:| + leal)® + 120(lal + B)(Ie1| + leal) + labl.
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Lemma 2.1 gives

Zp: ;(p) = 211 +211c2+ab)2—+0(1) as o — 1%, (4.2)

Now we calculate 43, .. (P°), 43, (PP)Agugne(P) and A3, ;. (P Agexe (D).

/ljfxfxf(p:;) = A;xfxf(p3)/lfxfxf(p3)
= D ki(H+ D kdd(pHagp)),
i=1,3,5,7,9 i=1,3,5,7.9

J=2,4,6,8,10,
12,14,16,18

/l.?xfxf(p3)/lg><g><g(p3)
= Z ki/lg(pi) + Z kij/lf(pi)/lg(pj) + Z kijh/tf(Pi)/lf(pj)/lg(ph),
i=2,4,6,8,

i=1,3,5,7,9 i,j=1,3,5,7,9
10 12 14 i#]
J=13,5.19 h=1,3,5,1,9

B P e @) = > k(DAY + > ki d (DA (P AP,
i=1,3,5,7,9 i=2,4,6,8,10,
j=13.5.7.9 12,14,16,18
j=13,5,7,9
h=1,3,5,7,9

It follows from Lemmas 2.1 and 2.2 in combination with Lemma 2.3 that

S2
Z ;(f) = ((@* + b* + 4ab)(211c} + 211¢3) + 1095678(c} + c3)

p

1
+267126¢22 + a*b?) Z —+0(), asa — 17, (4.3)
pG’
p

According to Lemma 4.1, we obtain that the set F3 has an analytic density at least f(3,a,b, ¢y, c3),
where f(3,a, b, cy, ;) is defined as in (1.6).

Next, we present the results of the first and second cases.

Case 1:

1S 1(p)] < 64(c1| + lea)? + 8(lal + [bl)(Ie1| + leal) + labl.

D SUP) _ (52 4 5 +ab)Z—+0(1) aso — 1", @4
P

p

2
1
> p(p ) (@b 4ab)(5ct + 5¢3) + 132(c] + ¢}) + 150} + a®b?) ) FACONNCE)
p p
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as o — 1%. According to Lemma 4.1, we obtain that the set F; has an analytic density at least
f(1,a,b,cy,c,), where f(1,a,b,cy,c,) is defined as in (1.4).
Case 2:

1S2(p)] < 1296(c1| + lea)? + 36(lal + [bl)(le1| + leal) + labl.

3 ;(p) (4262 + 42¢% + 2c1¢5 — (c1 + ¢2)(a + b) + ab) Z — +0(1), asa—1*.  (4.6)

p

SZ
Z P) _ (=2ab(a + b)(c| + ¢2) + (a® + b* + 4ab)(42¢> + 4263 + 2¢1¢2)
pO’
14
— (a + b)(1490(c3 + ¢3) + 252(cicy + c1¢3)) + 18226(c] + ¢3) +2980(cicy + cic3)

1
+10584cic3 + a*b?) Z ot o(l), as o — 1%, 4.7

In light of Lemma 4.1, we obtain that the set F', has an analytic density at least f(2,a, b, ¢y, ¢2), where
f(2,a,b,cy,cy) is defined as in (1.5).

4.3. Proof of Theorem 1.4
Set

Sip) = (Cl/lfxfxf(pi) + szngng(Pi) - a)(cl/lfxfxf(pi) + szngng(Pi) -b), i=1,2,3.

Z Sip)lo(p) _ 1 Z Sipro(p) _ lZ Si(p)(1 +xp(p))
5 .

~ P 20p &4 p p

ZS?(p)lg(p)_ 1 3 2(p)rQ(p) 1 3 2(p)(1+)a>(p))
- =32

> p” 2wp ~

We invoke (4.4) and (4.5) to compute

Siplop) 5, 5, 1 1
e (= = — — 1 I
Zp: I (2c1+2c2+2ab)zp:pa+0( ), aso — 17,
S2(p)1
D % = (@ +b+ 4ab)(§c$ + gcg) +66(ct + )
P

1
+75¢ics + a2b2)2—+0(1) aso — 17,
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With reference to Lemma 4.2, we obtain that the set £, has an analytic density at least e(1, a, b, ¢y, ¢3),
where e(1, a, b, ¢y, ¢,) is defined as in (1.7).
For E,, applying (4.6) and (4.7), we have

S>(p)1 1 ! !
32N 16 421G + s - ey + e+ )+ 2ab) Y+ O(D), as o> 1.
P 2 2 2 d

Z S3(p)1o(p)

g

= (—ab(a + b)(c) + ¢3) + (@ + b* + 4ab)(21c? + 21c% + cica)
p
—(a +b)(745(c; + c3) + 126(cicy + ¢163)) + 9113(c] + ¢5) + 1490(cicy + c13)

1 1
+5292c%ct + Eazbz) Zp: I? +0(1), as o — 17,

Following Lemma 4.2, we derive that the set E, has an analytic density at least e(2, a, b, ¢y, ¢2), where
e(2,a,b,cq,cy) is defined as in (1.8).
For E5, employing (4.2) and (4.3), we have

Sa(p)1 1 1
2 W) 111291103 +ab) Y —+0(), aso - 1".
p” 2 > p”

p

S2(p)1 1
D w = 3@+ b7 +4ab)211¢} + 2113) + 1095678 (c] + )

p

1
+267126¢t} +@’b?) )" — +0(1), as o — 1",
p P”

Lemma 4.2 shows that the set E3 has an analytic density at least e(3, a, b, ¢y, ¢), where e(3, a, b, ¢y, ¢3)
is defined as in (1.9).

5. Proof of Theorem 1.5

5.1. Lemma

We define the Pair-Sato—Tate measure and state the Pair-Sato—Tate conjecture, which will be used
to prove Theorem 1.5 (see [14, Theorem 1.1]).

Definition 5.1. The Pair-Sato-Tate measure i3, is a probability measure on the interval [0,x] and
4
Hir = = sin” 678 sin” §,d6,.
m
Lemma 5.2. (Pair-Sato—Tate conjecture) Let f,g € H; be two nonzero cusp forms and 64(p), 0,(p) be
Frobenius angles at p of f and g, respectively. The sequence (6+(p), 6,(p)) based on the Pair-Sato—Tate

measure (3. is uniformly distributed on [0, x>, In particular, for any two subintervals I, C [0, 7] and
I, C [0, ], we have

im #p < xl(07(p), 0,(p)) € I, X I}
X #p < xlp € P}
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= 57 (h X )
4

= — | sin®6,d6; f sin” 6,d6,.
™ Jn b

5.2. Proof of Theorem 1.5
By (1.2) and (1.3), we have
Apxpxp(p) = A3(p) = 8cos’ O;(p). (6.1
Expressing Aj;.x Fxp(P) > ﬂéxgxg(p) in trigonometric form gives

cos* 0;(p) > cos™ 6,(p). (5.2)
The following will analyze the parity of j to prove Theorem 1.5.

Case 1: When j is even, function cos® 6 is decreasing on interval [0, 5] and increasing on interval

[g, r], and its graph is symmetrical about line 8 = g The ranges of 6/(p) and 6,(p) that satisfy (5.2)
are shown in the shaded area of the Figure 1.

Gg(p)

3n/4
n/2

n/4

O¢(p)

0 n/4 mn/2 3n/4 ™

Figure 1. Range map of 6/(p) and 6,(p).

Decompose the shaded area of Figure 1 into two regions:
Vs
Dy ={(67(p), O,(p)) : 0 < Os(p) < 5 07(P) < Os(p) <7 — 0r(p)};

DF«wm%@rg

Based on Lemma 5.2, we first perform the calculation for region D;. Applying formula f sin® xdx =
x sin2x

2 4

< 0r(p) <, m—0r(p) < 0,(p) < 04(p)}.

+ C yields

5 0y 2 sin20
f sin® 0,d6, f sin’ 0,dg, = f sin 0,2 — 0, + ——L)do),
0 . . O 0 2 . 2 ‘
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n

3 3 1 2
= 7—T f SiIl2 Qfdef - f Hf SiIl2 Hfdgf + = f SiI'l2 Hf sin 29fd9f
2 0 0 2 0

2 1
f sin’ 0 sin20,d6; = —.
0 4

0| =

Each integral in the above expression can be calculated using integration by parts.
2

5 2
gfo sin’ 0pdb; = %,
bis

: 1 [} 1 (3 1 (3 1
0,sin’0,d0; = = 01 — cos20,)d9, = — 0:d0; — = 6 20:d0; = — + —.
fo 7 sin” 6,do; 2f0 (1 — cos 26;)do; 2fo d6y 2f0 c0s 207d0y = T2+ 5

In summary,

4 %.2 7r—6f"2 1
— sin” 6,d@ sin“ 6,d0, = —.
2 J, - Gy fL m- Ggdo, 4

1
Similarly, the integral result for region D, is T This indicates that the natural density of set {p :
A i (P) > Agre (D)} 8 3 In view of symmetry, the natural density of set {p : A7, (D) < Aguexe(P)}
1
is also 5
Case 2: When j is odd, the function cos® @ is decreasing on [0, 7], and its graph is centrally symmetric

about point (72—T, 0). The ranges of 6/(p) and 6,(p) that satisfy (5.2) are indicated by the shaded area in
the Figure 2.

3n/4
mn/2

n/4

64(p)

0 /4 /2 3n/4 i

Figure 2. Range map of 6/(p) and 6,(p).
The shaded area in Figure 2 is defined by

D3 = {(0¢(p), 04(p)) : 0 < 04(p) < 7,04(p) < b,(p) < 7}.
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Similarly, by performing calculations on region D3, we obtain

4 7T . 7T . 1
— 0,do 0,d6, = —.
2 f(; sSm- Gy ffg; SN 6,40, >

- - 1
This indicates that the natural density of the set {p : /l}x (D) S Asoxg(P)} 18 3

6. Proof of Theorems 1.6 and 1.7

6.1. Lemma

The definition of the Sato—Tate measure is given, followed by a statement of the Sato—Tate
conjecture (see [11, Theorem 2.3]), which will be used to prove Theorems 1.6 and 1.7.

Definition 6.1. The Sato—Tate measure ugy is a probability measure on the interval [0, ] and ust =
2

= sin” 6d6.

s

Lemma 6.2. (Sato—Tate conjecture) Let f € H; be a nonzero cusp form. The sequence {6,} based
on the Sato—Tate measure ust is uniformly distributed on [0, n). In particular, for any subinterval
I C [0, ], we have

#Hp<xlo, el

2
—_— = I)=- in 6d6.
S Ep<aper T nf,sm

6.2. Proof of Theorem 1.6

For simplicity, 8(p) will be replaced by 6 in the next context.

Define the characteristic function £(6) = sgn(Asx s« s(p)) = sgn(8 cos® §) with the help of (5.1).
Calculate the natural density d(P;) and d(P}) of sets P = {p : Apxy(p) > 0} and P} = {p :
Apxrxr(p) < 0}. According to the definition of natural density and Lemma 6.2, we know

2 2 (3 1
d(Py) = —f sin® 6dg = —f sin’0dg = =
T J(6:6(6)=1}n[0,7] T Jo 2

and

2 2 (T 1
d(P)) = = f sin>6dg = = f sin>6dg = ~.
T J(0:6(0)=—1)n[0,7] T Jr 2

2

For P; and P/,

Apsps(PY) = A4(p) = 644(p) + 1544(p)° — 1324(p)’
=512cos’ @ — 768 cos’ O + 480 cos’ 6 — 104 cos> 6.

The definition of natural density and Lemma 6.2 imply

2 2
d(P3) = = f sin®0d0 and d(Py) = = f sin” Ad6,
T No:e@)=1)n[0.7] T J(0:2(6)=—1)n[0.7]
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where the characteristic function &(6) = sgn(512 cos’ 6 — 768 cos’ 6 + 480 cos’ 6 — 104 cos* 6). Then,

2 (7 2 2
= f &(0) sin>0do = = f sin” 6d6 + = f (—1)sin® 6d6
T Jo T J{0:5(0)=1)n[0,7] T J(0:6(0)=—1)n[0,7]

= d(P3) — d(Py).

. . . T
Performing a transformation on the integral t = 6 — 3 leads to

2 (7 2 2
= f &(0) sin> 6do = = f &3(f) cos® tdt = T,
T 0 T

s
2

where &3(f) := —sgn(512 sin’ £ — 768 sin” 7 + 480 sin’ 7 — 104 sin’ 7) is an odd function in [—g, g]. Then
T3 = 0. In other words,
d(P;) - d(P}) = 0.
1
d(P3) +d(P}) = 1 implies d(P3) = d(P}) = 7
Now we consider P, and P;.
Apxsxr(P?) = 45(P)° = 3,(p)* + 644(p)* — 4
= 64 cos® 0 — 48 cos* 0 + 24 cos* 6 — 4.
In view of Lemma 6.2, one has
2 )
d(Py) = — sin” 6dé,
T J(6:66)=1)n[0,7]
where
e(0) = sgn(/lfxfxf(pz)) = sgn(64 cos® 0 — 48 cos* 0 + 24 cos? 6 — 4)
= sgn(64 sin® r — 48 sin* 1 + 24 sin’ 1 — 4) =: &,(1). (6.1)
Noting (6.1), we learn that &,(¢) is an even function in [—g, g]. Then
2 (7 2 4 (2
- f £(0)sin* 0dH = = f £(f) cos® tdt = — f &,(f) cos” tdt.
T Jo T _g T Jo
It is easy to see that
4 2
d(Py) = — cos” tdt. (6.2)
T Jirern=1)n[0,%]

Denote by a the zero point of the function A(f) = 64 sin® r—48 sin* t+24 sin® r—4 in [0, g]. Substituting
x for sin® 7, we write f(x) := 64x° —48x% +24x—4, x € [0, 1]. Its derivative f’(x) = 192(x— $)*+12 >
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0 implies f(x) is monotonically increasing in the interval [0, 1]. Therefore, A(f) is monotonically
increasing in [0, E]. In view of 2(0) < 0 and h(z) > 0, h(t) has a unique zero « in [0, g]. Using
MATLAB, we know that a approximately equal to 0.5236 and

T T
et)=1,t¢€ [0,5] o te(a, 5].

Using (6.2), we have

d(P2)=—f cosltdr = 1 - 2% _ Mm@
T Ja T T

2 in2
d(Py) + d(P}) = 1 implies d(P;) = — + =2

n n

6.3. Proof of Theorem 1.7

The proof of Theorem 1.7 is similar to that of Theorem 1.6, both being proved using Lemma 6.2.

Apxpxf(P)Apxpxs(P?) = Ap(p)’ = 34(p) + 644(p)’ — 424(p)’
=512cos’ @ — 384 cos’ 6+ 192 cos’ 6 — 32 cos’ 6.

Recalling the definition of natural density and Lemma 6.2, we deduce

_ 2 _ 2
d(Py) = = f sin0d0 and d(P)) = = f sin” 6d6,
T J(0:6(0)=1}n[0,7] T J(0:6(0)=—1)n[0,7]

where

£() = sgn(Asxpxr(P)Apxpxr(P?)) = sgn(512 cos’ @ — 384 cos’ @ + 192 cos’ @ — 32 cos” 6)
= —sgn(512sin’ r — 384 sin’ t + 192sin’ 1 — 32 sin’ 1)

=: &4(1).
It is obvious to see that £4(¢) is an odd function. Then 7—2r fon £(0) sin® 6d0 = 0. In other words,
d(P,) - d(P}) = 0.

1

d(P,) + d(P,) = 1 implies d(P,) = d(P}) = >

Now we consider P5 and P;.

st (D) (P7) = A(p)'? = 62:(p)'0 + 1524(p)® = 1324(p)°
= 4096 cos'? 6 — 6144 cos'? 6 + 3840 cos® 0 — 832 cos® 6.

From Lemma 6.2, we find that

_ 2 - 2
d(Ps) = = f sin0d6 and d(P}) = = f sin” 6d6,
T J(0:6(6)=1}n[0,7] T J(0:6(6)=—1)n[0,7]
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where
&) = sgn(Apu s f(P)Asxpx(P)) = 5gn(4096 cos'? 6 — 6144 cos'® @ + 3840 cos® 6 — 832 cos® 6)
sgn(4096 sin'? r — 6144 sin'® 1 + 3840 sin® r — 832 sin®7)
=: &5(1).
An analysis similar to that in Theorem 1.6 shows that h(t) = 4096 sin'? # — 6144 sin'* ¢ + 3840 sin® 7 —
832sin’ 7 has a unique zero « in (0, 7—2r]. Using MATLAB, we know a = 0.7045.

%@:quag@ram;. (6.3)

It follows from (6.3) that

20 sin2a

_ 4 (3
d(P3):7_rf cosztdt:1—7— -

_ _ 2y sind
d(Py) + d(P}) = 1 implies d(P;) = — + 2=
T

T

7. Conclusions

This paper presents a total of seven theorems, including the analytic and natural density of the
given sets. The proofs of the first four theorems rely on the relationships between the triple product
L-functions, symmetric power L-functions, and Rankin—Selberg L-functions as well as the tools
in analytic number theory in connection with these automorphic L-functions. Based on the now-
proven Sato—Tate conjecture (or pair-Sato—Tate conjecture), we introduce the characteristic functions
to establish the natural density of the sets in the last three theorems.
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