We consider the critical problems of Kirchhoff type linearly coupled systems. In applying variational methods, we establish both the existence and multiplicity of solutions in the four-dimensional case.
Citation: Xiaofan Wu, Xueliang Duan, Qingquan Yang. The existence and multiplicity of solutions of Kirchhoff type linearly coupled systems with critical exponents[J]. AIMS Mathematics, 2026, 11(1): 907-914. doi: 10.3934/math.2026039
We consider the critical problems of Kirchhoff type linearly coupled systems. In applying variational methods, we establish both the existence and multiplicity of solutions in the four-dimensional case.
| [1] | G. Kirchhoff, Vorlesungen Über Mathematische Physik: Mechanik, Leipzig: Teubner, 1876. |
| [2] |
G. Anello, L. Vilasi, Positive solutions for a Kirchhoff problem of Brezis-Nirenberg type in dimension four, Nonlinear Anal.-Theory Meth. Appl., 251 (2025), 113675. https://doi.org/10.1016/j.na.2024.113675 doi: 10.1016/j.na.2024.113675
|
| [3] |
J. Liao, X. Ke, J. Liu, C. Tang, The Brezis-Nirenberg result for the Kirchhoff-type equation in dimension four, Appl. Anal., 97 (2018), 2720–2726. http://doi.org/10.1080/00036811.2017.1387248 doi: 10.1080/00036811.2017.1387248
|
| [4] |
D. Naimen, M. Shibata, Existence and multiplicity of positive solutions of a critical Kirchhoff type elliptic problem in dimension four, Differ. Integral Equ., 33 (2020), 223–246. http://doi.org/10.57262/die/1589594451 doi: 10.57262/die/1589594451
|
| [5] |
G. Li, H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^{3}$, J. Differ. Equ., 257 (2014), 566–600. https://doi.org/10.1016/j.jde.2014.04.011 doi: 10.1016/j.jde.2014.04.011
|
| [6] | M. Willem, Minimax Theorems, Boston: Birkhäuser, 1996. |
| [7] | K. Chang, Methods in Nonlinear Analysis, Berlin: Springer-Verlag, 2005. |
| [8] | J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, New York: Springer-Verlag, 1989. |