Research article

The existence and multiplicity of solutions of Kirchhoff type linearly coupled systems with critical exponents

  • Published: 13 January 2026
  • MSC : 35J20, 35J60

  • We consider the critical problems of Kirchhoff type linearly coupled systems. In applying variational methods, we establish both the existence and multiplicity of solutions in the four-dimensional case.

    Citation: Xiaofan Wu, Xueliang Duan, Qingquan Yang. The existence and multiplicity of solutions of Kirchhoff type linearly coupled systems with critical exponents[J]. AIMS Mathematics, 2026, 11(1): 907-914. doi: 10.3934/math.2026039

    Related Papers:

  • We consider the critical problems of Kirchhoff type linearly coupled systems. In applying variational methods, we establish both the existence and multiplicity of solutions in the four-dimensional case.



    加载中


    [1] G. Kirchhoff, Vorlesungen Über Mathematische Physik: Mechanik, Leipzig: Teubner, 1876.
    [2] G. Anello, L. Vilasi, Positive solutions for a Kirchhoff problem of Brezis-Nirenberg type in dimension four, Nonlinear Anal.-Theory Meth. Appl., 251 (2025), 113675. https://doi.org/10.1016/j.na.2024.113675 doi: 10.1016/j.na.2024.113675
    [3] J. Liao, X. Ke, J. Liu, C. Tang, The Brezis-Nirenberg result for the Kirchhoff-type equation in dimension four, Appl. Anal., 97 (2018), 2720–2726. http://doi.org/10.1080/00036811.2017.1387248 doi: 10.1080/00036811.2017.1387248
    [4] D. Naimen, M. Shibata, Existence and multiplicity of positive solutions of a critical Kirchhoff type elliptic problem in dimension four, Differ. Integral Equ., 33 (2020), 223–246. http://doi.org/10.57262/die/1589594451 doi: 10.57262/die/1589594451
    [5] G. Li, H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^{3}$, J. Differ. Equ., 257 (2014), 566–600. https://doi.org/10.1016/j.jde.2014.04.011 doi: 10.1016/j.jde.2014.04.011
    [6] M. Willem, Minimax Theorems, Boston: Birkhäuser, 1996.
    [7] K. Chang, Methods in Nonlinear Analysis, Berlin: Springer-Verlag, 2005.
    [8] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, New York: Springer-Verlag, 1989.
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(137) PDF downloads(10) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog