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1. Introduction

We consider the following: Kirchhoff-type system with critical exponents,
−b1(1 + ∥(u, v)∥2)∆u + a1u = u3 + λv in Ω,
−b2(1 + ∥(u, v)∥2)∆v + a2v = v3 + λu in Ω,
u = v = 0 on ∂Ω,

(1.1)

with ∥(u, v)∥2 = b1∥u∥2 + b2∥v∥2 and ∥u∥2 =
∫
Ω
|∇u|2, where Ω ⊂ R4 is a smooth bounded domain,

ai ∈ R, i = 1, 2, bi, λ > 0 are constants. Such type equations were first considered by Kirchhoff [1].
The Kirchhoff term arises as a consequence of accounting for the variation in tension of a vibrating
string induced by the changes in its length.

The critical problems of Kirchhoff equations for four-dimensional case have already been
investigated in [2–4]. In particular, in [3, 4], the authors analyzed the case λ = 0 of (1.1),{

−(1 + b∥u∥2)∆u + au = u3, x ∈ Ω,
u = 0 on ∂Ω,

(1.2)
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which can be regarded as a Brezis-Nirenberg problem with a Kirchhoff-type perturbation. They proved
the existence and multiplicity of solutions for a < −λ1(Ω), where λ1(Ω) is the first eigenvalue of
(−∆,H1

0(Ω)).
We remark that the behaviors of (PS ) sequences of (1.1) in dimension N = 3 or N ≥ 5 is drastically

different from the four-dimensional case. Consequently, the treatments for the cases N = 3 or N ≥ 5
must be different from those adopted in this paper. Motivated by the previous works, we now turn to
the investigation of the existence and multiplicity of solutions of (1.1). Here,

S := inf
u∈D1,2(R4)\{0}

∫
R4 |∇u|2

(
∫
R4 u4)1/2

,

{λk(Ω)}(k ∈ Z+) is the eigenvalue sequence of (−∆,H1
0(Ω)). It is customary to list the eigenvalue

sequence as a strictly increasing sequence

0 < λ1(Ω) < λ2(Ω) < · · ·.

Theorem 1.1. Assume that min{b1, b2} > S −1.
(i) If ai + biλ1(Ω) > 0, i = 1, 2, then system (1.1) has a global minimizer solution for

λ >
√

(a1 + b1λ1(Ω))(a2 + b2λ1(Ω)) and has no solution for 0 < λ ≤
√

(a1 + b1λ1(Ω))(a2 + b2λ1(Ω)).
(ii) If a1 + b1λ1(Ω) ≤ 0 or a2 + b2λ1(Ω) ≤ 0, then system (1.1) has a global minimizer solution for

all λ > 0.
(iii) If ai + biλk(Ω) > 0, i = 1, 2, then system (1.1) has at least k pairs of distinct solutions for

λ >
√

(a1 + b1λk(Ω))(a2 + b2λk(Ω)).
(iv) If a1 + b1λk(Ω) ≤ 0 or a2 + b2λk(Ω) ≤ 0, then system (1.1) has at least k pairs of distinct

solutions for all λ > 0.

System (1.1) is often referred to as a non-local problem. Consequently, some classical estimates
and methods commonly used in the study of critical semilinear equations are not directly applicable.
For instance, given any (PS ) sequences {(un, vn)}, if (un, vn) ⇀ (u, v) in H1

0(Ω) × H1
0(Ω), we do not

know whether there hold

∥(un, vn)∥2
∫
Ω

∇un∇φdx→ ∥(u, v)∥2
∫
Ω

∇u∇φdx, φ ∈ H1
0(Ω).

In (1.1), the exponent of t in the Kirchhoff term t4∥(u, v)∥4 coincides with that in t4
∫
Ω

(u4 + v4). The
(PS ) sequences lack the variant Ambrosetti-Rabinowitz condition, which is often employed in
Kirchhoff problems [5]. Hence, it is necessary to avoid the possibility of that (PS ) sequences not only
concentrate but also be unbounded. To tackle these problems, we introduce a constant S b similar to
the Sobolev constant and an eigenfunction corresponding to the eigenvalue λk(Ω). Under the
assumptions of parameters of (1.1), we prove the (PS ) condition, and derive estimates for the
associated energy functional. By combining these results with the arguments in [3, 4], we prove the
existence and multiplicity of solutions.

The paper is organized as follows: Section 2, presents the necessary preliminaries, while Section 3,
contains the proof of Theorem 1.1.
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2. Preliminaries

We denote the completion of C∞c (R4) under the norm ∥ · ∥1,2 := (
∫
R4 |∇ · |

2)1/2 by D1,2(R4), and
H := H1

0(Ω) × H1
0(Ω) with the norm ∥(u, v)∥ := (b1∥u∥2 + b2∥v∥2)1/2, where ∥ · ∥ = (

∫
Ω
|∇ · |2)1/2 is the

standard norm of H1
0(Ω).

It is well known that solutions of (1.1) correspond to the critical points of the functional I : H → R
defined by

I(u, v) =
1
2

[∥(u, v)∥2 +
∫
Ω

(a1u2 + a2v2 − 2λuv)] +
1
4

[∥(u, v)∥4 −
∫
Ω

(u4 + v4)]. (2.1)

We say that (u, v) ∈ H is a weak solution of (1.1), if and only if (u, v) satisfies

⟨I′(u, v), (φ, ψ)⟩ = b1(1 + ∥(u, v)∥2)
∫
Ω

∇u∇φ + b2(1 + ∥(u, v)∥2)
∫
Ω

∇v∇ψ

+

∫
Ω

(a1uφ + a2vψ − λvφ − λuψ) −
∫
Ω

(u3φ + v3ψ) = 0

for all (φ, ψ) ∈ H.
Define

S b := inf
(u,v)∈D1,2(R4)×D1,2(R4)\{(0,0)}

b1

∫
R4 |∇u|2 + b2

∫
R4 |∇v|2

(
∫
R4 u4 +

∫
R4 v4)1/2

. (2.2)

We get the estimation of S b.

Lemma 2.1. Assume that bi > 0, i = 1, 2, then S b = min{b1, b2}S .

Proof. Assume that b1 ≥ b2. Define f (τ) := b1τ
2+b2√
τ4+1

, τ ≥ 0. Then f ′(τ) ≥ 0 in [0,
√

b1
b2

] and f ′(τ) < 0

in (
√

b1
b2
,∞). Thus, min

τ≥0
f (τ) = b2. For ϵ > 0, define U(x) := 2

√
2

1+|x|2 and Uϵ(x) := ϵ−1U( x
ϵ
). Then Uϵ

achieves the best Sobolev constant S . Choosing u = τUϵ(x), v = Uϵ(x), we get

S b ≤ min
τ≥0

f (τ)S = b2S .

Now suppose that {(un, vn)} is a minimizing sequence for S b. Choose τn such that ∥un∥L4 = τn∥vn∥L4 .
Let zn satisfy un = τnzn. Then

∫
R4 v4

n =
∫
R4 z4

n and

S b + on(1) =
b1τ

2
n√

τ4
n + 1

∫
R4 |∇zn|

2

(
∫
R4 z4

n)1/2
+

b2√
τ4

n + 1

∫
R4 |∇vn|

2

(
∫
R4 v4

n)1/2
≥ min

τ≥0
f (τ)S = b2S ,

where on(1)→ 0 as n→ ∞. Hence, S b = min{b1, b2}S . □

The constant S b will play an important role in our compactness result.

Proposition 2.2. If min{b1, b2} > S −1, then every bounded sequence {(un, vn)} in H such that
I′(un, vn)→ 0 has a strongly convergent subsequence.
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Proof. Since I′(un, vn)→ 0, we have

b1(1 + ∥(un, vn)∥2)
∫
Ω

∇un∇φ + b2(1 + ∥(un, vn)∥2)
∫
Ω

∇vn∇ψ

+

∫
Ω

(a1unφ + a2vnψ − λvnφ − λunψ) −
∫
Ω

(u3
nφ + v3

nψ) = o(∥(φ, ψ)∥)
(2.3)

for all (φ, ψ) ∈ H. Passing to a renamed subsequence, we may assume that (un, vn) ⇀ (u, v) in H,
∥(un − u, vn − v)∥2 → µ,

∥(un, vn)∥2 → ∥(u, v)∥2 + µ =: η,

un → u and vn → v strongly in L2(Ω) and a.e. on Ω. So taking (φ, ψ) = (un, vn) in (2.3) gives

(1 + η)[∥(u, v)∥2 + µ] +
∫
Ω

(a1u2 + a2v2 − 2λuv) −
∫
Ω

(u4
n + v4

n) = o(1), (2.4)

while taking (φ, ψ) = (u, v) and passing to the limit gives

(1 + η)∥(u, v)∥2 +
∫
Ω

(a1u2 + a2v2 − 2λuv) −
∫
Ω

(u4 + v4) = 0. (2.5)

By Brézis-Lieb Lemma [6, Lemma 1.32], one has∫
Ω

u4
n −

∫
Ω

u4 =

∫
Ω

|un − u|4 + o(1),
∫
Ω

v4
n −

∫
Ω

v4 =

∫
Ω

|vn − v|4 + o(1).

By subtracting (2.5) from (2.4) and using the extension by zero (H1
0(Ω) ⊂ D1,2(R4)) together with (2.2),

we obtain

µ(1 + η) =
∫
Ω

(|un − u|4 + |vn − v|4) + o(1) ≤ S −2
b ∥(un − u, vn − v)∥4 + o(1).

Suppose µ > 0; then passing to the limit and noting that η ≥ µ gives (S −2
b − 1)µ ≥ 1. It follows from

Lemma 2.1 that S −2
b − 1 < 0. This contradicts µ > 0. Hence, µ = 0 and (un, vn)→ (u, v) in H. □

In order to obtain the multiplicity of solutions, we need the following lemma [7, Theorem 5.2.23].

Lemma 2.3. Let X be a Banach space and g ∈ C1(X,R) be an even function satisfying the (PS )
condition. Assume α < γ and either g(θ) < α or g(θ) > γ. If further,

(1) there are an m-dimensional linear subspace E and ρ > 0 such that sup
x∈E∩∂Bρ(θ)

g(x) ≤ γ,

(2) there are a j-dimensional linear subspace F such that inf
x∈F⊥

g(x) > α, where F⊥ is a

complementary space of F,
(3) m > j,

then g has at least m − j pairs of distinct critical points.
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3. Proof of Theorem 1.1

Existence : Let min{b1, b2} > S −1. For (u, v) ∈ H, we deduce that

I(u, v) =
1
2

[∥(u, v)∥2 +
∫
Ω

(a1u2 + a2v2 − 2λuv)] +
1
4

[∥(u, v)∥4 −
∫
Ω

(u4 + v4)]

≥
1
2
∥(u, v)∥2 −C∥(u, v)∥2 +

1 − S −2
b

4
∥(u, v)∥4

=
1
2
∥(u, v)∥2 −C∥(u, v)∥2 +

min{b2
1, b

2
2}S

2 − 1
4 min{b2

1, b
2
2}S

2
∥(u, v)∥4,

(3.1)

where C depends only on a1, a2, λ, and λ1(Ω). It follows that I is coercive and bounded from below in
H. Hence, any (PS ) sequence has bounded energy and is bounded in H.

Let (ut,s, vt) = t(sϕ1, ϕ1), t, s ∈ R, where ϕ1 is the eigenfunction corresponding to the eigenvalue
λ1(Ω). We have

lI(ut,s, vt) =
(b1s2 + b2)t2

2
∥ϕ1∥

2 +
(a1s2 + a2 − 2λs)t2

2

∫
Ω

ϕ2
1

+
t4

4
∥(sϕ1, ϕ1)∥4 −

t4

4

∫
Ω

(s4ϕ4
1 + ϕ

4
1)

=
[a1 + b1λ1(Ω)]s2 − 2λs + a2 + b2λ1(Ω)

2λ1(Ω)
∥ϕ1∥

2t2

+
∥(sϕ1, ϕ1)∥4 −

∫
Ω

(s4ϕ4
1 + ϕ

4
1)

4
t4.

(3.2)

Since min{b1, b2} > S −1, we get

∥(sϕ1, ϕ1)∥4 −
∫
Ω

(s4ϕ4
1 + ϕ

4
1) ≥ (1 − S −2

b )∥(sϕ1, ϕ1)∥4 > 0. (3.3)

Now we prove that there exists s̄ ∈ R such that

[a1 + b1λ1(Ω)]s2 − 2λs + a2 + b2λ1(Ω) < 0. (3.4)

There are two cases,
(i) assume that ai + biλ1(Ω) > 0, i = 1, 2, then there exists s̄ ∈ R such that inequality (3.4) holds for

λ >
√

(a1 + b1λ1(Ω))(a2 + b2λ1(Ω));
(ii) assume that a1 + b1λ1(Ω) ≤ 0, then there exists s̄ ∈ R such that inequality (3.4) holds for all

λ > 0.
It follows from (3.2)–(3.4) that I(ut,s̄, vt) < 0 for |t| small. Thus m := inf

(u,v)∈H
I < 0. According to

Proposition 2.2 and [8, Theorem 4.4], there exists (u0, v0) ∈ H such that I(u0, v0) = m < 0. Since
system (1.1) admits no semi-trivial solutions (namely, (u0, 0) or (0, v0)) for λ > 0, we conclude that
(u0, v0) with u0, v0 , 0 is a global minimizer solution of (1.1). □

Nonexistence : Assume that ai + biλ1(Ω) > 0, i = 1, 2 and 0 < λ ≤
√

(a1 + b1λ1(Ω))(a2 + b2λ1(Ω)).
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Suppose that (u0, v0) ∈ H is a solution of (1.1), then

0 = b1∥u0∥
2 + b2∥v0∥

2 +

∫
Ω

(a1u2
0 + a2v2

0 − 2λu0v0) + ∥(u0, v0)∥4 −
∫
Ω

(u4
0 + v4

0)

≥ b1∥u0∥
2 + b2∥v0∥

2 −

∫
Ω

(b1λ1(Ω)u2
0 + b2λ1(Ω)v2

0) + (1 − S −2
b )∥(u0, v0)∥4

≥
min{b2

1, b
2
2}S

2 − 1
min{b2

1, b
2
2}S

2
∥(u0, v0)∥4.

(3.5)

Since min{b1, b2} > S −1, we get (u0, v0) = (0, 0). □
Multiplicity : To prove multiplicity, it suffices to show that the energy functional I satisfies the

conditions of Lemma 2.3. Let X = H and w = (u, v) ∈ X. Then we obtain I(−w) = I(w), which
implies that I is an even function. In view of (3.1), I is coercive and bounded from below in X
for min{b1, b2} > S −1. Hence, any (PS ) sequence has bounded energy and is bounded in X. By
Proposition 2.2, the energy functional I satisfies the (PS ) condition in X.

Now we prove that I satisfies condition (1) of Lemma 2.3. We claim that there exists s̃ ∈ R such
that

[a1 + b1λk(Ω)]s2 − 2λs + a2 + b2λk(Ω) < 0. (3.6)

In fact, there are two cases,
(i) assume that ai + biλk(Ω) > 0; then there exists s̃ ∈ R such that inequality (3.6) holds for

λ >
√

(a1 + b1λk(Ω))(a2 + b2λk(Ω));
(ii) assume that a1 + b1λk(Ω) ≤ 0, then there exists s̃ ∈ R such that inequality (3.6) holds for all

λ > 0.
Let ϕk be the normalized eigenfunction corresponding to the eigenvalue λk(Ω). Define

E = span{(s̃ϕ1, ϕ1), (s̃ϕ2, ϕ2), · · ·, (s̃ϕk, ϕk)},

then dim E = k. Since

a1 s̃2 − 2λs̃ + a2 ≤ [a1 + b1λk(Ω)]s̃2 − 2λs̃ + a2 + b2λk(Ω) < 0,

and ∥u∥2 ≤ λk(Ω)∥u∥2L2(Ω), ∥v∥
2 ≤ λk(Ω)∥v∥2L2(Ω) for (u, v) ∈ E, one has

I(u, v) =
1
2
∥(u, v)∥2 +

1
2

∫
Ω

(a1u2 + a2v2 − 2λuv) +
1
4
∥(u, v)∥4 −

1
4

∫
Ω

(u4 + v4)

≤
b1 s̃2 + b2

2
∥v∥2 +

a1 s̃2 − 2λs̃ + a2

2

∫
Ω

v2 +
1
4
∥(u, v)∥4

≤
b1 s̃2 + b2

2
∥v∥2 +

a1 s̃2 − 2λs̃ + a2

2λk(Ω)
∥v∥2 +

1
4
∥(u, v)∥4

=
[a1 + b1λk(Ω)]s̃2 − 2λs̃ + a2 + b2λk(Ω)

2λk(Ω)(b1 s̃2 + b2)
∥(u, v)∥2 +

1
4
∥(u, v)∥4.

In view of (3.6), there exists ρ > 0 such that

sup
(u,v)∈E∩∂Bρ(0,0)

I(u, v) ≤ γ < 0 = I(0, 0),

AIMS Mathematics Volume 11, Issue 1, 907–914.



913

where ∂Bρ(0, 0) = {(u, v) ∈ X : ∥(u, v)∥ = ρ}.
Noting that m = inf

(u,v)∈X
I < 0 follows from the proof of existence, we take F = ∅ and α = m− 1. This

choice yields F⊥ = X and α < γ, and satisfies

inf
(u,v)∈F⊥

I(u, v) > α.

Hence, I satisfies all conditions of Lemma 2.3. It follows that system (1.1) possesses at least k pairs of
distinct solutions. □
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