Over-exploitation of natural resources poses cascading challenges to the environment, economy, and public health. To mitigate these adverse impacts and achieve long-term ecological and socioeconomic balance, sustainable development strategies are imperative. Thus, in this paper, we developed a predator-prey model with state-dependent impulsive control, grounded in the weighted escapement policy, to regulate resource harvesting more realistically. We investigated the model's dynamical behaviors, focusing on the existence and stability of semi-trivial and order-1 periodic solutions. To enhance economic viability while ensuring sustainability, an optimization problem was formulated to maximize long-term profits via optimal harvesting schemes. Finally, numerical simulations validated the theoretical results, quantified the optimal harvesting level and weight parameter of the weighted escapement policy, and provided actionable insights for practical resource management.
Citation: Jing Xu, Tao Zou. Dynamics of a predator-prey model with the Allee effect for the predator induced by weighted harvesting strategy[J]. AIMS Mathematics, 2026, 11(1): 578-593. doi: 10.3934/math.2026025
Over-exploitation of natural resources poses cascading challenges to the environment, economy, and public health. To mitigate these adverse impacts and achieve long-term ecological and socioeconomic balance, sustainable development strategies are imperative. Thus, in this paper, we developed a predator-prey model with state-dependent impulsive control, grounded in the weighted escapement policy, to regulate resource harvesting more realistically. We investigated the model's dynamical behaviors, focusing on the existence and stability of semi-trivial and order-1 periodic solutions. To enhance economic viability while ensuring sustainability, an optimization problem was formulated to maximize long-term profits via optimal harvesting schemes. Finally, numerical simulations validated the theoretical results, quantified the optimal harvesting level and weight parameter of the weighted escapement policy, and provided actionable insights for practical resource management.
| [1] |
B. Dennis, Allee effects: population growth, critical density, and the chance of extinction, Nat. Resour. Model., 3 (1989), 481–538. https://doi.org/10.1111/j.1939-7445.1989.tb00119.x doi: 10.1111/j.1939-7445.1989.tb00119.x
|
| [2] | F. Courchamp, L. Berec, J. Gascoigne, Allee effects in ecology and conservation, Oxford University Press, 2008. https://doi.org/10.1093/acprof: oso/9780198570301.001.0001 |
| [3] |
L. A. D. Rodrigues, D. C. Mistro, S. Petrovskii, Pattern formation, long-term transients, and the Turing-Hopf bifurcation in a space- and time-discrete predator-prey system, Bull. Math. Biol., 73 (2011), 1812–1840. https://doi.org/10.1007/s11538-010-9593-5 doi: 10.1007/s11538-010-9593-5
|
| [4] | W. C. Allee, O. Park, A. E. Emerson, T. Park, K. P. Schmidt, Principles of animal ecology, Philadelphia: Saunders, 1949. https://doi.org/10.5962/bhl.title.7325 |
| [5] |
P. Aguirre, E. González-Olivares, E. Sáez, Three limit cycles in a Leslie-Gower predator-prey model with additive Allee effect, SIAM J. Appl. Math., 69 (2009), 1244–1262. https://doi.org/10.1137/070705210 doi: 10.1137/070705210
|
| [6] |
U. Kumar, P. S. Mandal, Impact of additive Allee effect on the dynamics of an intraguild predation model with specialist predator, Int. J. Bifur. Chaos, 30 (2020), 2050239. https://doi.org/10.1142/S0218127420502399 doi: 10.1142/S0218127420502399
|
| [7] |
S. Mandal, F. Al Basir, S. Ray, Additive Allee effect of top predator in a mathematical model of three species food chain, Energy Ecol. Environ., 6 (2021), 451–461. https://doi.org/10.1007/s40974-020-00200-3 doi: 10.1007/s40974-020-00200-3
|
| [8] |
A. Arsie, C. Kottegoda, C. H. Shan, A predator-prey system with generalized Holling type Ⅳ functional response and Allee effects in prey, J. Differ. Equations, 309 (2022), 704–740. https://doi.org/10.1016/j.jde.2021.11.041 doi: 10.1016/j.jde.2021.11.041
|
| [9] |
K. Mokni, M. Ch-Chaoui, Complex dynamics and bifurcation analysis for a Beverton-Holt population model with Allee effect, Int. J. Biomath., 16 (2023), 2250127. https://doi.org/10.1142/S1793524522501273 doi: 10.1142/S1793524522501273
|
| [10] |
X. Y. Xu, Y. Meng, Y. Y. Shao, Hopf bifurcation of a delayed predator-prey model with Allee effect and anti-predator behavior, Int. J. Biomath., 16 (2023), 2250125. https://doi.org/10.1142/S179352452250125X doi: 10.1142/S179352452250125X
|
| [11] |
J. Zu, M. Mimura, The impact of Allee effect on a predator-prey system with Holling type Ⅱ functional response, Appl. Math. Comput., 217 (2010), 3542–3556. https://doi.org/10.1016/j.amc.2010.09.029 doi: 10.1016/j.amc.2010.09.029
|
| [12] |
S. B. Hsu, T. W. Hwang, Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system, J. Math. Biol., 42 (2001), 489–506. https://doi.org/10.1007/s002850100079 doi: 10.1007/s002850100079
|
| [13] |
Y. Kuang, H. I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems, Math. Biosci., 88 (1988), 67–84. https://doi.org/10.1016/0025-5564(88)90049-1 doi: 10.1016/0025-5564(88)90049-1
|
| [14] | A. D. Bazykin, Nonlinear dynamics of interacting populations, World Scientific, 1998. https://doi.org/10.1142/2284 |
| [15] |
D. Sen, A. Morozov, S. Ghorai, M. Banerjee, Bifurcation analysis of the predator-prey model with the Allee effect in the predator, J. Math. Biol., 84 (2022), 7. https://doi.org/10.1007/s00285-021-01707-x doi: 10.1007/s00285-021-01707-x
|
| [16] | J. R. Beddington, R. M. May, The harvesting of interacting species in a natural ecosystem, Sci. Am., 247 (1982), 62–69. |
| [17] |
G. R. Dai, M. X. Tang, Coexistence region and global dynamics of a harvested predator-prey system, SIAM J. Appl. Math., 58 (1998), 193–210. https://doi.org/10.1137/S0036139994275799 doi: 10.1137/S0036139994275799
|
| [18] |
Y. F. Lv, R. Yuan, Y. Z. Pei, A prey-predator model with harvesting for fishery resource with reserve area, Appl. Math. Model., 37 (2013), 3048–3062. https://doi.org/10.1016/j.apm.2012.07.030 doi: 10.1016/j.apm.2012.07.030
|
| [19] |
M. Onana, B. Mewoli, J. J. Tewa, Hopf bifurcation analysis in a delayed Leslie-Gower predator-prey model incorporating additional food for predators, refuge and threshold harvesting of preys, Nonlinear Dyn., 100 (2020), 3007–3028. https://doi.org/10.1007/s11071-020-05659-7 doi: 10.1007/s11071-020-05659-7
|
| [20] |
E. Liz, E. Sovranoa, Stability, bifurcations and hydra effects in a stage-structured population model with threshold harvesting, Commun. Nonlinear Sci. Numer. Simul., 109 (2022), 106280. https://doi.org/10.1016/j.cnsns.2022.106280 doi: 10.1016/j.cnsns.2022.106280
|
| [21] |
H. J. Guo, L. S. Chen, The effects of impulsive harvest on a predator-prey system with distributed time delay, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2301–2309. https://doi.org/10.1016/j.cnsns.2008.05.010 doi: 10.1016/j.cnsns.2008.05.010
|
| [22] |
L. F. Nie, Z. D. Teng, H. Lin, J. G. Peng, The dynamics of a Lotka-Volterra predator-prey model with state dependent impulsive harvest for predator, Biosystems, 98 (2009), 67–72. https://doi.org/10.1016/j.biosystems.2009.06.001 doi: 10.1016/j.biosystems.2009.06.001
|
| [23] |
I. Noy-Meir, Stability of grazing systems: an application of predator-prey graphs, J. Ecol., 63 (1975), 459–481. https://doi.org/10.2307/2258730 doi: 10.2307/2258730
|
| [24] | C. W. Clark, Bioeconomic modelling and fisheries management, New York: Wiley, 1985. |
| [25] |
M. I. S. Costa, E. Kaszkurewicz, A. Bhaya, L. Hsu, Achieving global convergence to an equilibrium population in predator-prey systems by the use of a discontinuous harvesting policy, Ecol. Model., 128 (2000), 89–99. https://doi.org/10.1016/S0304-3800(99)00220-3 doi: 10.1016/S0304-3800(99)00220-3
|
| [26] |
Y. Tian, Y. Gao, K. B. Sun, Qualitative analysis of exponential power rate fishery model and complex dynamics guided by a discontinuous weighted fishing strategy, Commun. Nonlinear Sci. Numer. Simul., 118 (2023), 107011. https://doi.org/10.1016/j.cnsns.2022.107011 doi: 10.1016/j.cnsns.2022.107011
|
| [27] |
Y. Tian, Y. Gao, K. B. Sun, Global dynamics analysis of instantaneous harvest fishery model guided by weighted escapement strategy, Chaos Solitons Fract., 164 (2022), 112597. https://doi.org/10.1016/j.chaos.2022.112597 doi: 10.1016/j.chaos.2022.112597
|
| [28] |
Y. Tian, Y. Gao, K. B. Sun, A fishery predator-prey model with anti-predator behavior and complex dynamics induced by weighted fishing strategies, Math. Biosci. Eng., 20 (2023), 1558–1579. https://doi.org/10.3934/mbe.2023071 doi: 10.3934/mbe.2023071
|
| [29] |
G. P. Pang, L. S. Chen, Periodic solution of the system with impulsive state feedback control, Nonlinear Dyn., 78 (2014), 743–753. https://doi.org/10.1007/s11071-014-1473-3 doi: 10.1007/s11071-014-1473-3
|
| [30] |
J. Xu, Y. Tian, H. J. Guo, X. Y. Song, Dynamical analysis of a pest management Leslie-Gower model with ratio-dependent functional response, Nonlinear Dyn., 93 (2018), 705–720. https://doi.org/10.1007/s11071-018-4219-9 doi: 10.1007/s11071-018-4219-9
|
| [31] |
J. Xu, M. Z. Huang, X. Y. Song, Dynamics of a guanaco-sheep competitive system with unilateral and bilateral control, Nonlinear Dyn., 107 (2022), 3111–3126. https://doi.org/10.1007/s11071-021-07128-1 doi: 10.1007/s11071-021-07128-1
|