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Abstract: Over-exploitation of natural resources poses cascading challenges to the environment,
economy, and public health. To mitigate these adverse impacts and achieve long-term ecological and
socioeconomic balance, sustainable development strategies are imperative. Thus, in this paper, we
developed a predator-prey model with state-dependent impulsive control, grounded in the weighted
escapement policy, to regulate resource harvesting more realistically. We investigated the model’s
dynamical behaviors, focusing on the existence and stability of semi-trivial and order-1 periodic
solutions. To enhance economic viability while ensuring sustainability, an optimization problem
was formulated to maximize long-term profits via optimal harvesting schemes. Finally, numerical
simulations validated the theoretical results, quantified the optimal harvesting level and weight
parameter of the weighted escapement policy, and provided actionable insights for practical resource
management.
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1. Introduction

The Allee effect is described as a decrease in the per capita population growth rate at low numbers of
the population density [1]. Courchamp et al. [2] showed that the population dynamics can be modified
when there is an Allee effect, such as leading to long-term transients phenomena [3]. Inspired by
Allee [4], ecological studies classify this effect into additive [5–7] and multiplicative [8–10] types,
both of which are explored for their dynamical properties, such as mathematical traits, expression in
population models, ecological impacts, and regulatory effects on extinction risk and system stability.
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Additional forms exist as well; Zu and Mimura [11], for instance, linked fertility to population size via
the Allee effect and found it elevates species extinction risk. With distinct mathematical expressions
documented, these studies provide a theoretical basis for building predator-prey models that integrate
the Allee effect.

However, inspired by the ideas of [12–14], Sen et al. [15] developed the following predator-prey
model with a general case of Allee effect in the predator:

dx(t)
dt = rx(t)

(
1 − x(t)

K

)
−

ax(t)y(t)
1+aqx(t) ,

dy(t)
dt = eψ(y) ax(t)y(t)

1+aqx(t) − µy(t),

x(0) = x0, y(0) = y0,

(1.1)

where x(t) and y(t) represent the densities of prey and predator, respectively, and (x(0), y(0)) = (x0, y0)
is the positive initial value. r is the intrinsic growth rate of the prey, and K is the environment capacity.
e (0 < e < 1) is the maximum food conversion coefficient, and µ represents the death rate of the
predator. The function ψ(y) is used to describe the Allee effect in the predator, which has the following
properties:

(1) ψ(0) = 0, 0 ≤ ψ(y) ≤ 1, for large y, there is ψ(y)→ 1;
(2) ψ(y) is an increasing function of y, thus there is ψ′(y) > 0 for all y ≥ 0;
(3) ψ′′(y) < 0 for all y ≥ 0.
The authors investigated the existence of local bifurcations, such as Hopf, generalized Hopf, and

Bogdanov-Takens bifurcations, and studied the influence of different forms of the Allee effect on the
dynamics of model (1.1).

Predator-prey interactions are at the core of ecosystem stability. Therefore, formulating effective
population regulation and sustainable resource utilization strategies is an urgent task. Overexploitation
of natural resources has caused severe environmental degradation; for example, the International
Whaling Commission (IWC) set annual catch quotas and decided on a total ban on commercial
whaling due to the decline in whale numbers caused by overfishing [16]. Due to the needs of business
and livelihood, the exploitation and utilization of resources is inevitable. Thereafter, how human
populations might best manage the natural resources to sustain a yield for human without exterminating
species is discussed. To address this, scholars came up with different harvesting strategies, including
continuous time harvesting [17, 18], threshold harvesting [19, 20], and impulsive harvesting [21, 22].
The weighted escapement policy (WEP), proposed by [23, 24], has emerged as a promising tool
for population management. For example, Costa et al. [25] investigated the dynamics of the Lotka-
Volterra model and Leslie-Gower model subjected to the WEP, respectively, and the obtained results
could contribute to assessing the effect of the WEP. Notably, Tian et al. [26–28] investigated the
dynamics of three types of predator-prey fishery models guided by the WEP, and the profits of the
harvesting process was formulated. By solving the optimization problem, the optimal capture and
the weight are determined. Despite these advances, one key aspect has not been fully explored in the
literature. While Tian et al. [26–28] established a solid theoretical foundation for WEP-based predator-
prey system management, their framework does not incorporate the general Allee effect in predator
populations, a critical ecological mechanism that modulates population dynamics, especially at low
predator densities. To address this unexamined combination, in this paper, we construct a predator-prey
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model coupling the general predator Allee effect proposed by Sen et al. [15] with the classic WEP, and
systematically investigate the system’s dynamical behaviors and optimal management strategies.

The novelty of this paper is as follows: (1) A predator-prey model with the Allee effect in
the predator induced by the WEP is developed; and (2) the corresponding optimization problem is
formulated and solved. The structure of this paper is as follows: In Section 2, we present a predator-
prey model with the Allee effect in the predator induced by the WEP, and investigate the dynamics
of the proposed model, including the existence and stability of the semi-trivial and positive order-1
periodic solution. In Section 3, we verify the theoretical results and determine the optimal harvesting
level and weight via numerical simulations. Finally, we give a brief conclusion.

2. Model formulation and major results

In this section, we introduce the dynamical behavior of system (1.1) and formulate the
corresponding impulsive differential equation. In the following, we summarize the dynamics of
system (1.1).

2.1. Dynamics of system (1.1)

After a simple calculation, we find that the isoclinic line l3 := {(x, y)|r − rx
K −

ay
1+aqx = 0} has

a horizontal asymptote l2 := {(x, y)|y = ψ−1(µq
e )} and a vertical asymptote l1 := {(x, y)|x = µ

e−µq },
respectively. The other isoclinic line l4 := {(x, y)|ψ(y) eax

1+aqx − µ = 0} exists as a unique extreme point
(xm, ym) (see Figure 1). The existence and stability of feasible equilibrium points are listed by the
following two lemmas:

1l

2l

mx

* * *

1 1 1( , )E x y

* * *

2 2 2( , )E x y

3l

4l

( ,0)mx ( ,0)K
𝑂

x

y

(a)

𝑂

1l

2l

3l

4l

( ,0)K

* * *

1 1 1( , )E x y

* * *

2 2 2( , )E x y

( ,0)mx
x

y

(b)

Figure 1. The location relationship between x∗1 and xm: (a) xm < x∗1 < K; (b) x∗1 < xm < K.

Lemma 2.1. [15] For any ψ(y) with the properties (1)–(3) in model (1.1), E0(0, 0) is a saddle, and
E1(K, 0) is locally asymptotically stable.

Lemma 2.2. [15] For case of xm < x∗1 < x∗2 < K, if − r
K +

a2qy∗1
(1+aqx∗1)2 + eψ′(y∗1) ax∗1

1+aqx∗1
< 0, E∗1 is locally

asymptotically stable (see Figure 1(a)); for the case of x∗1 < xm < x∗2 < K, there is − r
K +

a2qy∗1
(1+aqx∗1)2 +

eψ′(y∗1) ax∗1
1+aqx∗1

> 0. Thus, E∗1 is unstable (see Figure 1(b)). E∗2 is always a saddle point.
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2.2. Dynamics of harvesting model (2.1)

In the following, we construct the model with harvesting strategy. Let η be the harvesting weight of
the prey and 1−η be the harvesting weight of the predator. Since over-exploitation of natural resources
has caused a lot of problems, from the perspective of resource conservation, when the sum of weights
of two population densities reaches a certain condition, which is denoted by hl, the harvesting strategy
is adopted. In addition, due to the Allee effect in the predator, when harvesting strategy is adopted, it
is necessary to release the immature predator to maintain the permanence of the predator population.
Then, we have the following harvesting model:

dx
dt = rx(t)(1 − x(t)

K ) − ax(t)y(t)
1+aqx(t) ,

dy
dt = eψ(y) ax(t)y(t)

1+aqx(t) − µy(t),

 ηx + (1 − η)y < hl,

∆x = −p1Elx,
∆y = −p2Ely + τl,

}
ηx + (1 − η)y = hl.

(2.1)

The model sets species-specific pulse terms for prey-predator harvesting and immature predator
supplementation. The prey term ∆x = −p1Elx regulates prey density within a sustainable range via
proportional harvesting, where p1 denotes prey harvesting efficiency and El represents the unified
harvesting effort applied to both species. The predator term ∆y = −p2Ely+τl offsets harvesting-induced
losses with immature predator release: p2 is the predator harvesting efficiency, and the positive constant
τl quantifies the number of immature predators supplemented during each harvesting event. This dual-
design pulse system is critical to prevent Allee-effect-vulnerable predators from falling to a growth-
limiting density and maintain trophic stability. The WEP threshold hl = ηx+(1−η)y reflects the inherent
trophic interdependence of prey and predator populations, moving beyond single-species threshold
limitations. The adjustable η enables flexible prioritization: Higher values favor prey conservation for
predator food supply, lower values prioritize predator persistence. This design avoids the ecological
risks of isolated species management and provides a holistic framework for sustainable population
control.

In the following, we mainly investigate the dynamical behavior of system (2.1), including the
existence and stability of the semi-trivial periodic solution and the order-1 periodic solution.

For system (2.1), we define impulsive set and phase set respectively as follows:

MImp = {(x, y)|0 ≤ x ≤ K, ηx + (1 − η)y = hl} ,

and

NPha =

{
(x, y)|

ηx
1 − p1El

+
(1 − η)y
1 − p2El

= hl +
(1 − η)τl

1 − p2El

}
.

2.2.1. The semi-trivial periodic solution

For system (2.1), if τl = 0, y(0) = 0, then there is y(t) ≡ 0. If hl ≤ ηK, then system (2.1) becomes
the following subsystem: 

dx
dt = rx(t)(1 − x(t)

K ),
y = 0,

}
x < hl/η,

∆x = −p1Elx,
∆y = 0,

}
x = hl/η.

(2.2)
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The intersection point of phase set NPha and the x-axis results in x0 = (1 − p1El)hl/η. Define
x(t) = x(t) as the solution of the equation dx

dt = rx(t)
(
1 − x(t)

K

)
with x(0) = x0. Thus, (x(t), 0) is the

solution of system (2.2). Define T = 1
r ln

(
K−(1−p1El)hl/η

(1−p1El)(K−hl/η)

)
, which quantifies the time interval between

two consecutive impulsive harvesting events. Then, we have x(T ) = hl/η and x(T+) = x0. This means
that x(t) = x(t), (n − 1)T < t ≤ nT, n ≥ 1 is a periodic solution of system (2.2).

Theorem 2.1. If τl = 0 and x ≤ hl/η, then system (2.1) exists as a semi-trivial periodic solution
(x(t), 0), and it is orbitally asymptotically stable in the case of p2 > p2, where

p2 =
p1hl

ηK − (1 − p1El)hl
.

Proof. Based on Lemma 2.1, we know that (K, 0) is asymptotically stable. Thus, for the case of
hl > ηK, system (2.2) does not have a periodic solution. Assume that there is a point C(xC, 0), which
is the intersection point of the phase set NPha and x-axis (see Figure 2).
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Figure 2. The existence of the semi-trivial order-1 periodic solution.

For the case of hl ≤ ηK, based on the definition of the type-I successor function, there is f I
S or(C) = 0.

For system (2.2), we have

F(x, y) =rx(1 − x/K) −
axy

1 + aqx
, G(x, y) = eψ(y)

axy
1 + aqx

− µy,

ϕ(x, y) = − p1Elx, φ(x, y) = −p2Ely, ζ(x, y) = ηx + (1 − η)y.

After a simple calculation, we have
∂F
∂x
=r −

2rx
K
−

ay
(1 + aqx)2 ,

∂G
∂y
= eψ′(y)

axy
1 + aqx

+ eψ(y)
ax

1 + aqx
− µ,

∂ϕ

∂x
= − p1El,

∂ϕ

∂y
= 0,

∂φ

∂x
= 0,

∂φ

∂y
= −p2El,

∂ζ

∂x
= η,

∂ζ

∂y
= 1 − η.

Then

∆1 =
F I
+(

∂φ

∂y
∂ζ

∂x −
∂φ

∂y
∂ζ

∂y +
∂ζ

∂x ) +GI
+(

∂ϕ

∂y
∂ζ

∂x −
∂ϕ

∂y
∂ζ

∂y +
∂ζ

∂x )

F I( ∂ζ
∂x ) +GI(∂ζ

∂y )

=
(r(1 − p1El)hl/η)(1 − (1 − p1El)hl/(Kη))(η − p2Elη)

rhl/η(1 − hl/(Kη))η

=(1 − p1El)(1 − p2El)
ηK − (1 − p1El)hl

ηK − hl
,
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and ∫ T

0

(
∂F
∂x
+
∂G
∂y

)
(x(t),0)

dt =
∫ hl/η

(1−p1El)hl/η

1
x

dx +
∫ T

0

(
−

rx
K
− µ

)
dt.

Thus, the convergency ratio ρ1 is

ρ1 = (1 − p2El)
ηK − (1 − p1El)hl

ηK − hl
exp

{∫ T

0

(
−

rx
K
− µ

)
dt

}
.

Based on biologically feasible assumptions (p1, p2, El, η,K, hl, r, µ > 0; ηK > hl; 1 − p2El > 0), the

integrand − rx
K − µ < 0 for all t ∈ [0,T ], yields 0 < exp

{∫ T

0

(
− rx

K − µ
)

dt
}
< 1. Thus, a sufficient

condition for ρ1 < 1 is (1 − p2El)
ηK−(1−p1El)hl

ηK−hl
< 1. Rearranging this inequality gives the constraint

p2 >
p1hl

ηK−(1−p1El)hl
, which is sufficient but not necessary due to the exponential term’s attenuation effect.

Then we define the critical threshold p2 =
p1hl

ηK−(1−p1El)hl
.

In case of p2 > p2, there is ρ1 < 1. Therefore, (x(t), 0) is orbitally asymptotically stable (OAS); if
p2 < p2, there is ρ1 > 1, thus, (x(t), 0) is unstable.

Remark 2.1. Theorem 2.1 reveals that when the capture rate (p2) of the predator exceeds a critical
threshold, the predator population will go extinct, which in turn causes the ecosystem to lose its
persistence. This result theoretically confirms that over-harvesting of predators, i.e., over-exploitation
of biological resources, directly disrupts ecological balance and poses a significant threat to the stable
survival of the ecosystem.

2.2.2. Existence and stability of the order-1 periodic solution

In the following, we mostly investigate the existence and stability of the order-1 periodic solution.
For convenience, we define

η∗ =
y∗1

K − x∗1 + y∗1
, h∗ = ηx∗1 + (1 − η)y∗1,

hητ = max{hl|ηxMImp + (1 − η)yMImp ≥ hl}.

Theorem 2.2. If one of the following three conditions holds, then system (2.1) has an order-1 periodic
solution: (1) τl = 0, hl ≤ min{h∗, ηK}, p2 < p2; (2) τl = 0, η < η∗, ηK < hl ≤ hητ; (3) 0 < τl, hl ≤ hητ.

Proof. For case (1), the semi-trivial periodic solution is unstable. Assume that line l5 is parallel to
the x-axis, point H is the intersection of curve l3 and the impulsive set MImp, and H1 is a point in the
neighborhood of H. By the properties of deterministic system (2.1), H1 is the minimum point of curve
l6. Assume that the trajectory staring from point A ∈ NPha intersects the impulsive set MImp at A− with
yA− > yA, and jump into NPha at A+ (see Figure 3(a)). If the successor point A+ is below point A, then
there is a semi-trivial periodic solution, which contradicts condition (1). Then by the definition of the
successor function, we have

f I
S or(A) = d(A+,C) − d(A,C) > 0.
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Figure 3. The existence of the order-1 periodic solution.

Assume that the trajectory starting from B(xB, yB) intersects the impulsive set MImp at B−(xB− , yB−),
then jumps to the phase set NPha at B+. There exist three cases:

(1) If the successor point of B overlaps point B, there is f I
S or(B) = 0, and B̂B−B forms an order-1

periodic solution.
(2) If the successor point B+ is below B, then f I

S or(B) < 0 holds, thus there exists one point L ∈
NPha ∩ BA such that f I

S or(L) = 0, meaning that system (2.1) has an order-1 periodic solution (see
Figure 3(a)).

(3) For the case of that the successor point B+ is above B, we need to use the type-II successor
function. The trajectory passing through point B+ passes through the phase set NPha, and intersects the
impulsive set at B1, then jumps to B+1 on NPha. Based on the property of system (2.1), we can conclude
that point B1 is below B−, and B+1 is below B+. Thus, we have

f II
S or(B

+) = d(B+1 ,C) − d(A+,C) < 0.

In the following, we prove that there exists a point D such that f II
S or(D) > 0 (see Figure 3(b)). For a

fixed ε = d(B, B+)/2, there exists δ < ε, for D ∈ NPha ∩U(B, δ) with xB < xD and yB > yD, which holds
that d(D−, B−) < ε. Then we have

d(D+, B+) =
√

(xD+ − xB+)2 + (yD+ − yB+)2

=
√

((1 − p1El)xD− − (1 − p1El)xB−)2 + ((1 − p2El)yD− − (1 − p1El)yB−)2

≤max{(1 − p1El), (1 − p2El)}d(D−, B−) < ε.

Thus,

f II
S or(D) = d(D+,C) − d(D,C)

= d(B+,C) − d(B+,D+) − (d(B,C) + d(D, B))
= d(B+, B) − (d(B+,D+) + d(D, B)) > 0.

Then, there exists a point L ∈ BB+, satisfying f II
S or(L) = 0.

For cases (2) and (3), similar to the proof process of Theorem 2.2, there exists an order-1 periodic
solution for system (2.1). This completes the proof.
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Remark 2.2. Theorem 2.2 reveals that when the capture rate (p2) for the predator is controlled within
a reasonable range, the ecosystem can maintain its persistence. Furthermore, if specific additional
conditions are satisfied, the system will also exhibit periodic dynamic changes. This theoretical
result not only clarifies the effective regulation range of the capture rate but also provides a solid
mathematical basis for the sustainable development and management of biological resources.

In the following, we prove the stability of the order-1 periodic solution. Assume that (x̃(t), ỹ(t)) is
an order-1 periodic solution of system (2.1) with period T1.

Define

x̃1 = x̃(T1), ỹ1 = ỹ(T1), x̃0 = (1 − p1El)x̃1, ỹ0 = (1 − p2El)ỹ1 + τl,

F̃0 = F(x̃0, ỹ0), G̃0 = G(x̃0, ỹ0), F̃1 = F1(x̃1, ỹ1), G̃1 = G(x̃1, ỹ1),

Φ = ln
{

(1 − p1El)[(1 − p2)Elỹ1 + τl][ηF̃1 + (1 − η)G̃1]
ỹ1[η(1 − p2El)F̃0 + (1 − η)(1 − p1El)G̃0]

}
.

Theorem 2.3. If there is∫ T1

0

(
−

rx(t)
K
+

ay(t)
(1 + aqx(t))2 +

eψ′(y)ax(t)y(t)
1 + aqx(t)

)
dt < Φ, (2.3)

then the order-1 periodic solution (x̃(t), ỹ(t)) is orbitally asymptotically stable.

Proof. By the same manner used in Theorem 2.1, we have

∆1 =
η(1 − p2El)F̃0 + (1 − η)(1 − p1El)G̃0

ηF̃1 + (1 − η)G̃1
,

and

exp


∫ T1

0

(
∂F
∂x
+
∂G
∂y

)
(x̃1,ỹ1)

dt


=

1
(1 − p1El)

ỹ1

(1 − p2)Elỹ1 + τl
exp

{∫ T1

0

(
−

rx(t)
K
+

ay(t)
(1 + aqx(t))2 +

eψ′(y)ax(t)y(t)
1 + aqx(t)

)
dt

}
.

If inequality (2.3) holds, then |ρ2| < 1, and the order-1 periodic solution (x̃(t), ỹ(t)) is orbitally
asymptotically stable.

2.3. Optimal harvesting strategy

By Theorem 2.2, we can conclude that system (2.1) has an order-1 periodic solution if one of the
three cases holds. Thus, the harvesting strategy can be considered. Let xl ∈ [x1, x2] be the target density
of the prey and yl = ωxl be that of the predator. Assume that El depends on xl and hl, and τ depends on
η and xl. We also assume that hl = ηxl + (1− η)yl, El = E1 +

(xl−x1)E2
x2−x1

, τl = τ1 +
(xl−x1)τ2

x2−x1
. We can find that

period T1 depends on η and xl. To maintain the persistence of the two populations and get maximum
profits, we need to choose the optimal harvesting strategy. Let a1 and a2 represent the price on sale for
the unit biomass of the prey and predator, respectively, a3 be the cost per unit capture strength, and a4

be the cost of unit biomass for feeding predators. Then the profits and be given by

ΨPro(η, xl) = a1 p1El x̃1 + a2 p2Elỹ1 − a3El − a4τl.
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Our goal is to maximize the profits over a cycle, i.e.,

max
ΨPro(η, xl)
T1(η, xl)

s.t. xl ∈ [x1, x2], η ∈ [0, 1].

By solving the above optimization problem, we can obtain the optimal capture level x∗l and the
optimal weight η∗. Moreover, we can get the optimal release of immature predators τ∗ and the optimal
capture strength E∗ and the optimal capture period T ∗1 . The results are dependent on the parameters
ai, i = 1, 2, 3, 4.

3. Numerical simulations and optimization

In this section, we perform some numerical simulations to demonstrate the obtained results. As
presented in [15], there exist some concrete forms of ψ(y) such as ψ(y) = y

δ+y (Monod type), ψ(y) =
1 − e−

y
δ (Ivlev type), and ψ(y) = tanh y

δ
(hyperbolic tangent type). In this section, to facilitate the

numerical simulations, we choose a special case of the Allee effect as ψ(y) = y
δ+y .

Example 3.1. To verify the existence of a semi-trivial periodic solution, we choose the model
parameters as follows: r = 2, K = 100, a = 0.3, and q = 0.39, µ = 1, e = 0.45, and δ = 0.1,
and control parameters η = 0.6, hl = 30, p1 = 0.3, p2 = 0.2, El = 2; then, hl < ηK = 60 and
p2 = 0.1875 < p2. Based on Theorem 2.1, system (2.1) exists as a semi-trivial periodic solution. From
Figure 4, we find that the population x(t) changes periodically, and population y(t) tends to be extinct.
This means that the semi-trivial periodic solution is OAS.
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Figure 4. The existence of a semi-trivial periodic solution with hl < ηK = 60 and p2 =

0.1875 < p2.

If p2 < p2, then the semi-trivial periodic solution will lose its stability, and system (2.1) may exist as
a positive periodic solution. This, we keep other parameters fixed but η = 0.3, p1 = 0.2, p2 = 0.01. By
simple calculations, we can deduce that (x∗1, y

∗
1) = (57.5171, 21.8914) is locally asymptotically stable,

and h∗ = 0.3x∗1 + 0.7y∗1 = 32.5791, p2 < p2 = 0.167, then hl = 30 ≤ {ηK, h∗} is satisfied, corresponding
to case (1) in Theorem 2.2, and system (2.1) exists as an order-1 periodic solution (see Figure 5).
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Figure 5. The existence of an order-1 periodic solution for case (1) in Theorem 2.2.

Example 3.2. To verify case (2) in Theorem 2.2, we choose τ = 0, hl = 30, η = 0.1, p1 = 0.2,
El = 2, and p2 = 0.01 and keep other parameters unchanged. Thus, we have η∗ = y∗1

K−x∗1+y∗1
= 0.34,

hητ = 63.6884, so ηK < hl < hηl , η < η∗ is satisfied. From Figure 6, we find that the populations x(t) and
y(t) change periodically. This shows that system (2.1) exists as an order-1 periodic solution for case (2)
in Theorem 2.2.
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Figure 6. The existence of the order-1 periodic solution for case (2) in Theorem 2.2.

Example 3.3. For case (3) in Theorem 2.2, we choose that τ = 2, hl = 32, η = 0.3, p1 = 0.2, p2 = 0.1,
and El = 2, so hl < hηl = 63.5129 is satisfied. From Figure 7, we find that the populations x(t) and y(t)
change periodically, indicating that system (2.1) exists as an order-1 periodic solution for case (3) in
Theorem 2.2.
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Figure 7. The existence of the order-1 periodic solution for case (3) in Theorem 2.2.
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Example 3.4. Now, we determine the optimal harvesting level and optimal weight. Let x1 = 10,
x2 = 30, p1 = 0.3, p2 = 0.1, E1 = 0.4, E2 = 1, τ1 = 0.1, τ2 = 2.4, and r = 1.2 with other model
parameters unchanged. Then the x̃1 with respect to η and xl is listed in Figure 8(a), from which we can
observe that x̃1 is decreasing with the change of η for a given xl, and increasing with the change of xl

for a given η.
For a1 = 10, a2 = 250, a3 = 100, and a4 = 50, the profit ΨPro with respect to η and xl is presented

in Figure 8(b), from which we can observe that Qpro f it achieves its maximum value at η∗ = 0.1 and
x∗l = 25. In addition, the optimal weight η∗ and the optimal harvesting level x∗l depend on the values of
the parameters ai, i = 1, 2, 3, 4.

(a) (b)

Figure 8. The harvesting level xl and profit ΨPro with respect to η and x1.

We now quantify the impact of model parameters on the profit (Qpro f it) via numerical simulations.
We choose K = 100, a = 0.3, q = 0.39, µ = 1, e = 0.45, and δ = 0.1 and keep control parameters
fixed. To investigate the specific influence of the growth rate r on Qpro f it, we vary r within a reasonable
range while keeping all other parameters unchanged. The tested values of r are selected as 1.2, 1.4, 1.6,
and 1.8, which cover the typical variation interval of this parameter in similar ecological-economic
models. This parameter setting ensures that the simulation results can reflect the relationship between
r and Qpro f it.

As shown in Figure 9, varying r within a reasonable range (other parameters fixed) reveals two
trends: First, profit (Qpro f it increases gradually with r; second, optimal harvesting level (x∗l ) changes
accordingly. These confirm a monotonic positive r − Qpro f it relationship and show that r adjusts
optimal management (via x∗l ), indicating that boosting r raises returns but requires recalibrating x∗l
for sustainability. These results validate the analysis objective: Quantifying Qpro f it and visualizing
trends provides insights into how r shapes system economic performance and optimal management.
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(a) (b)

(c) (d)

Figure 9. The change of profit ΨPro with respect to r. (a) r=1.2, η∗ = 0.1, x∗l = 25, (b) r=1.4,
η∗ = 0.1, x∗l = 25, (c) r=1.6, η∗ = 0.1, x∗l = 22, (d) r=1.8, η∗ = 0.1, and x∗l = 20.

4. Conclusions

Over-exploitation of natural resources can trigger a chain of risks in terms of ecology, economy, and
public health. Therefore, sustainable resource management is imperative. To address this challenge, in
this paper, we develop a state-dependent pulsed predator-prey model based on a weighted harvesting
strategy, defining the intervention trigger as a linear combination of prey and predator densities
(hl = ηx + (1 − η)y, η ∈ [0, 1]). This linear threshold design explicitly captures the inherent trophic
interdependence between prey and predators, and it is particularly critical for predators vulnerable to
the Allee effect-effectively overcoming the limitations of single-species thresholds that risk pushing
such predators below their minimum viable population density and triggering irreversible extinction.
Theoretical analysis reveals that the existence and stability of order-1 periodic solutions are critical
indicators of a self-regulating, balanced ecosystem under rational harvesting control, while stable
semi-trivial solutions (predator extinction) warn of ecological collapse driven by over-exploitation,
especially for Allee-effect-prone predators. Furthermore, the constructed optimization framework
has generated an economically optimal harvesting strategy that conforms to biological constraints,
ensuring that the population remains above the minimum feasible reproduction threshold. Numerical
simulations validate the theoretical conditions for order-1 periodic solutions and quantify the impact of
the prey intrinsic growth rate r on management outcomes: Variations in r directly affect the maximum
economic profit, the ecosystem-stabilizing optimal harvesting intensity, and the optimal weighting

AIMS Mathematics Volume 11, Issue 1, 578–593.



590

coefficient η that balances species conservation (particularly for Allee-effect-vulnerable predators)
and economic gains. Overall, this paper provides a theoretically grounded and practically operable
framework for sustainable predator-prey ecosystem management, with the linear composite trigger
offering a flexible tool for balancing trophic interactions, protecting Allee-effect-prone predators, and
meeting human livelihood needs.
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Appendix: Some definitions and lemmas

In this section, we introduce some definitions and lemmas about the geometric theory of the semi-
continuous dynamical system.

Consider the semi-continuous dynamical system [29]

dx
dt
= P(x, y),

dy
dt
= Q(x, y),

 i f M(x, y) , 0,

∆x = E(x, y),
∆y = F(x, y),

}
i f M(x, y) = 0,

where M(x, y) is called the impulsive set. Denote the impulsive map ϕ : (x, y)→ (x + ∆x, y + ∆y), i.e.,
N(x, y) = ϕ(M(x, y)). Additionally, if (x, y) < M(x, y), then the system develops under the regulation of
f (x, y) = (dx

dt = P(x, y), dy
dt = Q(x, y)), which is similar to a continuous system.
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Lemma A.1. (Stability criterion [30]) The TL period-1 solution X(t) = (ξ(t), η(t)) of the proposed
model is orbitally asymptotically stable if the convergency ratio ργL is less than one, where

ργL ≜

∣∣∣∣∣∣PI
+[(1 + βy)Φx − βxΦy] + QI

+[(1 + αx)Φy − αyΦx]
PIΦx + QIΦy

∣∣∣∣∣∣ exp
∫ T

0+

[
∂P
∂x
+
∂Q
∂y

]
(ξ(t),η(t))

 ,
PI(QI) represents the value of P(Q) at L−(ξ(TL), η(TL)) ∈ Mimp, and PI

+(Q
I
+) represents the value of

P(Q) at L(ξ(0+), η(0+)) ∈ Npha.
Next, the definition of the successor function is introduced.

Definition A.1. (Successor function [30, 31]) Let MIMP and NPHA be two disjoint lines. Denote O′ as
the intersection point between NPHA and x-axis (or y-axis if NPHA ∩ x-axis=∅). For a given A1 ∈ NPHA,
the trajectory from A1, passing through point A2, intersects the impulsive set at the point A3, then
jumps to point A4 ∈ NPHA, and A4 = ϕ(A3). Then, a type-I successor function f I

S OR is defined by
f I
S OR = d(A4,O′) − d(A2,O′), and a type-II function f II

S OR is defined by f II
S OR = d(A4,O′) − d(A1,O′), as

shown in Figure 10.
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Figure 10. Schematic diagram of the successor function.
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