This research investigates a mathematical model for human immunodeficiency virus (HIV) infections that incorporates cytotoxic T lymphocyte (CTL) immune responses and two types of infected cells. Additionally, the model reflects the effect of antiretroviral therapies. By using the next-generation matrix method, the basic reproduction number $ R_0 $ and the CTL immune reproduction number $ R_1 $ are calculated. The existence and stability of equilibria are discussed. In particular, if $ R_0 < 1 $, then the infection-free equilibrium is globally asymptotically stable. Moreover, through analyzing the transmission dynamics of HIV within the human body under the influence of drug treatment, this study provides a theoretical foundation to optimize antiretroviral therapy strategies.
Citation: Weimiao Zheng, Juan Wang, Xia Wang. Dynamics of an HIV model with immune response and two types of infected cells[J]. AIMS Mathematics, 2026, 11(1): 558-577. doi: 10.3934/math.2026024
This research investigates a mathematical model for human immunodeficiency virus (HIV) infections that incorporates cytotoxic T lymphocyte (CTL) immune responses and two types of infected cells. Additionally, the model reflects the effect of antiretroviral therapies. By using the next-generation matrix method, the basic reproduction number $ R_0 $ and the CTL immune reproduction number $ R_1 $ are calculated. The existence and stability of equilibria are discussed. In particular, if $ R_0 < 1 $, then the infection-free equilibrium is globally asymptotically stable. Moreover, through analyzing the transmission dynamics of HIV within the human body under the influence of drug treatment, this study provides a theoretical foundation to optimize antiretroviral therapy strategies.
| [1] | UNAIDS (updated 10 July 2025), Available from: https://www.unaids.org/en/resources/fact-sheet. |
| [2] |
S. Li, C. Moog, T. Zhang, B. Su, HIV reservoir: Antiviral immune responses and immune interventions for curing HIV infection, Chinese Med. J., 135 (2022), 2667–2676. http://dx.doi.org/10.1097/cm9.0000000000002479 doi: 10.1097/cm9.0000000000002479
|
| [3] |
L. G. Bekker, C. Beyrer, N. Mgodi, S. R. Lewin, S. D. Moretlwe, B. Taiwo, et al., HIV infection, Nat. Rev. Dis. Primers, 9 (2023), 1–21. https://doi.org/10.1038/s41572-023-00452-3 doi: 10.1038/s41572-023-00452-3
|
| [4] |
A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Stability of HIV-8 and HIV-1 co-infection model with latent reservoirs and multiple distributed delays, AIMS Math., 9 (2024), 19195–19239. https://doi.org/10.3934/math.2024936 doi: 10.3934/math.2024936
|
| [5] |
L. Beilina, M. Eriksson, I. Gainova, Time-adaptive determination of drug efficacy in mathematical model of HIV infection, Differ. Equat. Dyn. Sys., 32 (2024), 313–347. https://doi.org/10.1007/s12591-021-00572-w doi: 10.1007/s12591-021-00572-w
|
| [6] |
L. Hong, J. Li, L. Rong, X. Wang, Global dynamics of a delayed model with cytokine-enhanced viral infection and cell-to-cell transmission, AIMS Math., 9 (2024), 16280–16296. https://doi.org/10.3934/math.2024788 doi: 10.3934/math.2024788
|
| [7] |
X. Lai, X. Zou, Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission, SIAM J. Appl. Math., 74 (2014), 898–917. https://doi.org/10.1137/130930145 doi: 10.1137/130930145
|
| [8] |
Y. Huang, X. Meng, X. Wang, L. Rong, Analysis of an HIV latent infection model with cell-to-cell transmission and multiple drug classes, Appl. Math. Lett., 164 (2025), 1–6. https://doi.org/10.1016/j.aml.2025.109478 doi: 10.1016/j.aml.2025.109478
|
| [9] |
Y. Wang, T. Zhao, J. Liu, Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays, Math. Biosci. Eng., 16 (2019), 7126–7154. https://doi.org/10.3934/mbe.2019358 doi: 10.3934/mbe.2019358
|
| [10] |
T. Guo, Z. Qiu, The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission, Math. Biosci. Eng., 16 (2019), 6822–6841. https://doi.org/10.3934/mbe.2019341 doi: 10.3934/mbe.2019341
|
| [11] |
W. Wang, G. Wu, X. Fan, Global dynamics of a novel viral infection model mediated by pattern recognition receptors, Appl. Math. Lett., 173 (2026), 1–6. https://doi.org/10.1016/j.aml.2025.109757 doi: 10.1016/j.aml.2025.109757
|
| [12] |
N. H. AlShamrani, R. H. Halawani, A. M. Elaiw, Stability of generalized models for HIV-1 dynamics with impaired CTL immunity and three pathways of infection, Front. Appl. Math. Stat., 10 (2024), 1–35. https://doi.org/10.3389/fams.2024.1412357 doi: 10.3389/fams.2024.1412357
|
| [13] |
A. M. Elaiw, N. H. Alshamrani, Stability of a general CTL-mediated immunity HIV infection model with silent infected cell-to-cell spread, Adv. Differ. Equ., 1 (2020), 1–25. https://doi.org/10.1186/s13662-020-02818-3 doi: 10.1186/s13662-020-02818-3
|
| [14] |
J. Ren, R. Xu, L. Li, Global stability of an HIV infection model with saturated CTL immune response and intracellular delay, Math. Biosci. Eng., 18 (2021), 57–68. https://doi.org/10.3934/MBE.2021003 doi: 10.3934/MBE.2021003
|
| [15] |
S. Sutimin, S. Sunarsih, R. Tjahjana, Modeling CD4$^{+}$T cells and CTL response in HIV-1 infection with antiretroviral therapy, Commun. Biomath. Sci., 1 (2018), 100–109. https://doi.org/10.5614/cbms.2018.1.2.3 doi: 10.5614/cbms.2018.1.2.3
|
| [16] |
Y. Yang, R. Xu, Mathematical analysis of a delayed HIV infection model with saturated CTL immune response and immune impairment, J. Appl. Math. Comput., 68 (2022), 2365–2380. https://doi.org/10.1007/s12190-021-01621-x doi: 10.1007/s12190-021-01621-x
|
| [17] |
C. Mondal, D. Adak, N. Bairagi, Optimal control in a multi-pathways HIV-1 infection model: A comparison between mono-drug and multi-drug therapies, Int. J. Control, 94 (2021), 2047–2064. https://doi.org/10.1080/00207179.2019.1690694 doi: 10.1080/00207179.2019.1690694
|
| [18] |
Z. Zhang, Y. Chen, X. Wang, L. Rong, Dynamic analysis of a latent HIV infection model with CTL immune and antibody responses, Int. J. Biomath., 17 (2024), 289–316. https://doi.org/10.1142/S1793524523500791 doi: 10.1142/S1793524523500791
|
| [19] |
S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178–196. https://doi.org/10.1016/j.jtbi.2008.04.011 doi: 10.1016/j.jtbi.2008.04.011
|
| [20] |
T. Guo, Z. Qiu, L. Rong, Analysis of an HIV model with immune responses and cell-to-cell transmission, B. Malays. Math. Sci. So., 43 (2020), 581–607. https://doi.org/10.1007/s40840-018-0699-5 doi: 10.1007/s40840-018-0699-5
|
| [21] |
P. K. Srivastava, M. Banerjee, P. Chandra, Modeling the drug therapy for HIV infection, J. Biol. Syst., 17 (2009), 213–223. https://doi.org/10.1142/S0218339009002764 doi: 10.1142/S0218339009002764
|
| [22] |
J. A. Zack, A. M. Haislip, P. Krogstad, I. S. Chen, Incompletely reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral life cycle, J. Virol., 66 (1992), 1717–1725. https://doi.org/10.1128/jvi.66.3.1717-1725.1992 doi: 10.1128/jvi.66.3.1717-1725.1992
|
| [23] |
X. He, M. Aid, J. D. Ventura, E. Borducchi, M. Lifton, J. Liu, et al., Rapid loss of CD4$^{+}$ T cells by pyroptosis during acute SIV infection in rhesus macaques, J. Virol., 96 (2022), 1–13. https://doi.org/10.1128/jvi.00808-22 doi: 10.1128/jvi.00808-22
|
| [24] |
W. M. Hirsch, H. Hanisch, J. P. Gabriel, Differential equation models of some parasitic infections: Methods for the study of asymptotic behavior, Commun. Pur. Appl. Math., 38 (1985), 733–753. https://doi.org/10.1002/cpa.3160380607 doi: 10.1002/cpa.3160380607
|
| [25] |
E. X. DeJesus, C. Kaufman, Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations, Phys. Rev. A, 35 (1987), 1–5. https://doi.org/10.1103/PhysRevA.35.5288 doi: 10.1103/PhysRevA.35.5288
|